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1. Introduction 

Neuroinflammation is involved in the pathogenesis and progression of neurological 
disorders such as Alzheimer's disease and multiple sclerosis (MS) (Doorduin et al., 2008). 
MS has been considered a T cell-mediated autoimmune disorder of the central nervous 
system (CNS), characterized by inflammatory cell infiltration and myelin destruction 
(Hauser et al., 1986) and focal demyelinated lesions in the white matter are the traditional 
hallmarks of MS. However more recent evidence suggests more widespread damage to the 
brain and spinal cord, to areas of white matter distant from the inflammatory lesions and 
demyelination of deep and cortical grey matter (McFarland & Martin, 2007). Experimental 
autoimmune encephalomyelitis (EAE) is an extensively used model of T-cell mediated CNS 
inflammation; modelling disease processes involved in MS. EAE can be induced in several 
species by immunization with myelin antigens or via adoptive transfer of myelin-reactive T 
cells. The models of EAE in rodents [actively induced and transferred] provide information 
about different phases [inflammation, demyelination and remyelination] and types 
[monophasic, chronic-relapsing and chronic-progressive] of the human disease multiple 
sclerosis and a vast amount of clinical and histopathologic data has been accumulated 
through the decades. A key aim of current investigations is developing the ability to 
recognise the early symptoms of the disease and to follow its course and response to 
treatment. 

Molecular imaging is a rapidly evolving field of research that involves the evaluation of 
biochemical and physiological processes utilising specific, radioactive, fluorescent and 
magnetic resonance imaging probes. However, it is positron emission tomography (PET) 
and single photon emission computer tomography (SPECT) which, due to their exquisite 
sensitivity involving specifically designed radiolabelled molecules, that is leading the way 
in molecular imaging and has greatly enabled the non-invasive “visualisation” of many 
diseases in both animal models and humans. Furthermore, PET and SPECT molecular 
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imaging are providing invaluable imaging data based on a biochemical-molecular biology 
interaction rather than from the traditional anatomical view. Increasingly, PET and SPECT 
radiotracers have been exploited to study or identify molecular biomarkers of disease, 
monitor disease progression, determining the effects of a drug on a particular pathology and 
assess the pharmacokinetic behaviour of pharmaceuticals in vivo. Significantly, these new 
imaging systems provide investigators with an unprecedented ability to examine and 
measure in vivo biological and pharmacological processes over time in the same animals 
thus reducing experimental variability, time and costs. Molecular imaging based on the 
radiotracer principle allows chemical processes ranging from cellular events, to cellular 
communication and interaction in their environment, to the organisation and function of 
complete tissue and organs to be studied in real time without perturbation. One of the key 
benefits of molecular imaging is a technique that allows longitudinal studies vital for 
monitoring intra-individual progression in disease, or regression with supplementary 
pharmacotherapies. This is key in animal models of diseases such as MS, where there is 
significant intra-individual variability in the disease course and severity. 

Recent investigations have proposed the translocator protein (TSPO; 18 kDa), also known as 

the peripheral benzodiazepine receptor (PBR), as a molecular target for imaging 

neuroinflammation (Chen & Guilarte, 2008; Doorduin et al., 2008;  Papadopoulos et al., 

2006). TSPO (18 kDa) is a multimeric protein consisting of five transmembrane helices, 

which, in association with a 32 kDa subunit that functions as a voltage dependent anion 

channel and a 30 kDa subunit that functions as an adenine nucleotide carrier forms part of a 

hetero-oligomeric complex (McEnery et al., 1992) responsible for cholesterol, heme and 

calcium transport in specific tissue. TSPO is primarily located on the outer mitochondrial 

membrane and is predominantly expressed in visceral organs (kidney, heart) and the steroid 

hormone producing cells of the adrenal cortex, testis and ovaries. In the central nervous 

system (CNS), TSPO is sparsely expressed under normal physiological conditions, however 

its expression is significantly upregulated following CNS injury (Chen et al., 2004; 

Papadopoulos et al., 1997; Venneti et al., 2006; Venneti, et al., 2008). 

