
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



4 

The Role of CCR7-Ligands in Developing 
Experimental Autoimmune Encephalomyelitis 

Taku Kuwabara1, Yuriko Tanaka1, Fumio Ishikawa1, 
Hideki Nakano2 and Terutaka Kakiuchi1,* 

1Department of Immunology, Toho University School of Medicine 
2Laboratory of Respiratory Biology, National Institute of Environmental 

 Health Sciences, National Institute of Health 
1Japan 
2USA  

1. Introduction 

Multiple sclerosis is a chronic, inflammatory, and demyelinating disease of the central 
nervous system characterized by the pathological infiltration of autoreactive leukocytes. 
Experimental autoimmune encephalomyelitis serves as a disease model for human multiple 
sclerosis in mouse and rat (Conlon et al., 1999). Experimental autoimmune 
encephalomyelitis is induced through sensitization with neuroantigens such as myelin 
oligodendrocyte glycoprotein that activates neuroantigen-reactive T cells in the peripheral 
lymphoid organs. These T cells subsequently migrate into the central nervous system and 
encounter endogenous neuroantigens, which reactivates them and leads to nerve 
demyelination. Thus, induction of encephalitogenic T cells and their migration into the 
central nervous system are critical for development of experimental autoimmune 
encephalomyelitis.  

CD4+ helper T cells secreting IFN-┛ (Th1 cells) were long considered to be the predominant 
T cell subset inducing experimental autoimmune encephalomyelitis (Kuchroo et al., 2002; 
El-behi et al., 2010). This view was challenged by the finding that IFN-┛-deficient mice 
showed more severe experimental autoimmune encephalomyelitis than wild type mice 
(Ferber et al., 1996; Gran et al., 2002). More recently, IL-17-producing T helper cells (Th17 
cells) have emerged as a critical pathogenic T cell subset causing experimental autoimmune 
encephalomyelitis or human multiple sclerosis (Langrish et al., 2005). Th17 cells produce the 
pro-inflammatory cytokines IL-17A, IL-17F, and IL-22 (Ghilardi and Ouyang, 2007 ), and 
mice lacking expression of IL-17 were resistant to the induction of experimental 
autoimmune encephalomyelitis (Komiyama et al., 2006). Recently, Th17 cells were 
demonstrated to disrupt the blood-brain barrier by the action of IL-17A (Huppert et al., 
2010). Based on the many investigations on the encephalitogenic T cells, current concept is 
that both Th1 and Th17 cells participate in the development of EAE (El-behi et al, 2010). The 
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induction of pathogenic T cells appears dependent on the coordinated migration of several 
cell types, a phenomena regulated by chemokines (Elhofy et al., 2002). Indeed, many 
chemokines have been shown to be critical for the development of experimental 
autoimmune encephalomyelitis (Rebenko-Moll et al., 2006). As we will discuss later, 
chemokines CCL19 and CCL21 regulate induction of pathogenic T cells independent of their 
role in the migration of immune cells. These CCR7-ligand chemokines contribute for the 
generation of pathogenic Th17 cells which are more efficient for the induction of 
experimental autoimmune encephalomyelitis. 

Entry of primed T cells into the central nervous system is governed by both integrin-
dependent adhesion to blood vessels and chemokine-driven migration through the blood-
brain barrier. Many chemokines have been shown to be critical for the migration of 
activated and propagated pathogenic T cells into the central nervous system (Rebenko-Moll 
et al., 2006). Among them, chemokine CCL20, a ligand for CCR6, is constitutively expressed 
on epitherial cells of choroid plexus in mice and humans and provides ports of lymphocytes 
expressing a chemokine receptor CCR6 characteristic of Th17 cells (Reboldi et al., 2009). 
Recently, CXCL12, a ligand for CXCR7 and CXCR4, has been shown to restrict the central 
nervous system entry of CXCR4-expressing leukocytes, and loss of CXCL12 from abluminal 
surfaces of the blood-brain barrier is critical for migration of pathogenic lymphocytes into 
the parenchyma of the central nervous system during inducing experimental autoimmune 
encephalomyelitis (Cruz-Orengo et al., 2011). CCL19 and CCL21, ligands for CCR7, also 
have been detected at the blood-brain barrier, and suggested their involvement in CCR7-
dependent lymphocyte recruitment into the central nervous system (Alt et al., 2002). 

We previously identified a spontaneous mutation in mice characterized by a defect in 
homing of naïve T cells to the lymph node, Peyer’s patches, and splenic white pulp (paucity 
of lymph node T cells mice; plt/plt mice). These mice lack the expression of CCL19 and 
CCL21-ser and exhibit a migration defect in T cells and dendritic cells into the T cell zone in 
the secondary lymphoid organs. These mice, as well as CCR7-/- mice, provide a good tool 
for the investigation of the role of these chemokines in in vivo immune response. Using 
plt/plt mouse, we have analyzed the role CCL19 and CCL21 in the regulation of immune 
response (Nakano et al., 1997, 1998, 2009; Gunn et al., 1999; Vassileva et al., 1999; Nakano 
and Gunn, 2001; Mori et al., 2001; Yasuda et al., 2007; Kuwabara et al., 2009; Aritomi et al., 
2010). Unexpectedly, in vivo CD4+ T cell response is not decreased, but rather enhanced. 
When plt/plt mice were immunized with a protein antigen ovalbumin with complete 
Freund’s adjuvant, both expansion of ovalbumin-responding CD4+ T cells in the draining 
lymph nodes and an in vitro recall response are prolonged and do not decline for a long 
time as compared with those in wild type mice.  

