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1. Introduction

The theory of quantized fields has its roots in the quantum theory of M. Planck [Planck
(1900)]. For the solution of the problem of black body radiation, he introduced the universal
quantum of action to the theory of electromagnetic fields. Nonrelativistic quantum mechanics
is established by W. Heisenberg [Heisenberg (1925)] and E. Schrödinger [Schrödinger (1926)].
M. Born, W. Heisenberg and P. Jordan [Born et al. (1926)] realized the quantization of
electromagnetic fields, and P.A.M. Dirac [Dirac (1927)] quantized electromagnetic fields in
interaction with a material system. But P. Ehrenfest noticed soon that the theory had to lead
to infinities. The existence of the positron is suggested by the theory of P.A.M. Dirac [Dirac
(1928; 1931)]. The discovery of the positron by C.D. Andersen (1932) established the theory of
quantum electrodynamics which treats the behavior of electron, positron and electromagnetic
fields. But this theory still has to lead to infinities, and these difficulties are (partially) removed
by S. Tomonaga [Tomonaga (1946)], H.A. Bethe [Bethe (1947)] and J. Schwinger [Schwinger
(1948)] using the subtraction formalism in perturbation theory. R.P. Feynman [Feynman
(1948)] developed the method of path integral which simplifies the calculation and F.J. Dyson
[Dyson (1949)] derives Feynman’s prescription from Tomonaga-Schwinger theory. Thus the
prescription of the subtraction formalism in electrodynamics was completely worked out.
Those theories in which the infinity of each term in the perturbation series can be subtracted
consistently are called renormalizable theories. But for these renormalizable theories, there
are still doubts about summability of the series in perturbation theory. In electrodynamics,
the expansion parameter (the coupling constant) is small and the sum of the first few terms
gives an amazing agreement with experiments, but there are no proofs about the convergence
of the series. In some theory of strong interaction the parameter is greater than 1, and
this subtraction formalism does not work. The main question is: What is hidden behind
these formal infinite series? To this question, one answer is given by the formalism of A.S.
Wightman and L. Gårding [Wightman & Gårding (1964)], which is a mathematically rigorous
study of quantum fields. Since the structure of the theory is axiomatic, the theory is called
axiomatic quantum field theory. The axioms formulate the basic physical postulates (e.g.,
relativistic invariance of the state space, spectral property, unique existence of a vacuum state,
Poincaré-covariance of the fields, locality or micro causality, etc., and some technical postulate:
temperedness of the fields, etc.) in a mathematical language. Nowadays the strong interaction
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2 Will-be-set-by-IN-TECH

is described by the quantum chromodynamics. Its renormalizability was proven in [’t Hooft
(1971)], and its asymptotic freedom discovered by [Gross & Wilczek (1973); Politzer (1973)]
gave it excellent predictability as well as quantum electrodynamics. But we know nothing
about its summability of perturbation series and the perturbation theory does not work in the
low-energy region where the coupling constant becomes large. The situation is not so different
from 1940’s. The axioms show the way to reconcile the principles of quantum mechanics
and those of special relativity. Quantum field theory is also important as effective theory in
low-energy approximation to a deeper theory like a string theory where it is said that there is
a length ℓ > 0 (fundamental length) such that one cannot distinguish events which occur in a
smaller distance than ℓ (see [Polchinski (1998)]). From this perspective, quantum field theory
with a fundamental length becomes interesting.

In 1958, Heisenberg and Pauli introduced the equation

γµ
∂

∂xµ
ψ(x)± l2γµγ5 : ψ(x)ψ̄(x)γµγ5ψ(x) : = 0 (1.1)

which was later called Heisenberg’s fundamental field equation or the equation of universe
and studied in [Dürr et al. (1959); Heisenberg (1966)]. The equation contains a parameter l of
the dimension of length and accordingly one might speculate that this parameter can play the
rôle of the fundamental length of a quantum field theory with a fundamental length. In order
to verify this speculation one must solve two eminent problems:

(A) Formulate a relativistic quantum field theory with a fundament length in an axiomatic
way and establish its main properties;

(B) Solve this equation with a field theory according to (A).

As a mathematical theory a solution to problem (A) has been suggested in [Brüning &
Nagamachi (2004)]. According to this suggestion a relativistic quantum field theory with a
fundamental length is a relativistic quantum field theory similar to the Gårding - Wightman
theory (see [Wightman & Gårding (1964)]) where the fields are operator valued tempered
ultra-hyperfunctions instead of operator valued tempered (Schwartz) distributions. The
physically important aspect of this theory is that for the first time in a mathematical
rigorous way, the fundamental length is realized on the level of the fields, not on the
level of the geometry of the space-time on which these fields are defined. This allows to
rely on the established concepts and theories of Physics based on a standard space-time.
The fundamental length is introduced through the use of a class of generalized functions
(tempered ultrahyperfunctions) which distinguish events in space-time only when they are
separated by more than a certain length, the fundamental length ℓ. Certainly, up to now there
is now no? physical evidence that this is the appropriate way of defining the fundamental
length.
Concerning problem (B) we recall that nobody knows to solve Heisenberg’s fundamental field
equation. However there is a simplification of this equation which is solvable in the sense of
classical field theory, namely the system of equations (: · : indicates the Wick product)

⎧

⎨

⎩

(✷+ m2)φ(x) = 0
(

iγµ ∂

∂xµ − M

)

ψ(x) = −2l2γµ :
∂φ(x)

∂xµ φ(x)ψ(x) :
(1.2)
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Solution of a Linearized Model of Heisenberg’s Fundamental Equation 3

for a Klein-Gordon field φ and a spinor field ψ. It is this system of coupled equations which
we discuss in the framework of [Brüning & Nagamachi (2004)], i.e., for a given Klein-Gordon
field φ we define an operator valued tempered ultrahyperfunction ψ such that the pair
(φ, ψ) satisfies equation (1.2). This system has been studied first by [Okubo (1961)] as a
quantum field theory although this interaction is un-renormalizable in the usual sense of
perturbation theory, and Green’s functions are calculated. There are some interactions which
look un-renormalizable but actually are renormalizable if the use of perturbations is avoided
(see [Okubo (1954)]).

2. Overview

The basic idea to solve the system (1.2) is quite natural:

Take a Klein-Gordon field of mass m and suppose that we can show the following statements:

A) the Wick power series

ρ(x) =: eil2φ(x)2
:=

∞

∑
n=0

inl2n : φ(x)2n : /n! (2.1)

and

ρ∗(x) =: e−il2φ(x)2
:=

∞

∑
n=0

(−i)nl2n : φ(x)2n : /n!

are well-defined as operator-valued ultra-hyperfunctions.