Several studies have identified activated glial cells as the cells responsible for TSPO 

upregulation in inflamed brain tissue, both in humans and in experimental models (Mattner 

et al., 2011; Myers et al., 1991a; Stephenson et al., 1995; Vowinckel et al., 1997) and the TSPO 

ligand [11C]-PK11195 was one of the first  PET ligands used for imaging activated microglia 

in various neurodegenerative diseases (Venneti et al., 2006). Although [11C]-(R)-PK11195 is 

widely used for imaging of microglia, its considerable high plasma protein binding, high 

levels of nonspecific binding, relatively poor blood–brain barrier permeability and short 

half-life, limits its use in brain imaging (Chauveau et al., 2008). Recently,  alternative PET 

radioligands for  TSPO including the phenoxyarylacetamide derivative [11C]-DAA1106 and 

its analogues (Gulyas et al., 2009; Takano et al., 2010; Venneti et al., 2008), the 

imidazopyridines (PBR111) and its analogues (Boutin et al., 2007a; Fookes et al., 2008) and 

the pyrazolo[1,5-a]pyrimidine derivatives [18F]-DPA-714 and [11C]-DPA-713 (Boutin et al., 

2007b; James et al., 2008) have been investigated. 

In addition to imaging with PET, recent advances in new generation of hybrid SPECT 
imaging systems enabling increased resolution and morphological documentation with 
associated computed tomography have been made for use clinically and preclinically. These 
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advances have created a need and an opportunity for SPECT tracers; particularly those 
incorporating the longer lived radiotracer iodine-123 (t ½ = 13.2 h), to facilitate extended 
longitudinal imaging studies.  

In this study the recently developed high-affinity TSPO, SPECT ligand, 6-chloro-2-(4′-
iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide or CLINDE , was used to 
explore the expression of activated glia in a model of transferred EAE (tEAE). [123I]-CLINDE 
has demonstrated its potency and specificity for TSPO binding, its ability to penetrate the 
blood-brain barrier and suitable pharmacokinetics for SPECT imaging studies (Mattner et 
al., 2008). It has also been shown that [123I]-CLINDE was able to detect in vivo inflammatory 
processes characterized by increased density of TSPO in several animal models (Arlicot et 
al., 2008; Arlicot et al., 2010; Mattner et al., 2005; Mattner et al., 2011; Song et al., 2010), thus 
representing a promising SPECT radiotracer for imaging neuroinflammation. The present 
study aimed to investigate the effectiveness of [123I]-CLINDE to detect and quantify the 
activated glia and consequently correlate the intensity of TSPO upregulation with the 
severity of disease in a model of tEAE.  

2. In vivo distribution and in vitro binding of TSPO - correlation with 
upregulation in a model of tEAE   

2.1 In vivo evaluation  

The effectiveness of [123I]-CLINDE to detect and quantify activated glia and correlate TSPO 
upregulation to the severity of neuroinflammation was assessed on a Lewis rat model of 
tEAE (Willenborg et al., 1986). The intravenous injection of myelin basic protein (MBP)-
specific T lymphoblasts results in a single disease episode. The cells should be used when 
encephalitogenic, i.e. in the first three days after MBP re-stimulation of spleen or lymph 
node cells (from MBP- complete Freund's adjuvant (CFA) primed Lewis rats) or established 

MBP-specific CD4+ IFN producing T line cells (De Mestre et al., 2007). A huge advantage of 
this model of neuroinflammation is its uniform time course.  

Male Lewis rats (Animal Resource Centre, Australia) were maintained and monitored 
according to Australian laws governing animal experimentation. The rats were immunised 
with emulsion of bovine MBP and CFA (4 mg/ml Mycobacterium butyricum). On day 10 
the popliteal and inguinal lymph nodes were removed and single cell suspensions were 

incubated with the antigens MBP or PPD (50 g/ml) for 3 days. MBP and PPD lymphoblasts 
were isolated on a density gradient (d=1.077), propagated in IL-2 containing medium for 25 
h and 3x107 cells were injected via the lateral tail vein into naive Lewis rats. The rats were 
examined daily and a clinical score assigned according to the accepted scale: 0, 
asymptomatic; 1, flaccid distal half of the tail; 2, entire tail flaccid; 3, ataxia (difficulty 
righting). Half values were given when assessment fell between two scores. 