Thus, there are two opposite possibilities; plt/plt mice with C57BL/6 background are 
resistant because of the lack of the expression of CCR7-ligands at the blood-brain barrier, or 
quite sensitive to the induction of experimental autoimmune encephalomyelitis because of 
the enhanced induction of pathogenic T cells. Using plt/plt mice as well as CCR7-/- mice, we 
investigated the role of CCR7-ligands in developing experimental autoimmune 
encephalomyelitis. As described below, we found plt/plt mice with C57BL/6 background are 
resistant to the induction of experimental autoimmune encephalomyelitis. This resistance is 
due to the failure to induce pathogenic Th17 cells because of deficient IL-23 production by 
dendritic cells, which results from lacking expression of CCL19 and CCL21. 
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2. CCL19 and CCL21 are required for the development of encephalomyelitis 
through generation of IL-23-dependent Th17 cells 

For the development of experimental autoimmune encephalomyelitis, we used C57BL/6 
wild type mouse and C57BL/6-plt/plt mouse. They were immunized following a standard 
protocol for induction of experimental autoimmune encephalomyelitis, that is, 
subcutaneous injection with myelin oligodendrocyte glycoprotein 35-55 peptide in complete 
Freund’s adjuvant, and subsequent intravenous injection on day 0 and day 2 with pertussis 
toxin (Kuwabara et al., 2009). 

2.1 plt/plt mouse is resistant to the induction of experimental autoimmune 
encephalomyelitis 

When C57BL/6 mice were immunized under the standard immunization protocol as 
described above, wild type mice developed experimental autoimmune encephalomyelitis 
with 100% disease incidence with onset at day 14 and the peak at 4th week after 
immunization, whereas plt/plt mice failed to develop the disease during 42 days following 
immunization (Figure 1, upper left panel). Confirming CCR7-ligands requirement in the 
disease development, similarly treated CCR7-/- mice did not develop experimental 
autoimmune encephalomyelitis (Figure 1, upper right panel). That experimental 
autoimmune encephalomyelitis did not develop in plt/plt mice might be due to the failure of 
pathogenic T cells to migrate into the central nervous system because of the lack of CCR7-
ligands expression, as suggested previously (Alt et al., 2002). To examine this possibility, 9 
days after subcutaneous immunization draining lymph node cells from wild type mice were 
incubated for 3 days with myelin oligodendrocyte glycoprotein 35-55 peptide, and then 
CD4+ T cells were adoptively transferred intravenously into wild type and plt/plt mice. As 
shown in Figure 1, lower panel, both wild type and plt/plt recipients developed 
experimental autoimmune encephalomyelitis with 100% disease incidence with similar 
clinical scores and time courses. As expected, draining lymph node cells from immunized 
plt/plt mice did not develop experimental autoimmune encephalomyelitis in naïve wild type 
mice (Figure 1, lower panel). These results indicated that pathogenic T cells are able to 
infiltrate the central nervous system to induce experimental autoimmune encephalomyelitis 
despite the absence of CCR7-ligands but strongly suggest that pathogenic cells fail to be 
generated in plt/plt mice immunized with myelin oligodendrocyte glycoprotein 35-55 
peptide.  

Thus, the dependency of experimental autoimmune encephalomyelitis development on 

CCR7-ligands is not due to a defect in the migration of pathogenic T cells in plt/plt mice, 

since adoptive transfer of pathogenic CD4+ T cells prepared from draining lymph node cells 

of wild type mice results in the disease development in plt/plt and wild type recipient mice 

with similar time course and disease severity. 

2.2 Deficient IL-17 and IFN-γ production by draining lymph node cells from mice 
lacking expression of CCR7-ligands 

To examine whether pathogenic cells were generated in plt/plt mice, we compared the in 
vitro recall responses of draining lymph node cells from primed wild type and plt/plt mice. 
Draining lymph node cells were prepared 9 days after immunization when experimental  
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Fig. 1. Failure of plt/plt mice and CCR7-/- mice to develop experimental autoimmune 
encephalomyelitis. Upper panels, Mice were subcutaneously immunized with myelin 
oligodendrocyte glycoprotein 35-55 peptide in complete Freund’s adjuvant at flanks and 
intravenously injected with pertussis toxin on days 0 and 2 (10 mice/group). Clinical 

symptoms were monitored for 42 days after immunization. Mean clinical score  SD is 
shown. Results from wild type and plt/plt mice are shown in the left panel and those from 
wild type and CCR7-/- mice in the right panel. Lower panel, Draining lymph node cells were 
prepared from wild type or plt/plt mice 9 days after immunization and incubated with 
myelin oligodendrocyte glycoprotein 35-55 peptide for 3 days. Wild type CD4+ T cells or 
plt/plt CD4+ T cells (1x107) prepared from the treated cells were intravenously transferred 
into naïve and 500R X-irradiated wild type or plt/plt mice (10 mice/group). Results are 

shown as mean experimental autoimmune encephalomyelitis clinical score  SD. WT: wild 
type. (Kuwabara et al., 2009) 

autoimmune encephalomyelitis symptoms were not observed in wild type mice, and 14 
days after immunization when the symptoms became evident. The proliferative recall 
responses to various doses of myelin oligodendrocyte glycoprotein 35-55 peptide were 
similar between draining lymph node cells from wild type and plt/plt mice prepared 9 days 
after and 14 days after immunization, suggesting T cell responses were similarly elicited in 
wild type and plt/plt mice. We also analyzed recall cytokine production to myelin 
oligodendrocyte glycoprotein 35-55 peptide. IL-4 and IL-10 were similarly produced by 
draining lymph node cells from wild type and plt/plt mice. Dose-dependent production of 
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IFN-┛ or IL-17 was detected in cultures of draining lymph node cells from wild type and 
plt/plt mice, but production of each of these cytokines was severely diminished in plt/plt 
draining lymph node (Figure 2). These results suggest plt/plt T cells could be primed by 
immunization with myelin oligodendrocyte glycoprotein 35-55 peptide, but that the pattern 
of cytokine responses differed from wild type mice. 