B) ρ(x) satisfies

∂

∂xµ ρ(x) = 2il2 :
∂φ(x)

∂xµ φ(x)eil2φ(x)2
:= 2il2 :

∂φ(x)

∂xµ φ(x)ρ(x) : . (2.2)

C) the free Dirac field ψ0(x) is a multiplier for the field ρ and thus we can define the field

ψ(x) = ρ(x)ψ0(x). (2.3)

D) Show that the field ψ defined in C) is indeed al relativistic quantum field with a
fundamental length.

E) Calculate

(

iγµ ∂

∂xµ − M

)

ψ(x) = ρ(x)

[(

iγµ ∂

∂xµ − M

)

ψ0(x)

]

+ γµ ∂ρ(x)

∂xµ ψ0(x)

= −2l2γµ :
∂φ(x)

∂xµ φ(x)ρ(x)ψ0(x) := −2l2γµ :
∂φ(x)

∂xµ φ(x)ψ(x) : .

Thus, if A) – E) hold, the operator-valued ultra-hyperfunctions φ(x), ψ(x) satisfy the system
of equations (1.2).

Note that the above Wick power series do not converge in the sense tempered distributions.
They even do not converge in the sense Fourier hyperfunctions (see [Ito (1988); Nagamachi
(1981a;b)]). But as we show they converge in the sense of tempered ultra-hyperfunctions.

Remark 2.1.

187Solution of a Linearized Model of Heisenberg’s Fundamental Equation
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The definition of a relativistic quantum field with a fundamental length has been proposed in
[Brüning & Nagamachi (2004)] and there the functional characterization has been derived for
the case of a scalar field. The functional characterization for a spinor field is given in [Brüning
& Nagamachi (2008)].

Naturally the localization properties of a relativistic quantum field with a fundament length
ℓ > 0 are very different from those of a standard quantum field. According to their definition
these fields do not distinguish events in space-time which are separated by ℓ′ < ℓ (see Remark
3.11).

According to these new localization properties the counter part of the “locality or causality
condition for standard fields” looks quite different. It is called “extended causality” and the
verification of this condition is the major difficulty in verifying that the fields ρ and ψ as
introduced above are indeed relativistic quantum fields with a fundamental length.

Remark 2.2. The key to our approach is the use of tempered ultra-hyperfunctions (see
[Morimoto (1970; 1975a;b)]) and their localization properties (see [Nagamachi & Brüning
(2003)]). This has first been suggested in [Brüning & Nagamachi (2004)]. This class of
generalized functions is not too well known and therefore we will briefly explain what
tempered ultra-hyperfunctions are and that and how these localization properties arise.

3. Tempered ultra-hyperfunctions

For any subset A of Rn, denote by T(A) = Rn + iA ⊂ Cn the tubular set with base A. For a
convex compact set K of Rn, Tb(T(K)) is, by definition, the space of all continuous functions
f on T(K) which are holomorphic in the interior of T(K) and which satisfy

‖ f ‖T(K),j = sup{|zp f (z)|; z ∈ T(K), |p| ≤ j} < ∞, j = 0, 1, . . . (3.1)

where p = (p1, . . . , pn) and zp = z
p1
1 · · · z

pn
n . Tb(T(K)) is a Fréchet space with the semi-norms

‖ f ‖T(K),j. If K1 ⊂ K2 are two compact convex sets, we have the canonical mapping:

Tb(T(K2)) → Tb(T(K1)). (3.2)

For a convex open set O in Rn we define

T (T(O)) = lim← Tb(T(K)), (3.3)

where K runs through the convex compact sets contained in O and the projective limit is taken
following the restriction mappings (3.2).

Definition 3.1. A tempered ultra-hyperfunction is by definition a continuous linear functional
on T (T(Rn)).

The Fourier transformation F is well defined on T (T(Rn)) by the standard formula (3.8). In
order to determine the range of F on T (T(Rn)) we introduce another function space.

The gauge functional hK of a compact convex set K ⊂ Rn is defined by

hK(x) = sup{〈x, ξ〉; ξ ∈ K}. (3.4)

188 Advances in Quantum Field Theory
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For a convex compact set K of Rn, denote by Hb(R
n; K) the space of all C∞ functions f on Rn

which satisfy, for j = 0, 1, . . .,

‖ f ‖K,j = sup{exp(hK(x))|Dp f (x)|; x ∈ R
n, |p| ≤ j} < ∞. (3.5)

Equipped with the system of semi-norms ‖ f ‖K,j, Hb(R
n; K) is a Fréchet space. If K1 ⊂ K2 are

two compact convex sets, then hK1 ≤ hK2 and thus one has the canonical mappings:

Hb(R
n; K2) → Hb(R

n; K1). (3.6)

For a convex open set O ⊂ Rn the space H(Rn; O) is the projective limit of the spaces
Hb(R

n; K) along the restriction mappings (3.6), i.e.,

H(Rn; O) = lim← Hb(R
n; K), (3.7)

where K runs through the convex compact sets contained in O.

In order to relate the space H(Rn; Rn) to the Schwartz space S(Rn) we derive a more direct
characterization of H(Rn; Rn). Observe that for any convex compact set K ⊂ Rn there is a
number k > 0 such that K ⊆ [−k, k]n. For the sets K = [−k, k]n the gauge function hK is easily
determined:

hK(x) = sup{〈x, ξ〉; ξ ∈ K} = k
n

∑
i=1

|xi|,

and the system of continuous norms takes the form, using the notation |x| = ∑
n
i=1 |xi|,

‖ f ‖K,j = sup{exp(hK(x))|Dp f (x)|; |p| ≤ j, x ∈ R
n}

= sup{ek|x||Dp f (x)|; |p| ≤ j, x ∈ R
n}.

Thus, the space H(Rn; Rn) can be defined as the projective limit of the spaces Hb(R
n; K)

along the restriction mappings (3.6), where K = [−k, k]n, 0 < k < ∞. Accordingly, the space
H(Rn; Rn) is the space of all C∞-functions on Rn which, together with all derivatives, decrease
faster than any (linear) exponential. An easy consequence is

Corollary 3.2. 1. The space H(Rn; Rn) is continuously embedded into the Schwartz space S(Rn);

2. The elements of S(Rn) are multipliers for the space H(Rn; Rn), and for each g ∈ S(Rn) the map
f → g f is a continuous linear map of H(Rn; Rn) into itself.

Proof : See [Hasumi (1961); Morimoto (1975b)]. ✷

The following theorem collects the basic facts about the spaces introduced above.