The radiotracers [123I]-CLINDE and [125I]-CLINDE were synthesized as previously described 
(Katsifis et al., 2000) using an improved method, giving rise to high purity and high specific 

activity product. Briefly the tributyltin precursor (50-100 g) in acetic acid (200 L) was 
treated with a solution of either no carrier added Na123I in 0.02 M NaOH (Australian 
Radioisotopes and Industrials, Sydney, Australia) or Na125I (GE-Healthcare) followed by 

peracetic acid (1-3%, 100 L). After 5 min the reaction was quenched (sodium bisulphite, 200 

L, 50 mg/mL), neutralised (sodium bicarbonate, 200 l, 50 mg/mL) and injected onto a 
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semipreparative C-18 RP-HPLC column. The purification and isolation of [123/125I]-CLINDE 

was carried out by C-18 RP-HPLC using a mixture of acetonitrile/0.1 M ammonium acetate 
55:45 at a flow rate of 4 mL/min. Under these conditions, the radiotracer eluted at 25 min. 
The eluted product was evaporated to dryness and reconstituted in saline (0.9%) for in vivo 
pharmacological studies. For in vitro assays, unlabelled CLINDE was added to the [125I]-

CLINDE to achieve a specific activity of 3.7 GBq/mol and reconstituted in ethanol. The 

specific activity of [123I]-CLINDE was assumed to be greater than 185 GBq/mol based on 
the limit of detection of the UV in the HPLC system used. The specific activity of [125I]-

CLINDE was measured as 80 GBq/mol, close to the theoretical specific activity of the [125I]-
iodine.  

In order to assess the distribution of the [123I]-CLINDE in vivo, rats showing different tEAE 
clinical scores were used: [0 (pre-clinical, n = 4), 2 (n = 4), 3 (n = 4) and 0 (after recovery, n = 
3)]. Rats were given PPD-lymphoblasts (n = 4) and control naive rats (n = 4) served as 
controls. The animals were injected via the tail vein with 0.70 MBq of [123I]-CLINDE in 
saline. Tissue samples were taken 3 h later, the radioactivity was measured with an 
automated gamma counter and the percent injected dose (%ID/g) was calculated by 
comparison with samples of standard dilutions of the initial dose. 

Statistically significant increase in [123I]-CLINDE uptake was measured in brains and spinal 
cords of Lewis rats given MBP-specific T lymphoblasts that developed EAE with clinical 
scores of 2 and 3 (Figure 1). In the brain, the medulla oblongata, medulla pons, cerebellum, 
diencephalon, hypothalamus, hippocampus, frontal and posterior cortex were affected and 
the increase in [123I]-CLINDE uptake was in the range of 1.5 – 3.8 times. 

 

Fig. 1. Uptake of [123I]-CLINDE in the CNS. Data are represented as mean  SD of wet 
tissue.* p<0.05 - One way ANOVA with Tukeys post-hoc test.  

In the spinal cord the uptake of activity reflected the ascending nature of the inflammatory 
process:  lumbar spinal cord > thoracic spinal cord > cervical spinal cord. The positive 
correlation between the ligand uptake and the disease severity is shown also in Figure 2. 

Importantly, the radiotracer uptake on day 4 did not differ significantly from the one in the 
naive controls if the disease irrelevant PPD-specific T lymphoblasts or the disease relevant 
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MBP-specific T lymphoblasts were injected (Figure 1). Also, all animals showed the typical 
TSPO ligand biodistribution in the visceral organs and EAE severity had no influence on 
ligand uptake in the visceral organs (Table 1).  

 

Fig. 2. Correlation between uptake of [123I]-CLINDE and disease severity in the lumbar 
spinal cord. Linear regression analysis, r squared value (0.97) and error bars being 95% 
confidence intervals for fit. 