 

Fig. 2. In vitro response to myelin oligodendrocyte glycoprotein 35-55 peptide of draining 
lymph node cells from wild type and plt/plt mice. Wild type and plt/plt mice were 
immunized, as described in the legend for Figure 1. Draining lymph node cells prepared 9 
or 14 days after immunization were incubated with myelin oligodendrocyte glycoprotein 
35-55 peptide at indicated doses, and assessed for IFN-┛, and IL-17 in the culture 
supernatants by enzyme-linked immunosorbent assay using OptEIA kits (BD Biosciences). 

Each result is expressed as mean  SD. (Kuwabara et al., 2009) 

2.3 Requirement for CCR-7 ligands in the generation of IL-17- or IFN-γ-secreting T 
cells 

Reduced in vitro IL-17 and IFN-┛ production by draining lymph node cells from plt/plt mice 
suggested a defect in Th17 and Th1 cell generation. To examine this possibility, draining 
lymph node cells were prepared 9 days after immunization, incubated with myelin 
oligodendrocyte glycoprotein 35-55 peptide and assessed for intracellular IL-17 or IFN-┛ 
staining. As shown in Figure 3, CD4+IL-17+ Th17 cells were found at a much lower frequency 
in draining lymph node cells from plt/plt mice than in those from wild type mice (0.4% vs. 
4.2%). Addition of CCL19 or CCL21 to DLN cells from plt/plt mice during incubation with 
myelin oligodendrocyte glycoprotein 35-55 peptide restored Th17 cell generation from 0.4% to 
3.0 or 4.1%, respectively (Figure 3). Also the frequency of CD4+IFN-┛+ Th1 cells was much 
lower in plt/plt mice than in WT mice (0.4% vs. 4.4%). Addition of CCL19 or CCL21 restored 
Th1 cell generation in plt/plt mouse draining lymph node cells from 0.4% to 3.1 or 3.2%, 
respectively (Figure 3). These results support the hypothesis that the defect in generating Th17 
or Th1 cells in plt/plt mice was due to the lack of CCR7-ligand expression. 
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Fig. 3. Analysis of the T cell response in draining lymph nodes from wild type and plt/plt 
mice immunized for experimental autoimmune encephalomyelitis induction and generation 
of Th17 or Th1 cells by CCR7-ligand. Draining lymph node cells were prepared from wild 
type and plt/plt mice 9 days after immunization as described in the legend for Figure 1. 
Draining lymph node cells were incubated with myelin oligodendrocyte glycoprotein 35-55 
peptide in the presence or absence of CCL21 or CCL19 (100ng/ml) then assessed for 
intracellular IL-17 or IFN-┛ expression on a flow cytemeter. Numbers in right quadrants are 
the percentage to the total cells. (Kuwabara et al., 2009) 

2.4 Decreased production of IL-12 and IL-23 by draining lymph node cells from plt/plt 
mice 

For the optimal induction of IL-17-producing cells, IL-6, TGF-┚ and IL-23 are required 
(Veldhoen et al., 2006; Bettelli et al., 2006; Mangan et al., 2006). IL-12 is critical for inducing 
IFN-┛-producing cells (Seder and Paul, 1994) . Deficient production of IL-17 and IFN-┛ 
suggested that these cytokines were insufficiently produced in draining lymph node cells 
from plt/plt mice. Draining lymph node cells prepared from wild type and plt/plt mice 4 or 9 
days after immunization, similar levels of IL-6 and TGF-┚ production were observed 
following incubation with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast, 
as shown in Figure 4, the expression of IL-23p19 mRNA and IL-12p35 mRNA and 
production of IL-23 and IL-12 were much lower in cells from plt/plt mice than wild type 
mice, suggesting that the defect in production of IL-17 and IFN-┛ in draining lymph node 
cells from plt/plt mice was due to insufficient provision of IL-23 and IL-12. 
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Fig. 4. Severely impaired production of IL-12 and IL-23 in draining lymph node cells from 
plt/plt mice. Draining lymph node cells were prepared 4 or 9 days after immunization as 
described in the legend for Figure 1. A, B, Expression of IL-23p19 mRNA (A) and IL12p35 
mRNA (B) in CD11c+ cells was estimated by quantitative RT-PCR in draining lymph node 

cells from wild type and plt/plt mice. The expression is shown as mean  SD of the ratio to 
GAPDH, an internal control. These experiments were repeated 5 times with similar results. 
C, D, Draining lymph node cells from naïve mice or 4days after immunization were 

incubated with 10 M myelin oligodendrocyte glycoprotein 35-55 peptide for 24 hrs. 
Culture supernatants were assessed for IL-23 (C) and IL-12 (D). Results of triplicate assay 
were presented as mean ± SD. (Kuwabara et al., 2009) 

2.5 Th17 cells critically participate in the development of experimental autoimmune 
encephalomyelitis 

Previous reports demonstrated that neuroantigen-specific Th17 or Th1 cell is responsible for 

experimental autoimmune encephalomyelitis induction (Langrish et al., 2005; Lees et al., 

2008; Kroenke et al., 2008). To determine which defect in generating Th17 or Th1 cells was  

more critical in the resistance to experimental autoimmune encephalomyelitis development, 

draining lymph node cells from plt/plt mice were stimulated in vitro with myelin 

oligodendrocyte glycoprotein 35-55 peptide under the conditions for generating Th17 cells 

or Th1 cells, enriched for CD4+ T cells, and transferred into wild type mice. As shown in 