Theorem 3.3. For the spaces introduced above the following statements hold, for any convex compact
set K respectively convex open set O.

1. The space of D(Rn) all C∞ functions with compact support is dense in H(Rn; O).

2. The space H(Rn; Rn) is dense in H(Rn; O) and in H(Rn; K).

3. H(Rm; Rm)⊗ H(Rn; Rn) is dense in H(Rm+n; Rm+n).

Proof : For the proof of the first two items we refer to [Hasumi (1961); Morimoto (1975b)]. The proof the
last item can be found in [Brüning & Nagamachi (2004)]. ✷

189Solution of a Linearized Model of Heisenberg’s Fundamental Equation
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Proposition 3.4. The Fourier transformation f → f̃ ≡ F f ,

f̃ (p) = (2π)−n/2
∫

Rn
f (z)ei〈p,z〉dz (3.8)

is a topological isomorphism between the spaces T (T(O)) and H(Rn; O), for any open convex
nonempty set O ⊂ Rn. The inverse transformation is

f (z) = F̄ f̃ = (2π)−n/2
∫

Rn
f̃ (p)e−i〈p,z〉dp. (3.9)

Proof : See [Hasumi (1961); Morimoto (1975b)]. ✷

Proposition 3.5. Let O ⊂ Rn be a nonempty convex open subset. Then the spaces H(Rn; O) and
T (T(O)) are nuclear Fréchet spaces and thus, in particular, reflexive.

Proof : In the case of O = Rn Hasumi [Hasumi (1961)] proved this result, and his proof is valid in the
general case. A sketch of the proof for H(Rn; O) is provided in [Brüning & Nagamachi (2004)]. ✷

Theorem 3.6 (Corollary of Theorem 34.1 of [Treves (1967)]). Let E be a Fréchet space, E1 a
metrizable space, G a locally convex space. Then a separately continuous bilinear map of E × E1
into G is continuous.

Theorem 3.7 (Kernel theorem for ultra-hyperfunctions). Let M be a separately continuous
multi-linear map of [T (T(R4))]n into a Banach space G. Then there is a unique continuous linear
map F of T (T(R4n)) into G such that, for all fi ∈ T (T(R4)), i = 1, . . . , n,

M( f1, . . . , fn) = F( f1 ⊗ · · · ⊗ fn).

Proof : The proof is quite involved and lengthy. Details are again given in [Brüning & Nagamachi (2004)].
✷

For an open set V in Rn and a positive number ǫ introduce the set Vǫ defined by

Vǫ = {z ∈ C
n; ∃ x ∈ V, |Re z − x| < ǫ, |Im z|β < ǫ},

where |y|β is a norm of Rn satisfying |y|β ≥ |y| for the Euclidean norm |y|. Let Kp be the

closure of Vǫ/(1+1/p) in Cn and Lp = {w ∈ Cm; |Im w| ≤ p}. Denote U = Vǫ × Cm and
Mp = Kp × Lp. Tb(Mp) is, by definition, the space of all continuous functions f on Mp which
are holomorphic in the interior of Mp and satisfy, for k = 1, 2, . . .,

‖ f ‖Mp ,k = sup{|zswt f (z, w)|; (z, w) ∈ Mp, |s|+ |t| ≤ k} < ∞;

Tb(Mp) is a Fréchet space with the seminorms ‖ f ‖Mp ,k.

If k < m, then we have the canonical mappings:

Tb(Mm) → Tb(Mk). (3.10)

190 Advances in Quantum Field Theory
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We define
T (U) = lim← Tb(Mm), (3.11)

where the projective limit is taken following the restriction mappings (3.10).

Theorem 3.8. T (T(Rn+m)) is dense in T (U).

Proof : The proof is similar to the proofs of Proposition 2.4 of [Nishimura & Nagamachi (1990)] and
Proposition 9.1.2 of [Hörmander (1983)]. For more details we refer to the appendix of [Brüning &
Nagamachi (2004)]. ✷

Theorem 3.9. Let V be a closed convex cone and K a convex compact set in Rn. Define a function
hK,V(ξ), ξ ∈ Rn, and a set V0

K as follows (see Equation (3.4) for the definition of hK):

hK,V(ξ) = sup
x∈V

hK(x)− 〈x, ξ〉, and V0
K = {ξ ∈ R

n; hK,V(ξ) < ∞}.

Then for every µ ∈ H(Rn; O)′ with support in the cone V there is a function

µ̂(ζ) = 〈µ, ei〈·, ζ〉〉 (3.12)

with the following properties: µ̂ is well defined and holomorphic in the interior of Rn × iV0
K and satisfies

there the following estimate, for a suitable K ⊂ O.

|µ̂(ζ)| ≤ C(1 + |ζ|)j exp(hK,V(Im ζ)). (3.13)

µ̂ is called the Laplace transform of the tempered ultra-hyperfunction µ.

Proof : See [Brüning & Nagamachi (2004)]. ✷

Remark 3.10. Let |x|∞ = max{|x0|, |x|} be a norm in R4 and V̄+ the closed forward light-cone
in R4. Abbreviate V = V̄n

+ and for ℓi > 0 introduce hK(x) = ∑
n
i=1 ℓi|xi|∞. Then we estimate

hK,V(ξ) = sup
xi∈V̄+

n

∑
i=1

(ℓi|xi|∞ − 〈xi, ξi〉) ≤
n

∑
i=1

sup
xi∈V̄+

(ℓi|xi|∞ − 〈xi, ξi〉).

Let V+ be the open forward light-cone. It follows

sup
x∈V̄+

−〈x, η〉 < ∞

for η ∈ V+. Let ξi = ηi + (ℓi,) ∈ V+ + (ℓi,). Since |x|∞ = x0 in V̄+, we find

sup
xi∈V̄+

(ℓi|xi|∞ − 〈xi, ξi〉) = sup
xi∈V̄+

(ℓix
0
i − 〈xi, ηi〉 − x0

i ℓi) = sup
xi∈V̄+

−〈xi, ηi〉 < ∞.

Thus the set
V+(ℓ1, . . . , ℓn) = {(ξ1, . . . , ξn) ∈ R

4n; ξi ∈ V+ + (ℓi,)} (3.14)

is contained in V0
K .

191Solution of a Linearized Model of Heisenberg’s Fundamental Equation
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The reason why we use tempered ultra-hyperfunctions for the formulation of relativistic
quantum field theory with a fundamental length is illustrated in the following remark.