 

Organ 

Control  tEAE 

Naive 
n = 4 

PDD 
n = 4 

 
Score 0 

Preclinical
n = 4 

Score 2 
n = 4 

Score 3 
n = 4 

Score 0 
recovery 

n = 4 

Liver 0.27±0.05 0.27±0.03  0.32±0.03 0.32±0.03 0.33±0.02 0.25±0.03 

Spleen 3.01±0.45 3.12±0.34  3.49±0.10 3.14±0.32 3.24±0.37 3.33±0.49 

Kidney 2.07±0.36 1.68±0.07  2.24±0.11 2.03±0.13 2.33±0.37 1.97±0.25 

Lungs 2.27±0.41 2.01±0.18  2.41±0.32 2.12±0.16 2.27±0.38 2.05±0.24 

Heart 3.24±0.49 2.85±0.29  3.81±0.14 2.87±0.08 3.16±0.31 3.32±0.03 

Blood 0.04±0.01 0.04±0.01  0.06±0.00 0.04±0.01 0.05±0.01 0.04±0.00 

Pancreas 0.61±0.12 0.51±0.04  0.64±0.06 0.58±0.07 0.62±0.05 0.55±0.08 

Thymus 0.84±0.09 0.81±0.34  1.17±0.26 0.85±0.24 1.33±0.34 1.12±0.23 

Adrenals 7.69±1.27 6.38±0.62  7.86±0.37 7.00±0.93 7.22±1.33 8.49±2.10 

Table 1. Biodistribution of [123I]-CLINDE in the visceral organs of Lewis rats given MBP-

specific T lymphoblasts and controls. Results are expressed as %ID/g  SD of wet tissue 

The specificity of [123I]-CLINDE binding was demonstrated in a competition study with the 
PK11195 (Sigma-RBI) injected in rats with tEAE clinical score 2. The in vivo specificity of 
[123I]-CLINDE was tested in two groups of four rats with tEAE clinical score 2 by injecting 
only [123I]-CLINDE or by injecting PK11195 (5 mg/kg) prior to [123I]-CLINDE. PK11195 was 
dissolved in saline with 5% dimethyl sulfoxide and injected 5 minutes prior to the injection 
of 0.70 MBq of the radiotracer. Animals were sacrificed 3 h p.i. and the tissues were analysed 
as described above. 
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Administration of PK11195 reduced the uptake of [123I]-CLINDE in the CNS (Figure 3) and 
the visceral organs with TSPO expression (data not shown) by 65-85% confirming the 
specificity of the ligand. 

 

Fig. 3. Specificity of [123I]-CLINDE binding in CNS. Data are represented as mean ± SD.  
* p<0.05 - Mann Whitney test  

The feasibility of using TSPO as a marker to assess the degree of microglia activation in the 
living rat was tested using [123I]-CLINDE on a dedicated small animal SPECT imaging 
system. Longitudinal imaging studies were performed using a small animal dual-head 
SPECT/CT camera (Flex X-SPECT, Gamma Medica Ideas Inc.) equipped with 1 mm-
aperture pinhole collimators (McElroy et al., 2002). Four rats given MBP-specific T 
lymphoblasts and 2 control naive animals were used. The experimental rats were imaged 
four times (baseline, day 4, 6 and 11 post tEAE induction), while controls were imaged twice 
on alternate days. 

Rats were injected via the tail vein with [123I]-CLINDE (20-30 MBq in 0.1 ml saline) and 
anaesthetized with isoflurane (2.5%). Their heads were carefully positioned at the centre of 
the field-of-view, and scanned between 40 and 104 minutes after the radiotracer injection. 
Sixty-four 1 min-projections were collected over 360 degrees by each head, at a radius-of-
rotation of 45 mm. CT scan of the rat head was then performed in order to provide 
anatomical landmarks for the analysis. The SPECT projections of the two heads were 
combined and reconstructed with an iterative cone-beam algorithm (16 subsets, 4 iterations). 
The reconstructed data were then scaled using calibration factors to allow the measured 
activity to be expressed as %ID/mL. SPECT and CT volumes were automatically fused for 
each of the eight scans. All CT volumes of the same rat were then manually co-registered to 
the first one (reference), using an image visualisation and processing software 
(http://brainvisa.info). A rat brain atlas was finally coregistered onto the reference volume 
and statistics derived for each Region of Interest. 

The average values of [123I]-CLINDE uptake in the brain measured before the induction of 

tEAE (expressed as a percentage of injected dose per mL) (0.64  0.1%ID/mL) is equivalent 

to the average uptake of all controls imaged during the study period (0.71  0.3%ID/mL). 
The peak increase in activity is reached 6 days post immunization and the uptake depends 
on the clinical score of the rat. The uptake of [123I]-CLINDE, as assessed by SPECT imaging 
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during the course of the study, is exemplified in the hypothalamus and midbrain (Fig 4A). 
The spatial distribution of the activity in the brain of one typical rat over time is shown in 
figure 4B. 