Figure 5, CD4+ T cells containing Th17 cells (CD4+IL-17+cells: 9.2%, CD4+IFN-┛+ cells: 0.1%) 

induced experimental autoimmune encephalomyelitis in the recipient mice with 100% 

disease incidence, whereas those containing Th1 cells (CD4+IL-17+cells: 0.1%, CD4+IFN-┛+ 

cells: 11.0%) did not, indicating that Th1 cells are less efficient at inducing experimental 

autoimmune encephalomyelitis, at least under the conditions employed. The cell 
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preparation containing Th17 or Th1 cells was confirmed to predominantly produce IL-17 or 

IFN-┛, respectively. The cells similarly prepared from WT mice and enriched for Th1 cells 

(CD4+ IL-17+cells: 0.6%, CD4+ IFN-┛+ cells: 20.3%) also failed to elicit experimental 

autoimmune encephalomyelitis in the recipient mice, whereas those containing Th17 cells 

(CD4+ IL-17+cells: 19.2%, CD4+ IFN-┛+ cells: 0.4%) elicited experimental autoimmune 

encephalomyelitis. These findings strongly support our interpretation that the defect in 

generating Th17 cells is crucial in the resistance to experimental autoimmune 

encephalomyelitis development in plt/plt mice under the conditions employed.  

 

Fig. 5. Th17-enriched, rather than Th1-enriched, cell population was responsible for 
experimental autoimmune encephalomyelitis development in recipient mice. Draining 
lymph node cells from primed plt/plt (left panel) or wild type (right panel) mice were 
incubated with myelin oligodendrocyte glycoprotein 35-55 peptide for 3 days in the 
presence of CCL19, IL-12 and anti-IL-4 and anti-IL-23 mAbs for developing Th1 cells, in the 
presence of CCL19, IL-23 and anti-IL-4 and anti-IFN-┛ mAbs for developing Th17 cells, or in 
the presence of IL-23 alone. CD4+ T cells (1x107) prepared from the treated cells were 
intravenously transferred into naïve and 500R X-irradiated wild type mice (10 mice/group). 
Experimental autoimmune encephalomyelitis development is shown as a mean clinical 

score  SD. (Kuwabara et al., 2009) 

2.6 IL-23-dependent induction of encephalitogenic Th17 cells 

Deficient IL-23 production in draining lymph node cells from plt/plt mice prompted us to 
evaluate the role of IL-23 in inducing Th17 cells. Addition of exogenous IL-23 to CD4+ 
draining lymph node cells from immunized plt/plt mice stimulated with immobilized anti-
CD3 and anti-CD28 mAbs increased the frequency of Th17 cells from 0.18% to 1.34%, 
supporting the idea that the defect in developing Th17 cells in plt/plt mice was due to 
reduced production of IL-23. To confirm that stimulation with IL-23 was able to induce 
pathogenic T cells in experimental autoimmune encephalomyelitis induction, draining 
lymph node cells from immunized plt/plt mice were incubated with myelin oligodendrocyte 
glycoprotein 35-55 peptide in the presence of IL-23, enriched for CD4+ T cells, and 
adoptively transferred into naïve wild type mice, which resulted in the development of 
experimental autoimmune encephalomyelitis in the recipient mice (Figure 5, left panel). 
These results suggested that exogenous IL-23 was able to stimulate plt/plt mouse draining 
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lymph node cells along with myelin oligodendrocyte glycoprotein 35-55 peptide to induce 
pathogenic Th17 cells, consistently, with the critical role of IL-23 in the induction phase of 
experimental autoimmune encephalomyelitis (Thankker et al., 2007). Taken all together, 
these findings suggest that the defect in plt/plt mice is likely a defect in Th17 cell generation 
due to deficient IL-23 production.  

2.7 CCR7-ligands stimulate dendritic cells to produce IL-23 

Dendritic cells are known to produce IL-23 (Oppmann et al., 2000). The reduced production 
of IL-23 in the incubation of plt/plt draining lymph node cells with myelin oligodendrocyte 
glycoprotein 35-55 peptide suggests the dependency of the IL-23 production on CCR7-
ligands. To confirm this possibility, we prepared bone marrow-derived dendritic cells and 
stimulated the cells with CCR7-ligands or other chemokines. Lipopolysaccharide was used 
as a positive control for induction of IL-23p19 mRNA (Oppmann et al., 2000). CCL19 or 
CCL21 increased IL-23p19 mRNA expression, although not to the same extent as 
lipopolysaccharide (Figure 6-A, left and middle panels). The chemokines CCL5 and CXCL12 
did not stimulate bone marrow-derived dendritic cells to produce IL-23 (Figure 6, left 
panel). Confirming that CCL19 and CCL21 stimulate DCs through CCR7 to express IL-
23p19mRNA, bone marrow-derived dendritic cells from CCR7-/- mice did not respond to 
the chemokines (Figure 6-A, right panel).  

Draining lymph node cells also express IL-23p19 mRNA in response to CCR7-ligands. 

Draining lymph node cells from immunized wild type, plt/plt, or CCR7-/- mice were 

incubated with myelin oligodendrocyte glycoprotein 35-55 peptide for 6 hours in the 

presence or absence of CCL19 or CCL21. Then, CD11c+ cells were enriched and assayed for 

IL-23p19 mRNA expression. As shown in Figure 6-B, left panel, CD11c+ cells from wild type 

mice expressed much higher IL-23p19 mRNA than those from naïve mice, and addition of 

CCL19 did not further enhance IL-23p19 mRNA expression in these cells from immunized 

wild type mice, probably because they had been exposed to CCL19 produced in draining 

lymph nodes. In CD11c+ cells from plt/plt mice, however, addition of exogenous CCL19 or 

CCL21 increased IL-23p19 mRNA expression (Figure 6-B, middle). As expected, cells from 

CCR7-/- mice did not respond to the addition of CCR7-ligands (Figure 6-B, right panel). 