Remark 3.11. If f (z) is a holomorphic function in the strip |Im z| < ℓ around the real axis, then,
for |a| < ℓ, we have

〈
∞

∑
n=0

an

n!
δ(n)(x), f (x)〉 =

∞

∑
n=0

(−a)n

n!
f (n)(0) = f (0 − a) = 〈δ(x + a), f (x)〉, (3.15)

that is, as an equation for functionals defined on the function space T (T(−ℓ, ℓ)) whose
elements are holomorphic functions in T(−ℓ, ℓ) = R + i(−ℓ, ℓ) ⊂ C, the identity

∞

∑
n=0

an

n!
δ(n)(x) = δ(x + a)

holds, i.e., the sequence of generalized functions SN = ∑
N

n=0
an

n!
δ(n)(x) with support {0}

converges (weakly, in the dual space of T (T(−ℓ, ℓ))) to the generalized function δ(x + a)
with support {−a}, as N → ∞. However, if |a| > ℓ, then this sequence does not converge
in T (T(−ℓ, ℓ))′. This phenomenon can be understood as follows. If |a| < ℓ, then elements
in T (T(−ℓ, ℓ))′ do not distinguish between the points {0} and {−a} , but if |a| > ℓ then
elements in T (T(−ℓ, ℓ))′ can distinguish between the points {0} and {−a}. Since |a| < ℓ is
arbitrary, one can say that elements in T (T(−ℓ, ℓ))′ do not distinguish between points which
are separated by less than ℓ.

Remark 3.12. Let U = (−ℓ, ℓ) + i(−ℓ, ℓ). Then the functional (3.15) is considered to be
a functional on T (U) (the space of holomorphic functions on U), i.e., it is continuously
extendable to T (U). If a functional µ on T (T(R)) is continuously extendable to T (U),
one says that a carrier of µ is contained in U. The notion of carrier for tempered
ultra-hyperfunctions is the counterpart of the notion of support for distributions. We can
recognize the similarity of these notions: If a distribution µ ∈ S ′(R) is continuously
extendable to E(U) for some open set U ⊂ R, then we know that the support of µ is contained
in U.

4. Relativistic quantum fields with a fundamental length and their functional

characterization

4.1 Wightman’s Axioms for relativistic quantum fields with a fundamental length

In Wightman’s scheme, the concept of a relativistic quantum field φ(κ) of type κ plays a
fundamental role. Such a field, for example a scalar, tensor or spinor field, has a finite number

of Lorentz components φ
(κ)
j (j = 1, . . . , rκ).

The field components φ
(κ)
j (x) are operator-valued tempered ultra-hyperfunctions, i.e., for f ∈

T (T(R4)),

φ
(κ)
j ( f ) =

∫

φ
(κ)
j (x) f (x)d4x

are densely defined linear operators in a complex Hilbert space H. They are not assumed to
be bounded.

192 Advances in Quantum Field Theory
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Solution of a Linearized Model of Heisenberg’s Fundamental Equation 9

Here we state Wightman’s axioms for the ultra-hyperfunction quantum field theory [Brüning
& Nagamachi (2008)]. For the neutral scalar fields, these axioms are the axioms listed in
[Brüning & Nagamachi (2004)].

W.I. Relativistic invariance and state space: There is a complex Hilbert space H with
positive metric in which a unitary representation U(a, A) of the Poinaré spinor group P0 acts.
(a, A) → U(a, A) is weakly continuous.

W.II. Spectral property: The spectrum Σ of the energy-momentum operator P which generates
the translations in this representation, i.e., eiaP = U(a, 1), is contained in the closed forward
light cone
V̄+ = {p = (p0, . . . , p3) ∈ R4; p0 ≥ |p|}.

W.III. Existence and uniqueness of the vacuum: In H there exists unit vector Φ0 (called
the vacuum vector) which is unique up to a phase factor and which is invariant under all
space-time translations U(a, 1), a ∈ R4.

W.IV. Fields as operator-valued tempered ultra-hyperfunctions: The components φ
(κ)
j of

the quantum field φ(κ) are operator-valued generalized functions φ
(κ)
j (x) over the space

T (T(R4)) with common dense domain D; i.e., for all Ψ ∈ D and all Φ ∈ H,

T (T(R4)) ∋ f → (Φ, φ
(κ)
j ( f )Ψ) ∈ C

is a tempered ultra-hyperfunction. It is supposed that the vacuum vector Φ0 is contained in

D and that D is invariant under the action of the operators φ
(κ)
j ( f ) and U(a, A), i.e.,

φ
(κ)
j ( f )D ⊂ D, U(a, A)D ⊂ D.

Moreover it is assumed that there exist indices κ̄, j̄ such that φ
(κ̄)
j̄ ( f̄ ) ⊂ φ

(κ)
j ( f )∗ where ∗

indicates the Hilbert space adjoint of the operator in question.

W.V. Poincaré-covariance of the fields: According to the type of the field, there is a finite
dimensional real or complex matrix representation V(κ)(A) of SL(2, C) such that

U(a, A)φ
(κ)
j (x)U(a, A)−1 = ∑

ℓ

V
(κ)
j,ℓ (A−1)φ

(κ)
ℓ

(Λ(A)x + a),

i.e., for any f ∈ T (T(R4)) and Ψ ∈ D,

U(a, A)φ
(κ)
j ( f )U(a, A)−1Ψ = ∑

ℓ

V
(κ)
j,ℓ (A−1)φ

(κ)
ℓ

( f(a,A))Ψ,

where f(a,A)(x) = f (Λ(A)−1(x − a)). We have V(κ)(−1) = ±1. If V(κ)(−1) = 1, then the

field is called a tensor field. If V(κ)(−1) = −1, then the field is called a spinor field.

W.VI. Extended causality or extended local commutativity: Any two field components

φ
(κ)
j (x) and φ

(κ′)
l (y) either commute or anti-commute if the space-like distance between x

193Solution of a Linearized Model of Heisenberg’s Fundamental Equation
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and y is greater than ℓ: In some Lorentz frame1 , for any ℓ′ > ℓ and arbitrary elements Φ, Ψ in
D,

a) the functionals

T (T(R4))⊗ T (T(R4)) ∋ f ⊗ g → (Φ, φ
(κ)
j ( f )φ

(κ′)
l (g)Ψ)

and
T (T(R4))⊗ T (T(R4)) ∋ f ⊗ g → (Φ, φ

(κ′)
l (g)φ

(κ)
j ( f )Ψ)

can be extended continuously to T (T(Lℓ′ )), where

T(Lℓ) = {(z1, z2) ∈ C
4·2; |Im z1 − Im z2|1 < ℓ},

with |y|1 = |y0|+
√

∑
3
i=1(y

i)2, and moreover,

b) the carrier of the functional

f ⊗ g → (Φ, [φ(κ)
j ( f ), φ

(κ′)
l (g)]∓Ψ)

on T (T(R4))⊗ T (T(R4)) is contained in the set

Wℓ′ = {(z1, z2) ∈ C
4·2; z1 − z2 ∈ Vℓ′},

where
Vℓ = {z ∈ C

4; ∃ x ∈ V, |Re z − x| < ℓ, |Im z|1 < ℓ}

with |y| =
√

∑
3
i=0(y

i)2 is a complex neighborhood of light cone V, i.e., this functional can be

extended continuously to T (Wℓ′ ).