Using this small animal SPECT system we could not find statistically significant differences 
between intra-cerebral structures in the different groups of animals. This was probably due 
to the fluctuation of uptake values among animals from the same experimental group 
showing different tEAE scoring (Figure 4A). Moreover based on the example in Figure 4, the 
peak uptake in different structures of the brain differs from rat to rat depending on the tEAE 
score, disease severity, and therefore averaging the values for the experimental group did 
not reach statistical significance in the data. However the brain structures that showed an 
increase in uptake by SPECT imaging were the same structures where increased uptake was 
observed in the biodistribution studies.   

 

Fig. 4. In vivo SPECT imaging of TSPO in brain of rats given MBP-specific T lymphoblasts. 
(A) Representative individual dynamics of [123I]-CLINDE uptake in hypothalamus and 
midbrain (expressed as a percentage of injected dose per mL). (B) Representative SPECT 
images of [123I]-CLINDE uptake in a rat brain. The SPECT images shown were coregistered 
with CT at 0 (baseline), 4 and 6 days after induction of tEAE. 
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2.2 Autoradiography and immunochemistry correlation with the upregulation of TSPO 
in the tEAE model 

In vitro and ex vivo autoradiography with [125I]-CLINDE was performed to delineate the 
CNS areas  with  TSPO uptake.  

For in vitro autoradiography,  animals with tEAE clinical scores: 2 (n = 3) and 0 (after 

recovery, n = 5) and 7 control naive rats were used. Brains and spinal cords were frozen in 

isopentane at -80°C. Coronal sections (20 µm thick) were cut, mounted onto polysine coated 

slides and stored at -20°C. TSPO receptors were labeled with [125I]-CLINDE (3.7 GBq/µmol) 

at 3 nM concentration in Tris-HCl, pH 7.4 at 4°C for 60 min. Nonspecific binding was 

defined by incubating adjacent tissue sections with 10 µM of PK11195. The incubation was 

terminated by rinsing sections twice for 2 min in cold incubation buffer.  Sections were then 

dipped briefly in cold distilled water and dried rapidly under a stream of cold air. The 

sections were affixed together with calibration standards (Amersham) to radiographic films 

(Amersham Hyperfilm-max) for 4-6 h and developed using GBX developer and fixer 

(Kodax). The autoradiograms were analysed using a Microcomputer Imaging Device 

(MCID, Imaging research, Ontario, Canada). 

For ex vivo autoradiography rats with tEAE clinical scores: 3 (n = 3) and 0 (after recovery, n = 

3) and control naive rats (n = 3) were given [125I]-CLINDE (1.85 MBq in 100 l of saline) i.v. 

and were sacrificed 3 h after the injection of the radiotracer. Brains and spinal cords were 

frozen in isopentane at -80°C. Coronal sections (20 µm thick) were cut, thawed, dried and 

affixed to radiographic films (Amersham Hyperfilm-max) for 10-15 days and the 

autoradiograms analyzed as above. 

In vitro autoradiography with [125I]-CLINDE of the spinal cord from rats with tEAE 

compared to controls showed statistically significant  increased binding of TSPO in areas of 

the grey (2 times) and white matter (1.2 - 3 times) (Figure 5). This study extends earlier 

observations using [3H](R)-PK11195 (Banati et al., 2000) in which increased binding in the 

spinal cords from rats with tEAE, at peak of clinical disease was documented. 

The in vitro and ex vivo autoradiography revealed an increase in the TSPO expression at 

three brain levels (Figure 6), i.e. nuclear diagonal band/rostral migratory stream; substantia 

nigra cerebral peduncle and mammillary nucleus; ventral cochlear nucleus. Histologically, a 

lesion was observed in one of the five brains at level -3 mm to bregma, in the region of 

substantia nigra. 

As the autoradiography showed a clear increase in TSPO labelling at specific regions in the 

forebrain, midbrain and hindbrain as well as in the spinal cord (Figures 5 and 6), 

immunohistochemistry was also performed in order to clarify the presence of gliosis in the 

TSPO positive areas. 