CCR7-ligands also stimulated IL-23 production by bone marrow-derived dendritic cells 

from wild type and plt/plt mice and by draining lymph node cells from plt/plt mice (Figure 6-

C, D). Draining lymph node cells alone from immunized wild type mice produced much 

more IL-23 than those from naïve wild type mice, probably because endogenous CCR7-

ligands induced sufficient level of IL-23 production (Figure 6- C, D). Taken together, the 

results shown in Figure 6 demonstrate that CCL19 or CCL21 is necessary and sufficient to 

induce IL-23 production from dendritic cells. Confirming that IL-23 production in response 

to a CCR7-ligand plays a critical role in Th17 induction, in a dose-dependent fashion anti-IL-

23 mAb inhibited Th17 cell generation following incubation of draining lymph node cells 

from plt/plt mice with myelin oligodendrocyte glycoprotein 35-55 peptide in the presence of 

CCL19 or CCL21 (Figure 7).  

Also in vivo expression of IL-23 in dendritic cells was observed in the presence of CCR7-
ligands, but not in the absence of them. When mice were immunized subcutaneously with a 
protein antigen ovalbumin in complete Freund’s adjuvant, expression of IL-23p19 mRNA  
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Fig. 6. CCR7-ligands stimulate dendritic cells to express IL-23p19 mRNA and to produce IL-
23. A, Bone marrow-derived dendritic cells were prepared from wild type, plt/plt, and CCR7-

/- mice, and stimulated with lipopolysaccharide or indicated chemokines at 100ng/ml for 6 
hours. Cellular RNA was prepared from each cell population and IL-23p19 mRNA 

expression was evaluated by quantitative RT-PCR. The expression is shown as mean  SD of 
the ratio to GAPDH, an internal control. B, Draining lymph node cells were prepared 4 days 

after immunization from wild type, plt/plt, and CCR7-/- mice, and incubated with 10M 
myelin oligodendrocyte glycoprotein 35-55 peptide in the presence or absence of CCL19 or 
CCL21 for 6 hrs. CD11c+ cells were enriched with a positive selection kit (BD Biosciences) by 
MACS. CD11c+ cells were 89.2%, 92.2%, and 90.4% for wild type, plt/plt, and CCR7-/- mice, 
respectively. Cellular RNA was prepared from each cell population and assessed for IL-
23p19 mRNA expression by quantitative RT-PCR. Controls were lymph node cells from 

naïve mice. Expression is shown as mean  SD of the ratio to GAPDH as an internal control. 
C, D, Bone marrow-derived dendritic cells (C) or draining lymph node cells (D) from wild 
type and plt/plt mice were stimulated as described above for 24 hours. The supernatants 
were assessed for IL-23 using an enzyme-linked immunosorbent assay kit (BD Biosciences). 
Results are shown as a mean ± SD of triplicate assay. (Kuwabara et al., 2009) 
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Fig. 7. Draining lymph node cells from plt/plt mice were incubated with myelin 
oligodendrocyte glycoprotein 35-55 peptide for 2 days in the presence or absence of CCL21 
or CCL19 alone or with anti-IL23 mAb. The cells were analyzed for CD4 expression and 
intracellular IL-17. (Kuwabara et al., 2009)  

and its protein was much higher in the draining lymph nodes CD11c+ dendritic cells from 
wild type mice than in those from plt/plt mice. Thus, CCR7-ligands are required for IL-23 
production both in vivo and in vitro.  

IL-12p35 mRNA expression and IL-12 production in bone marrow-derived dendritic cells 
from plt/plt mice were also induced by the addition of exogenous CCL19 or CCL21.  

It was also possible CCR7-ligands directly stimulated CD4+ T cells to produce IL-17. 

However, this seemed unlikely since CD4+ T cells isolated from naïve plt/plt mice or plt/plt 

mice primed with myelin oligodendrocyte glycoprotein 35-55 peptide were not induced to 

produce IL-17 in response to immobilized anti-CD3 and anti-CD28 mAbs in the presence of 

exogenously added CCL19 or CCL21. We concluded CCR7-ligands stimulated dendritic 

cells to produce IL-23, which in turn resulted in Th17 differentiation. Consistently, IL-23 has 

been shown to be a critical Th17 growth, survival and pathogenesis-inducing factor 

(Verdhoen et al., 2006; Bettelli et al., 2006; Mangan et al., 2006; Ghoreschi et al., 2010). 

2.8 CCR7-ligands promote the generation of pathogenic Th17 cells 

To determine the pathogenicity of draining lymph node T cells from plt/plt mice that had 
been incubated with CCR7-ligands under experimental autoimmune encephalomyelitis 
inducing conditions, 9 days after immunization cells were incubated for 3 days with myelin 
oligodendrocyte glycoprotein 35-55 peptide in the presence of CCL19 or CCL21. CD4+ T 
cells were enriched from the treated cells and intravenously transferred into naïve wild type 
mice. As shown in Figure 8, the recipient mice developed experimental autoimmune 
encephalomyelitis with more than 70% disease incidence.  
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Fig. 8. Restoration of pathogenic T cells by incubation with CCR7-ligands. Draining lymph 
node cells from immunized plt/plt mice (CD45.2+) were incubated at 4x106 cells/ml with 10 

M myelin oligodendrocyte glycoprotein 35-55 peptide in the presence of CCR7-ligands 
(100 ng/ml) for 3 days. CD4+ T cells (3x107) prepared from the treated cells were 
intravenously transferred into naïve and 500R X-irradiated wild type mice, and mice were 

monitored for experimental autoimmune encephalomyelitis (10 mice/group). A mean  SD 
of experimental autoimmune encephalomyelitis clinical score is plotted. The experimental 
autoimmune encephalomyelitis incidence was 0% for recipients of cells incubated in the 
absence of CCR7-ligands, 70% for those in the presence of CCL19, 80% for those in the 
presence of CCL21. (Kuwabara et al., 2009) 