W.VII. Cyclicity of the vacuum: The set D0 of finite linear combinations of vectors of the form

φ
(κ1)
j1

( f1) · · · φ
(κn)
jn

( fn)Φ0, f j ∈ T (T(R4)) (n = 0, 1, . . .)

is dense in H.

Remark 4.1. Condition a) of axiom W.VI expresses the fact that if the distance between x and
y is greater than ℓ then x and y are distinguishable (see Remark 3.11). Condition b) of axiom
W.VI corresponds to the locality condition of ordinary quantum field theory (see Remark 3.12).

4.2 Main properties of the system of vacuum expectation values

A vector-valued generalized function Φ
(κn)
µ

n
( f ) is defined as follows: First, for g(x1, . . . , xn) =

f1(x1) · · · fn(xn), f j ∈ T (T(R4)), define Φ
(κ1 ...κn)
µ1 ...µn

(g) by:

Φ
(κ1 ...κn)
µ1 ...µn

(g) = φ
(κ1)
µ1 ( f1) · · · φ

(κj)
µj

( f j) · · · φ
(κn)
µn

( fn)Φ0.

1 In [Nagamachi & Brüning (2010)] it is shown that the fundamental length does actually not dependent
on the Lorentz frame.
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This mapping is naturally extended to T (T(R4))⊗n by linearity. Then, by the same argument

as Proposition 4.1 of [Brüning & Nagamachi (2004)]and using Theorem 3.7, Φ
(κ1 ...κn)
µ1 ...µn

(g) is
extended to a continuous mapping

T (T(R4n)) ∋ f → Φ
(κ1 ...κn)
µ1 ...µn

( f ) ∈ H.

The Wightman (generalized) function W (κ1 ...κn)
µ1 ...µn

( f ) is defined by

T (T(R4n)) ∋ f → W (κ1 ...κn)
µ1 ...µn

( f ) = (Φ0, Φ
(κ1 ...κn)
µ1 ...µn

( f )) ∈ C.

With the definition of the Fourier transform Φ̃
(κn)
µ

n
of Φ

(κn)
µ

n
by

Φ
(κn)
µ

n
( f ) = Φ̃

(κn)
(µ

n
)
( f̃ ).

we find

U(a, 1)Φ̃(κn)
µ

n
( f̃ ) = U(a, 1)Φ(κn)

µ
n
( f ) = Φ

(κn)
µ

n
( f(a,1)) = Φ̃

(κn)
µ

n

(

f̃ e[i(∑
n
k=1 pk a)]

)

.

According to the standard strategy we use this identity to determine support properties of the
Fourier transforms of the field operators. For h ∈ T (T(R4)) calculate

(2π)2h̃(P)Φ̃
(κn)
µ

n
( f̃ ) =

∫

R4
h(a)U(a, 1)daΦ̃

(κn)
µ

n
( f̃ )

= (2π)2〈Φ̃(κn)
µ

n
(p1, . . . , pn), h̃(p1 + · · ·+ pn) · f̃ (p1, . . . , pn)〉.

Let χn be the linear mapping defined by

(p1, . . . , pn) = χn(q0, . . . , qn−1), pk = qk−1 − qk(k = 1, . . . , n − 1), pn = qn−1.

The inverse mapping χ−1
n is:

qk =
n

∑
j=k+1

pj (k = 0, . . . , n − 1).

Define Z̃
(κn)
µ

n
by

Z̃
(κn)
µ

n
( f̃ ◦ χn) = Φ̃

(κn)
µ

n
( f̃ ).

Then
Z̃
(κn)
µ

n
(g̃) = Φ̃

(κn)
µ

n
(g̃ ◦ χ−1

n ).

In particular, for g̃2 ∈ H(R4(n−1); R4(n−1)) and g̃1 ∈ H(R4; R4) we find

h̃(P)Z̃
(κn)
µ

n
(g̃1 ⊗ g̃2)) = Z̃

(κn)
µ

n
(h̃ · g̃1 ⊗ g̃2)) = g̃1(P)Z̃

(κn)
µ

n
(h̃ ⊗ g̃2)).
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These identities show that the vector-valued generalized function

H(R4; R
4) ∋ g̃1 → Z̃

(κn)
µ

n
(g̃1 ⊗ g̃2)) ∈ H

has its support contained in the spectrum Σ of energy-momentum operator P (see Proposition

4.5 of [Brüning & Nagamachi (2004)]), moreover we can define a functional W̃
(κn)
µ

n
by

(2π)2 g̃1(0)W̃
(κn)
µ

n
(g̃2) = (Φ0, Z̃

(κn)
µ

n
(g̃1 ⊗ g̃2)),

and we have

(Z̃
(κm)
µ

m
(g̃1), Z̃

(κn)
µ

n
(g̃2)) = (2π)2〈W̃(κm+n)

µ
m+n

(q1, . . . , qm+n−1), g̃1(qm, . . . , q1)g̃2(qm, . . . , qm+n−1)〉.

This identity implies that the support of W̃
(κn)
µ

n
(q1, . . . , qn−1) is contained in Σn−1 (see

Proposition 4.6 of [Brüning & Nagamachi (2004)]). Moreover, the equality

(Z̃
(κn)
µ

n
(g̃), Z̃

(κn)
µ

n
(g̃)) = (2π)2〈W̃(κ2n)

µ
2n

(q1, . . . , q2n−1), g̃(qn, . . . , q1)g̃(qn, . . . , q2n−1)〉

shows that the support of Z̃
(κn)
µ

n
(q0, . . . , qn−1) is contained in Σn.