For this purpose, brains from 2 naive rats, 2 rats given PPD-lymphoblasts (day 4), 4 rats 

given MBP-lymphoblasts (day 4), 3 rats tEAE score 2 and 3 rats after recovery from the 

episode, were fixed in formalin, placed in David Kopf Instruments (Tujunga, CA) brain 

blocker and cut at six levels at a distance of 2 mm. Serial 4 m coronal paraffin sections were 

taken at each of the six levels and assessed according to the rat brain atlas of Paxinos and 

Watson (Paxinos & Watson, 2007). 
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Grey matter Control 
tEAE 

Score 2 

tEAE 
recovery 
Score 0 

 

Dorsal horn 
(DH) 

155 ± 17 365 ± 36*** 236 72‡ 

Ventral horn 
(VH) 

225 ± 17 225 ± 30 270 26 

White matter    

Lateral  
funiculus (LFu) 

123 ± 10 266 ± 23*** 132 ± 31‡‡‡ 

Ventral 
funiculus (VFu) 

128 ± 14 369 ± 64*** 118 ± 18‡‡‡ 

Gracile/ 
Cuneate 
Fasciculus (Gr/Cu) 

117 ± 18 228 ± 7** 113 ± 17‡‡ 

Fig. 5. Different cervical spinal cord TSPO expression in control rats and in rats with tEAE, 

using  in vitro [125I]-CLINDE autoradiography. Results are expressed as fmol/mg T.E  SD, n 
= 3-7, one way ANOVA with Tukeys Post Hoc test (Control vs Score 2, **p<0.01, *** p<0.001; 
Score 2 vs Recovery, ‡ p<0.05, ‡‡ p<0.01, ‡‡‡ p<0.001) 

Indeed, at the level of the midbrain, in three of the four rats studied, astrogliosis was 

found around the lateral ventricles on day 4 after tEAE induction, i.e. just before and at 

the time of onset of the clinical EAE signs (Figure 7). However, with labelling for GFAP 

and ED-1 no changes were observed in any of the other five brain levels studied as well as 

in none of the six levels in three rats with tEAE score 2 and in three rats after recovery 

from score 2 to score 0. 

The autoradiography and immunohistochemistry results confirm the immunofluorescence 

observations of Meeson et al (Meeson et al., 1994) indicating very little brain inflammation 

that is localised in the forebrain around the third ventricle. It is tempting to speculate that 

the change in the medial habenular nucleus and the dentate gyrus gliosis reflects a stress 
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reaction (Sugama et al., 2002), as this was observed around the onset of tEAE and did not 

persist during its development. 

 

Fig. 6. Brain in vitro autoradiography after administration of [125I]-CLINDE in Lewis rats 
given MBP-specific T lymphoblasts and controls 

Longitudinal sections of the spinal cords were examined at the lumbar, thoracic and cervical 
level. After antigen retrieval (20 min boiling in citrate buffer, pH 6.0) and blocking of 
endogenous peroxidase and non-specific antibody binding, the macrophage/activated 
microglial cells were labelled with mouse anti-rat ED-1 biotin-conjugated monoclonal 
antibody (Serotec); TSPO – with goat polyclonal anti-TSPO IgG (Santa Cruz Biotechnology); 
the astrocytes - with rabbit anti-GFAP antibody (Sapphire Bioscience) and the chemokine 
CXCL11 - with rabbit anti-rat I-TAC IgG (kind gift from Prof. Shaun McCall, Chemokine 
Biology, Department of Molecular Biosciences, Adelaide University). The staining was with 
InnoGenex IHC Kit (San Ramon, CA) with aminoethyl carbazole (AEC) as peroxidase 
substrate. The sections were counterstained with Mayer’s haematoxylin. 