2.9 CCR7 ligands up-regulate IL-23 through PI3-kinase and NF-κB pathway in 
dendritic cells 

Finally, we explored the molecular mechanism involved in CCR7-ligand-induced IL-23 
production in dendritic cells, using CD11c+ spleen and bone marrow-derived dendritic cells. 
Although IL-23 is a heterodimeric molecule of a p40 subunit and a p19 subunit, p19 
expression is the rate-limiting factor for IL-23 production (Oppmann et al., 2000). Several 
reports have shown that MAPK and PI3K/Akt signaling pathways triggered by CCR7 
activation modulate dendritic cell function (Yanagawa & Onoe, 2002, 2003; Sanchez-Sanchez 
et al., 2004; Iijima et al., 2005; Riol-Blanco et al., 2005). Similar to previous studies, 
stimulation of dendritic cells with CCL19 or CCL21 resulted in the activation of Erk1/2, 
JNK, p38 MAP kinase and PI3K (Kuwabara et al., 2011). The CCR7 ligand-induced increase 
in IL-23 p19mRNA transcription was markedly antagonized only by a PI3K inhibitor. In 
contrast, the ability of dendritic cells to migrate toward CCL19 or CCL21 was not blunted by 
the PI3K inhibitor, indicating that signaling pathways triggered by CCR7 for IL-23 
production and for migration are different (Kuwabara et al., 2011). 

PI3K/Akt activation is known to induce NF-κB activation (Kane et al., 1999). 
Lipopolysaccharide activates NF-κB in dendritic cells to produce IL-23 (Utsugi, et al., 2006; 
Mise-Omata, et al.,2007; Varmody, et al., 2007; Liu, et al., 2009). We examined if NF-κB 
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activation was also critical for CCR-7-mediated IL-23 production. When dendritic cells were 
stimulated with CCL19 or CCL21, translocation of NF-κB was observed from the cytoplasm 
into the nucleus. IκB┙ is an NF-κB inhibitor whose levels are inversely and closely 
correlated to the activation of NF-κB (Karin & Ben-Nerah). We found stimulation of 
dendritic cells with CCL19 or CCL21 degraded IκB┙, which was prevented by inhibition of 
PI3K/Akt signaling. In addition, NF-κB inhibitors blunted the ability of CCR7 ligands to 
induce IL-23 production. Inhibition of PI3K activation abolished CCR7 ligand-mediated NF-
κB DNA binding activities (Kuwabara et al., 2011). Thus, CCR7 ligands triggers NF-κB 
activation through PI3K/Akt signaling, which results in the production of IL-23. It was also 
confirmed that CCR7 ligand–stimulated dendritic cells induce Th17 cells as antigen 
presenting cells. 

3. Conclusions 

We have investigated the role of CCR7-ligands, CCL19 and CCL21, in the development of 
experimental autoimmune encephalomyelitis, a disease model for human multiple sclerosis 
in mice. For this aim we used plt/plt mouse lacking expression of CCL19 and CCL21-ser, 
which we previously identified. These mice are resistant to the induction of experimental 
autoimmune encephalomyelitis under the standard protocol. In these mice encephalitogenic 
Th17 cells are not generated. For the generation of Th17 cells IL-23 is required but dendritic 
cells in these mice are unable to produce IL-23. CCR7 ligands stimulate dendritic cells to 
produce IL-23, and dendritic cells treated with CCR7 ligands are able to generate Th17 cells 
as antigen-presenting cells. The molecular mechanism involved in CCR7 ligand-induced IL-
23 production in dendritic cells was analyzed. CCR7 ligands trigger PI3K/Akt signaling 
pathway in dendritic cells through CCR7 and activate NF-κB, which results in the 
production of IL-23. The signaling pathway for IL-23 production is different from that for 
migration toward CCR7 ligands. For the development of strategies to treat experimental 
autoimmune encephaslomyelitis or human multiple sclerosis, we have to elucidate precise 
mechanisms for IL-23 production in dendritic cells through CCR7 and how dendritic cells 
are stimulated with CCR7 ligands in vivo to produce IL-23. 

4. Acknowledgments 

This work was supported in part by Project Research of Toho University School of Medicine 
(T. Ku., and F. I.), the Research Promotion Grants from Toho University Graduate School of 
Medicine (No. 05-02 to T. Ka., No.07-02 to T. Ku., No.08-02 to Y. T. and No.10-02 to T.Ku.), 
Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to 
T. K. (Nos. 12670621, 14021121, 17590900, and 19591013), to T. Ku. (Nos. 18790605 and 
22790945), and to Y. T. (Nos. 19790695 and 21790963), and for Research on Health Sciences 
Focusing on Drug Innovation from the Japan Health Sciences Foundation to T.K. (KH51052), 
and a grant from the Japan Rheumatism Foundation to T.Ku.. We would like to thank Dr. T. 
Hasegawa (Ohno Chuo Hospital, Ichikawa, Japan) for his support. 

5. References 

Alt C, Laschinger M & Engelhardt B. (2002). Functional expression of the lymphoid 
Chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier suggests 

www.intechopen.com



Experimental Autoimmune Encephalomyelitis  
– Models, Disease Biology and Experimental Therapy 78

their involvement in G-protein-dependent lymphocyte recruitment into the central 
nervous system during experimental autoimmune encephalomyelitis. Eur J 
Immunol 32:2133-44. 

Aritomi K, Kuwabara T, Tanaka Y, Nakano H, Yasuda T, Ishikawa F, Kurosawa H & 
Kakiuchi T. (2010). Altered antibody production and helper T cell function in mice 
lacking chemokines CCL19 and CCL21-Ser. Microbiol Immunol 54:691-701. 

Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL & Kuchroo VK. (2006). 
Reciprocal developmental pathways for the generation of pathogenic effector TH17 
and regulatory T cells. Nature 441:235-238. 

Carmody R J, Ruan Q, Liou HC & Chen YH. (2007). Essential roles of c-Rel in TLR-induced 
IL-23 p19 gene expression in dendritic cells. J Immunol 178: 186-191. 

Conlon P, Oksenberg JR, Zhang J & Steinman L. (1999). The immunobiology of multiple 
sclerosis: an autoimmune disease of the central nervous system. Neurobiol Dis 6:149-
166. 

Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P, Wright M, McCandless EE, Patel 
JR, Luker GD, Littman DR, Russell JH & Klein RS. (2011). CXCR7 influences 
leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 
abundance during autoimmunity. J Exp Med 208:327-39. 

El-behi M, Rostami A & Ciric B. (2010). Current views on the roles of Th1 and Th17 cells in 
experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 5:189-197. 

Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, Dalton D & 
Fathman CG. (1996). Mice with a disrupted IFN-┛ gene are susceptible to the 
induction of experimental autoimmune encephalomyelis (EAE). J Immunol 156:5-7. 

Elhofy A, Kennedy KJ, Fife BT, Karpus WJ. (2002). Regulation of experimental autoimmune 
encephalomyelitis by chemokines and chemokine receptors. Immunol Res 25:167-75.  

Ghilardi N & Ouyang W. (2007). Targeting the development and effector functions of Th17 
cells. Semin Immunol 19:383-393. 

Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, 
Davidson TS, Bouladoux N, Grainger JR, Chen Q, Kanno Y, Watford WT, Sun HW, 
Eberl G, Shevach EM, Belkaid Y, Cua DJ, Chen W, O'Shea JJ. (2010). Generation of 
pathogenic T(H)17 cells in the absence of TGF-┚ signalling. Nature 467:967-71. 

Gran B, Zhang GX, Yu s, Li J, Chen XH, Ventura ES, Kamoun M & Rostami A. (2002). IL-
12p35-deficient mice are susceptible to experimental autoimmune 
encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of 
central nervous system autoimmune demyelination. J Immunol 169-7110. 

Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H. (1999). 
Mice lacking expression of secondary lymphoid organ chemokine have defects in 
lymphocyte homing and dendritic cell localization. J Exp Med 189:451-460. 

Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, Bechmann I, Becher B, 
Luhmann HJ, Waisman A & Kuhlmann CR. (2010). Cellular mechanisms of IL-17-
induced blood-brain barrier disruption. FASEB J 24:1023-34.  

Iijima N, Yanagawa Y, Clingan JM & Onoe K. (2005). CCR7-mediated c-Jun N-terminal 
kinase activation regulates cell migration in mature dendritic cells. Int Immunol 17: 
1201-1212. 

Kane LP, Shapiro VS, Stokoe D & Weiss A. (1999) Induction of NF-κB by the Akt/PKB 
kinase. Curr Biol 9: 601-604. 

www.intechopen.com



 
The Role of CCR7-Ligands in Developing Experimental Autoimmune Encephalomyelitis 79 

Karin M & Ben-Neriah Y. (2000). Phosphorylation meets ubiquitination: the control of NF-
κB activity. Annu Rev Immunol 18:621-663. 

Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, & Iwakura Y. 
(2006) IL-17 plays an important role in the development of experimental 
autoimmune encephalomyelitis. J Immunol 177:566-73. 

Kuchroo VK, Anderson AC, Walddner H, Munder M, Bettelli E & Nicholson LB. (2002). T 
cell response in experimental autoimmune encephalomyelitis (EAE): role of self 
and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T 
cell repertoire. Annu Rev Immunol 20:101-123. 

Kuwabara T, Ishikawa F, Yasuda T, Aritomi K, Nakano H, Tanaka Y, Okada Y, Lipp M, 
Kakiuchi T. (2009). CCR7 ligands are required for development of experimental 
autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells. J 
Immunol 183:2513-21.  

Kuwabara T, Tanaka Y, Ishikawa F, Kondo M, Sekiya H & Kakiuchi T. (2011). CCR7 ligands 
up-regulate IL-23 through PI3-kinase and NF-κB pathway in dendritic cells. in 
submitted.  

Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick, JD, McClanahan 
T, Kastelein RA & Cua DJ. (2005). IL-23 drives a pathogenic T cell population that 
induces autoimmune inflammation. J Exp Med 201:233-240. 

Liu W, Ouyang X, Yang J, Liu J, Li Q, Gu Y, Fukata M, Lin T, He JC, Abreu M, Unkeless JC, 
Mayer L & Xiong H. (2009). AP-1 activated by toll-like receptors regulates 
expression of IL-23 p19. J Biol Chem 284: 24006-24016. 

Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, 
Wahl SM, Schoeb TR & Weaver CT. (2006). Transforming growth factor-beta 
induces development of the T(H)17 lineage. Nature 441:231-234. 

Mise-Omata S, Kuroda E, Niikura J, Yamashita U, Obata Y & Doi TS. (2007). A proximal 
kappaB site in the IL-23 p19 promoter is responsible for RelA- and c-Rel-dependent 
transcription. J Immunol 179: 6596-6603. 

Mori S, Nakano H, Aritomi K, Wang CR, Gunn MD & Kakiuchi T. (2001). Mice lacking 
expression of the chemokines CCL21-ser and CCL19 (plt mice) demonstrate 
delayed but enhanced T cell immune responses. J Exp Med 193:207-218. 

Nakano H, Tamura T, Yoshimoto T, Yagita H, Miyasaka M, Butcher EC, Nariuchi H, 
Kakiuchi T & Matsuzawa A. (1997). Genetic defect in T lymphocyte-specific 
homing into peripheral lymph nodes. Eur J Immunol 27:215-221. 