From this support property it follows that Z̃
(κn)
µ

n
(g̃) exists for a much wider class of test

functions g̃ than was originally considered. For example, the function

g̃ζ(q) = (2π)−2nei[∑n−1
j=0 qjζ j ], Im ζ j ∈ V+ + ℓj(1,)

belongs to the class of test functions for sufficiently large ℓj. We investigate the region of
holomorphy of the following function

〈W̃(κ2n)
µ

2n
(q1, . . . , q2n−1), g̃∗ζ ′ (q1, . . . , qn)g̃ζ(qn, . . . , q2n−1)〉

=
1

(2π)4n
〈W̃(κ2n)

µ
2n

(q1, . . . , q2n−1), e−i[∑n
j=1 qn+1−j ζ̄

′
j−1]ei[∑n

k=1 qn+k−1ζk−1]〉

= W
(κ2n)
µ

2n
(−ζ̄ ′n−1, . . . ,−ζ̄ ′0 + ζ0, . . . , ζn−1).

Now recall the following proposition.

Proposition 4.2 (Proposition 4.7 of [Brüning & Nagamachi (2004)]). There exist decreasing

functions Rij(r) defined for ℓ < r such that W
(κ2n)
µ

2n
(ζ1, . . . , ζ2n−1) is holomorphic in

2n−1
⋃

i=1

{ζ ∈ C
4(2n−1); Im ζi ∈ V+ + (ℓ′,), Im ζ j ∈ V+ + (Rij(ℓ

′),), ℓ < ℓ
′, j �= i}.

This proposition shows that Z
(κn)
µ

n
(ζ0, . . . , ζn−1) is holomorphic in the domain Im ζ0 ∈ V+ +

(ℓ,)/2 and Im ζk ∈ V+ + (ℓk,) for sufficiently large ℓk for k = 1, . . . , n.
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Note that

(g̃ζ ◦ χ−1
n )(p1, . . . , pn) = (2π)−2nei〈ζ,χ−1

n p〉 = (2π)−2nei〈χ−1T
n ζ,p〉 = (2π)−2nei〈z,p〉,

where z = χ−1T
n ζ and ζ = χT

n z, that is,

ζ0 = z1, ζ j = zj+1 − zj (j = 1, . . . , n − 1), z1 = ζ0, zj =
j−1

∑
k=0

ζk (j = 2, . . . , n).

Therefore we get

Z
(κn)
µ

n
(ζ0, . . . , ζn−1) = Z̃

(κn)
µ

n
(g̃ζ) = Φ̃

(κn)
µ

n
(g̃ζ ◦ χ−1

n ) = Φ
(κn)
µ

n
(z1, . . . , zn),

and

Φ
(κn)
µ

n
( f ) =

∫

Φ
(κn)
µ

n
(x1 + iℓ0, . . . , xn + i

n

∑
k=1

ℓk−1) f (x1 + iℓ0, . . . , xn + i
n

∑
k=1

ℓk−1)dx1 · · · dxn,

where ℓ0 = ℓ/2 + ǫ for any ǫ > 0.

Note that the Poincaré group acts on g̃ζ(q) as

(a, A) : g̃ζ(q) → g̃ζ(Λ(A)−1q)eiaq0 = (2π)−2nei[∑n−1
j=0 Λ(A)−1qjζ j ]eiaq0

= (2π)−2n exp i[
n−1

∑
j=0

qjΛ(A)ζ j]e
iaq0 = g̃Λ(A)ζ(q) exp iaq0.

Then the formula of covariance

U(a, A)Φ
(κn)
µ

n
( f ) = ∑

ν1,...,νn

n

∏
j=1

V
(κj)
µj ,νj

(A−1)Φ
(κ1 ...κn)
ν1 ...νn

( f(a,A))

implies the following simple formula of covariance in the domain of holomorphy of

Φ
(κn)
µ

n
(z1, . . . , zn) in complex space:

U(a, A)Φ
(κn)
µ

n
(z1, . . . , zn)

= ∑
ν1,...,νn

n

∏
j=1

V
(κj)
µj ,νj

(A−1)Φ
(κ1 ...κn)
ν1 ...νn

(Λ(A)z1 + a, . . . , Λ(A)zn + a). (4.1)

4.3 Functional characterization of fundamental length quantum fields

The analysis of the previous sections has shown that the sequence of vacuum expectation
values of an ultra-hyperfunction quantum field theory has a number of specific properties. In
analogy to standard quantum field theory we single out a set of properties of these vacuum
expectation values which actually characterizes an ultra-hyperfunction quantum field theory
up to isomorphisms. For the use in Section 5 (and because of space restrictions), we state them
only in case of a scalar field.
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Properties of UHQFT functionals:

(R1) W0 = 1, Wn ∈ T (T(R4n))′ for n ≥ 1, and Wn( f ∗) = Wn( f ), for all f ∈ T (T(R4n)) ≡
E(n), where f ∗(z1, . . . , zn) = f (z̄n, . . . , z̄1).

(R2) For the Fourier transform W̃n ∈ H(R4n; R4n)′ of Wn, there exists W̃n−1 ∈
H(R4(n−1); R4(n−1))′ such that

W̃n ◦ χn(q0, . . . , qn−1) = (2π)2δ(q0)W̃n−1(q1, . . . , qn−1)

and supp W̃n−1 ⊂ Σn−1.

(R3) For a space-like vector a ∈ R4 and gn ∈ E(n) introduce, for all λ > 0,

gn,λ(x1, . . . , xn) = gn(x1 − λa, . . . , xn − λa).

Then, for every fm ∈ E(m) and gn ∈ E(n) as λ → ∞,

Wm+n( fm ⊗ gn,λ) → Wm( fm)Wn(gn).

(R4) For any finite set f0, f1, . . . , fN of test functions such that f0 ∈ C, fn ∈ T (T(R4n)) for
1 ≤ n ≤ N, one has

N

∑
m,n=0

Wm+n( f ∗m ⊗ fn) ≥ 0.

(R5) Wn( f ) = Wn( f(a,Λ)) for all (a, Λ) ∈ P↑
+, all f ∈ T (T(R4n)), and all n = 1, 2, . . ..

(R6) For all n = 2, 3, . . . and all i = 1, . . . , n − 1 denote

Lℓ
i = {x = (x1, . . . , xn) ∈ R

4n; |xi − xi+1|1 < ℓ},

Wℓ
i = {(z1, . . . , zn) ∈ C

4n; zi − zi+1 ∈ Vℓ}.

Then, for any ℓ′ > ℓ,

(i) Wn ∈ T (T(R4n))′ belongs to T (T(Lℓ′
i ))

′ and

(ii) Wn ◦ cn
i belongs to T (Wℓ′

i )′,
where

(Wn ◦ cn
i )( f ) = Wn(c

n
i ( f )),

cn
i ( f )(x1, . . . , xn) = f (x1, . . . , xi, xi+1, . . . , xn)− f (x1, . . . , xi+1, xi, . . . , xn).