Although the histopathologic analysis and magnetic resonance (MR) microscopy had 
excellent correlation regarding the extent of white matter lesions on the rat EAE model 
(Steinbrecher et al., 2005), this imaging technology is not suitable for detection of 
inflammatory infiltrates in the grey matter. In our experiments significant [123I]-CLINDE 
uptake was registered in the grey matter of the spinal cord of Lewis rats with tEAE score 2  
and 3 (Figure 5). This increased uptake correlated with the positive staining for the 
chemokine CXCL11 that is produced mainly by astrocytes as well as with the presence of 
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numerous ED-1 positive cells (macrophages/glial cells) that were visualised in the spinal 
cord meninges and parenchyma during the tEAE episode (Figure 8). Importantly, some of 
these activated glial cells were positive for TSPO that supports the autoradiography 
quantitative data. Two days after spontaneous recovery from tEAE episode, few 
parenchymal cells were positive for ED-1 and there was no staining for TSPO and the 
chemokine CXCL11 (I-TAC). 

 

 

 

Fig. 7. Glial activation in Lewis rat tEAE (immunohistochemical evaluation). Midbrains 
labelled for GFAP. At disease onset, astroglyosis was observed around the 3rd ventricle in 
four of five animals. 
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Fig. 8. Longitudinal sections of lumbar spinal cord labelled for macrophages/activated 
microglia (ED-1), TSPO, astrocytes and I-TAC at different clinical stages of tEAE. 

One of the first in vivo MRI studies on tEAE in rats (Morrissey et al., 1996) showed that MRI 

changes were observed well before the onset of major cellular infiltration and before the 

onset of clinical signs that made possible to assess quantitatively the breach of the blood 

brain barrier (BBB) and to distinguish in vivo between two components of the early phase of 

the lesion - inflammatory infiltrates and vasogenic oedema. Increased binding of several 

TSPO ligands has been reported after brain injury, including focal (Myers et al., 1991a; 

Myers et al., 1991b) and global (Stephenson et al., 1995)  cerebral ischemia in the rat where 

heterogeneous level of expression of TSPO in different cells is seen in the core of infarction 

as early as 4 days after ischemia (Rojas et al., 2007).  

In this model of neuroantigen-specific neuroinflammation the significant changes were also 

registered from day 4 onward with SPECT imaging. A study on the same model (Banati et 

al., 2000) also found normal autoradiography up to day 4 with [3H]-PK11195. One should 

point out that we used two appropriate controls (not only naive rats). Interestingly, the time 

frame is similar for PET scan studies in stroke patients - the increase in binding was as early 

as 3 days after the onset of stroke (Price et al., 2006). Thus, any earlier in vivo as well as in 

vitro changes are most likely attributed to stress reaction.  

The imaging studies, using the SPECT tracer [123I]-CLINDE in Lewis rat models of 

transferred EAE (this study) and active EAE (Mattner et al., 2005) confirm the MRI studies 

by other groups that the imaging changes parallel the monocyte/microglia/astrocyte 

activation rather than the lymphocyte infiltration (Morrissey et al., 1996; Rausch et al., 

2003). These results confirm the reliability of the translocator protein (Papadopoulos & 
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Lecanu, 2009) in early diagnostics of antigen-specific neuroinflammation and eventually - 

of MS. 

N.B.  Discussion with mouse tEAE models was not included as they result in inflammation 
which progresses to demyelination (Mokhtarian et al., 1984) while the MBP-specific T 
lymphoblasts induced tEAE in the Lewis rat is monophasic with full recovery (Holda et al., 
1980; Paterson et al., 1981). 

3. Conclusion  

Transferred EAE was induced in Lewis rats with MBP-specific T lymphoblasts and the 
uptake of the translocator protein (TSPO) tracer [123I]-CLINDE was studied by 
biodistribution, in vitro and ex vivo autoradiography, immunohistochemistry and SPECT 
imaging. On a background of the typical TSPO ligand biodistribution in the visceral organs, 
a statistically significant 2-4 fold increase was measured in brains and spinal cords of 
animals with EAE clinical score of 3, compared to controls (naive or given disease-irrelevant 
PPD-specific T-lymphoblasts). Importantly, using [123I]-CLINDE as a radiotracer we were 
able to register significant inflammation also in the grey matter. The CNS regional [123I]-
CLINDE uptake correlated with the immunohistochemical localisation of activated glial 
cells. The results demonstrate the ability of this highly specific TSPO ligand to measure 
changes in TSPO density according to area of involvement and the severity of disease 
suggesting it is a useful SPECT tracer for studies on experimentally induced inflammation 
and in multiple sclerosis. 
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