Nakano H, Mori S, Yonekawa H, Nariuchi H, Matsuzawa A & Kakiuchi T. (1998). A novel 
mutant gene involved in T-lymphocyte-specific homing into peripheral lymphoid 
organs on mouse chromosome 4. Blood 91:2886-2895. 

Nakano H & Gunn MD. (2001). Gene duplications at the chemokine locus on mouse 
chromosome 4: multiple strain-specific haplotypes and the deletion of secondary 
lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation. 
J Immunol 166(1):361-369. 

Nakano H, Lin KL, Yanagita M, Charbonneau C, Cook DN, Kakiuchi T & Gunn MD. (2009). 
Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T 
helper type 1 immune responses. Nat Immunol 10:394-402. 

Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, 
Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, 

www.intechopen.com



Experimental Autoimmune Encephalomyelitis  
– Models, Disease Biology and Experimental Therapy 80

Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF & 
Kastelein RA. (2000). Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, 
with biological activities similar as well as distinct from IL-12. Immunity 13:715-725. 

Rebenko-Moll NM, Liu L, Cardona A & Ransohoff RM. (2006). Chemokines, mononuclear 
cells and the nervous system: heaven (or hell) is in the details. Curr Opin Immunol 
18:683-689.  

Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, 
Lanzavecchia A, Engelhardt B & Sallusto F. (2009). C-C chemokine receptor 6-
regulated entry of TH-17 cells into the CNS through the choroid plexus is required 
for the initiation of EAE. Nat Immunol 10:514-523. 

Riol-Blanco L, Sanchez-Sanchez N, Torres A, Tejedor A, Narumiya S, Corbi AL, Sanchez-
Mateos P & Rodriguez-Fernandez JL. (2005) The chemokine receptor CCR7 
activates in dendritic cells two signaling modules that independently regulate 
chemotaxis and migratory speed. J Immunol 174: 4070-4080. 

Sanchez-Sanchez N, Riol-BlancoL, de la Rosa G, Puig-Kroger A, Garcia-Bordas J, Martin D, 
Longo N, Cuadrado A, Cabanas C, Corbi A L, Sanchez-Mateos P & Rodriguez-
Fernandez JL. (2004). Chemokine receptor CCR7 induces intracellular signaling 
that inhibits apoptosis of mature dendritic cells. Blood 104: 619-625. 

Seder RA & Paul WE. (1994). Acquisition of lymphokine-producing phenotype by CD4+ T 
cells. Annu Rev Immunol 12:635-73. 

Thakker P, Leach MW, Kuang W, Benoit SE, Leonard JP & Marusic S. (2007). IL-23 is critical 
in the induction but not in the effector phase of experimental autoimmune 
encephalomyelitis. J Immunol 178:2589-2598. 

Utsugi M, Dobashi K, Ishizuka T, Kawata T, Hisada T, Shimizu Y, Ono A & Mori M. (2006). 
Rac1 negatively regulates lipopolysaccharide-induced IL-23 p19 expression in 
human macrophages and dendritic cells and NF-κB p65 trans activation plays a 
novel role. J Immunol 177: 4550-4557. 

Vassileva G, Soto H, Zlotnik A, Nakano H, Kakiuchi T, Hedrick JA & Lira SA. (1999). The 
reduced expression of 6Ckine in the plt mouse results from the deletion of one of 
two 6Ckine genes. J Exp Med 190:1183-1188. 

Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM & Stockinger B. (2006). TGF-┚ in the 
context of an inflammatory cytokine milieu supports de novo differentiation of IL-
17-producing T cells. Immunity 24:179-89. 

Yanagawa Y & Onoe K. (2002). CCL19 induces rapid dendritic extension of murine dendritic 
cells. Blood  100: 1948-1956. 

Yanagawa Y & Onoe K. (2003). CCR7 ligands induce rapid endocytosis in mature dendritic 
cells with concomitant up-regulation of Cdc42 and Rac activities. Blood 101: 4923-
4929. 

Yasuda T, Kuwabara T, Nakano H, Aritomi K, Onodera T, Lipp M, Takahama Y & Kakiuchi 
T. (2007). Chemokines CCL19 and CCL21 promote activation-induced cell death of 
antigen-responding T cells. Blood 109:449-456. 

www.intechopen.com



Experimental Autoimmune Encephalomyelitis - Models, Disease

Biology and Experimental Therapy

Edited by Prof. Robert Weissert

ISBN 978-953-51-0038-6

Hard cover, 162 pages

Publisher InTech

Published online 03, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Experimental Autoimmune Encephalomyelitis - Models, Disease Biology and Experimental Therapy is totally

focused on the model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). The book

chapters give a very good and in depth overview about the currently existing and most used EAE models. In

addition, chapters dealing with novel experimental therapeutic approaches demonstrate the usefulness of the

EAE model for MS research. With an international perspective, this book features contributions from authors

throughout the world, Australia, Germany, Japan, Spain, Taiwan, and USA. There is an impressive

international Faculty that provides insight into current research themes. This further demonstrates the

importance of EAE in research all over the world. The book will provide established researchers and students

with novel insights and guidance for their research and will help to push the field forward.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Taku Kuwabara, Yuriko Tanaka, Fumio Ishikawa, Hideki Nakano and Terutaka Kakiuchi (2012). The Role of

CCR7-Ligands in Developing Experimental Autoimmune Encephalomyelitis, Experimental Autoimmune

Encephalomyelitis - Models, Disease Biology and Experimental Therapy, Prof. Robert Weissert (Ed.), ISBN:

978-953-51-0038-6, InTech, Available from: http://www.intechopen.com/books/experimental-autoimmune-

encephalomyelitis-models-disease-biology-and-experimental-therapy/the-role-of-ccr7-ligands-in-developing-

experimental-autoimmune-encephalomyelitis



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