The derivation of the properties (R1) - (R6) is found in [Brüning & Nagamachi (2004)].

Theorem 4.3 (reconstruction theorem). To a given sequence (Wn)n∈N of tempered
ultra-hyperfunctions satisfying the conditions (R1) - (R6), there corresponds a neutral scalar field A( f )
which obeys all the axioms W.I - W.VII and has the given tempered ultra-hyperfunctions as vacuum
expectation values. The field A is unique up to isomorphisms.

Proof : The proof of the theorem is found in [Brüning & Nagamachi (2004)].
✷
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5. : exp (il2φ(x)2) : as a fundamental length quantum field

We are going to construct models of relativistic quantum fields with a fundamental length by
constructing a sequence of n-point functionals which satisfies conditions (R1) – (R6) and then
applying the reconstruction theorem (Theorem 4.3). Our starting point are the well-known
results of Jaffe [Jaffe (1965)] on formal Wick power series of free fields. If we consider the
power series of a free field φ

ρ(i)(x) =
∞

∑
n=0

a
(i)
n

: φ(x)n :
n!

, (5.1)

then we have the following theorem.

Theorem 5.1 (Theorem A.1 of [Jaffe (1965)]). As a formal power series

(Φ0, ρ(1)(x1) · · · ρ(n)(xn)Φ0) =
∞

∑
rij=0; 1≤i<j≤n

A(R)TR

R!
(5.2)

rij = rji, rii = 0, Ri =
n

∑
j=1

rij, A(R) =
n

∏
j=1

a
(j)
Rj

R! = ∏
1≤i<j≤n

(rij)!, TR = ∏
1≤i<j≤n

(tij)
rij (5.3)

tij = (Φ0, φ(xi)φ(xj)Φ0) = D
(−)
m (xi − xj).

Therefore

(Φ0, ρ(i)(x)ρ(i)(y)Φ0) =
∞

∑
n=0

a
(i)2
n

n!
D
(−)
m (x − y)n,

D
(−)
m (x) = (2π)−3

∫

R
3
[2ω(k)]−1e−iω(k)x0

eik·xdk

(k · x = k0x0 − k · x, ω(k) =
√

k2 + m2).

If the coefficients {a
(i)
n } satisfy limn→∞[|a(i)n |2/n!]1/n = 0 then the series (5.1) defines a

hyperfunction quantum field (see [Nagamachi & Mugibayashi (1986)]).

Now we assume that for some σ > 0

lim sup
n→∞

[|a(i)n |2/n!]1/n = σ. (5.4)

For example, consider

ρ(x) =: egφ(x)2
:=

∞

∑
n=0

gn : φ(x)2n :
n!

=
∞

∑
n=0

gn (2n)!
n!

: φ(x)2n :
(2n)!

. (5.5)

Then

σ = lim
n→∞

[

|gn|2 (2n)!
(n!)2

]1/2n

= 2|g| (5.6)
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and

(Φ0, ρ(x)ρ(y)Φ0) =
∞

∑
n=0

(

gn (2n)!
n!

)2 1
(2n)!

D
(−)
m (x − y)2n.

Since

(1 − x)−α = 1 + αx +
α(α + 1)

2!
x2 + . . . +

α(α + 1) · · · (α + n − 1)
n!

xn + . . . ,

and for α = 1/2
α(α + 1) · · · (α + n − 1)

n!
=

(2n)!
4nn!

1
n!

,

we get, in the sense of formal power series,

(Φ0, ρ(x)ρ(y)Φ0) = [1 − 4g2D
(−)
m (x − y)2]−1/2. (5.7)

Now we investigate the convergence of this power series, in the sense of tempered
ultra-hyperfunctions. To this end consider the power series

∞

∑
rij=0; 1≤i<j≤n

A(R)ZR

R!
(5.8)

in the variables zij (1 ≤ i < j ≤ n), where ZR = ∏1≤i<j≤n(zij)
rij . Let

‖R‖ = ∑
1≤i<j≤n

rij (5.9)

and tij(1 ≤ i < j ≤ n) be positive constants. Suppose

lim sup
‖R‖→∞

[ |A(R)|TR

R!

]1/‖R‖
≤ 1.

Then the fact that the series (5.8) converges if |zij| < tij (1 ≤ i < j ≤ n) follows from the
following theorem of Lemire.

Theorem 5.2. The associate convergence radii (r1, . . . , rn) of a series ∑ aν1,...,νn zν1
1 · · · zνn

n satisfy

lim sup
ν1+···+νn→∞

[|aν1,...,νn |rν1
1 · · · rνn

n ]1/(ν1+···+νn) = 1.

The multinomial theorem implies

Ri!
n

∏
j=1

t
rij

ij

(rij)!
≤

⎛

⎝

n

∑
j=1

tij

⎞

⎠

Ri

.

and according to equations (5.3) and (5.9) we know

n

∑
i=1

Ri = 2‖R‖,
n

∏
i=1

n

∏
j=1

(rij)! = (R!)2,
n

∏
i=1

n

∏
j=1

t
rij

ij = (TR)2;

200 Advances in Quantum Field Theory

www.intechopen.com



Solution of a Linearized Model of Heisenberg’s Fundamental Equation 17

hence
[ |A(R)|TR

R!

]2

=
∏

n
i=1 |a

(i)
Ri
|2(TR)2

(R!)2 =
n

∏
i=1

⎛

⎝|a(i)Ri
|2

n

∏
j=1

t
rij

ij

(rij)!

⎞

⎠

and

[ |A(R)|TR

R!

]1/‖R‖
=

n

∏
i=1

⎡

⎣|a(i)Ri
|2

n

∏
j=1

t
rij

ij

(rij)!

⎤

⎦

1/2‖R‖

=
n

∏
i=1

⎡

⎣

|a(i)Ri
|2

Ri!
Ri!

n

∏
j=1

t
rij

ij

(rij)!

⎤

⎦

1/2‖R‖

≤
n

∏
i=1

⎡

⎢

⎣

|a(i)Ri
|2

Ri!

⎛

⎝

n

∑
j=1

tij

⎞

⎠

Ri
⎤

⎥

⎦

1/2‖R‖

=
n

∏
i=1

⎡

⎣

(

|a(i)Ri
|2

Ri!

)1/Ri
⎛

⎝

n

∑
j=1

tij

⎞

⎠

⎤

⎦

Ri/2‖R‖

.

Suppose that tkk+1 < 1/σ, and the other tij’s are so small that

∑
1≤i<j≤n

tij <
1
σ

.

This then implies

lim sup
‖R‖→∞

n

∏
i=1

⎡

⎣

(

|a(i)Ri
|2

Ri!

)1/Ri
⎛

⎝

n

∑
j=1

tij

⎞

⎠

⎤

⎦

Ri/2‖R‖

≤ 1

and the power series (5.8) is convergent for |zij| < tij(1 ≤ i < j ≤ n). This shows the
convergence of the vacuum expectation value

(Φ0, ρ(1)(x1) · · · ρ(n)(xn)Φ0)

in the sense of tempered ultra-hyperfunctions.
Now we consider the case of m = 0 for simplicity. In this case the growth of the two-point
function of the free field is easier to estimate. In the case of m > 0, see Proposition 8.3. Recall

D
(−)
0 (x) = lim

ǫ→+0
(2π)−2[(x0 − iǫ)2 − x2]−1,

|(x0 − iǫ)2 − x2| = |x2 − ǫ2 − 2iǫx0|.
We claim that we can find ǫ ≥ 0 such that

|(2π)−2[(x0 − iǫ)2 − x2]−1| < 1/σ = 1/(2|g|),

where we used the relation (5.6). For x2 ≤ 0, |x2 − ǫ2 − 2iǫx0| ≥ |x2 − ǫ2| ≥ |x2|+ ǫ2, and
for x2 ≥ 0, |x2 − ǫ2 − 2ix0| ≥ |x2 − ǫ2 − 2iǫ

√
x2| = x2 + ǫ2, and (|x2|+ ǫ2)−1 < (2π)2/σ is

equivalent to ǫ2 > σ/(2π)2 − |x2|. Choose a number r′ >
√

σ/(2π) and define

ǫ(x) =
√

max{r′2 − |x2|, 0}. (5.10)
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For such a choice one has

|(2π)−2[(x0 − iǫ(x))2 − x2]−1| < 1/σ.

Finally we fix the fundamental length for these models:

ℓ =
√

σ/(2π) =
√

2|g|/(2π) = l/(
√

2π), (5.11)

where we used the relation g = il2 for l > 0. It is easily seen that for any ℓ′ > ℓ there exist
ǫ(x) such that

{(x0 + iǫ(x), x1, x2, x3); x ∈ R
4} ⊂ Vℓ′ .

Therefore, for any ℓ′ > ℓ there exists R > 0 such that (in formal but suggestive notation)

Wn−1(ζ) = Wn(z) = (Φ0, ρ(z1) · · · ρ(zk)ρ(zk+1) · · · ρ(zn)Φ0)

is a well-defined holomorphic function for

Im ζk = Im (zk+1 − zj) ∈ V+ + (ℓ′, 0, 0, 0)

and
Im ζ j = Im (zj+1 − zj) ∈ V+ + (R, 0, 0, 0), (j �= k). (5.12)

This implies that Wn satisfies the condition (i) of the axiom (R6). That is, the mapping

T (T(R4n)) ∋ f → W( f ) =
∫

∏
n−1
i=0 Γi

Wn−1(ζ)g(ζ)dζ0 · · · dζn−1

is continuous and can be extended continuously to

T (T(Lℓ′
k )) ∋ f → W( f ) =

∫

∏
n−1
i=0 Γi

Wn−1(ζ)g(ζ)dζ0 · · · dζn−1,

where, with ǫ(x) according to (5.10) and R sufficiently large,

Γk = {(x0 + iǫ(x), x1, x2, x3); x ∈ R
4}, Γj = {(x0 + iR, x1, x2, x3); x ∈ R

4}

and g(ζ) = f (ζ0, ζ0 + ζ1, . . . , ζ0 + · · ·+ ζn−1). Now consider the formula

∏
1≤i<j≤n

(ti,j)
ri,j = (tk,k+1)

rk,k+1 ∏
1≤i<j≤n, i �=k, j �=k+1

(ti,j)
ri,j

× ∏
1≤i<k

(ti,k)
ri,k ∏

k+1<j≤n

(tk,j)
rk,j

× ∏
1≤i<k

(ti,k+1)
ri,k+1 ∏

k+1<j≤n

(tk+1,j)
rk+1,j .

The transposition of xk and xk+1 causes the transposition of (tk,k+1)
rk,k+1 and (tk+1,k)

rk+1,k in
the first line, and the transposition of the second line and the third line. If xk and xk+1 are
space-like separated, then tk,k+1 = tk+1,k. The function

Wk
n−1(ζ) = (Φ0, ρ(z1) · · · ρ(zk+1)ρ(zk) · · · ρ(zn)Φ0)
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Solution of a Linearized Model of Heisenberg’s Fundamental Equation 19

is also holomorphic in a domain defined by (5.12) and

−Im ζk ∈ V+ + (ℓ′, 0, 0, 0).

Moreover, if ζk lies in R4\Vℓ′ , the functions Wn−1(ζ) and Wk
n−1(ζ) are well-defined and

coincide. Thus we have

(Wn ◦ cn
k )( f ) =

∫

∏
n−1
i=0 Γi

Wn−1(ζ)g(ζ)dζ0 · · · dζn−1 −
∫

−Γk ∏i �=k Γi

Wk
n−1(ζ)g(ζ)dζ0 · · · dζn−1

=
∫

Γℓ′
k ∏i �=k Γi

Wn−1(ζ)g(ζ)dζ0 · · · dζn−1 −
∫

−Γℓ′
k ∏i �=k Γi

Wk
n−1(ζ)g(ζ)dζ0 · · · dζn−1,

where
Γℓ

k = {(x0 + iǫ(x), x1, x2, x3); x ∈ R
4 ∩ Vℓ}

and we used the fact that Wn−1(ζ) and Wk
n−1(ζ) coincides for ζk ∈ R4\Vℓ′ . The above formula

shows that the functional Wn ◦ cn
k belongs to T (T(Wℓ′

k ))′ for any ℓ′ > ℓ which shows condition
(ii) of axiom (R6). We can show that Wn’s satisfy the axioms (R1), (R3), (R4) and (R5) in a

similar way as [Brüning & Nagamachi (2001)] where it is shown that if the coefficients {a
(i)
n }

satisfy limn→∞[|a(i)n |2/n!]1/n = 0 then the series (5.1) define hyperfunction quantum fields.
There, a Wick polynomial ρN(x) is introduced as a truncation of ρ(x),

ρN(x) =
N

∑
n=0

gn : φ(x)2n :
n!

.

Then the Wightman functions WN
n (x) = (Φ0, ρN(x1) · · · ρN(xn)Φ0) for ρN(x) satisfy all the

standard Wightman axioms, and they converge weakly to Wn(x) = (Φ0, ρ(x1) · · · ρ(xn)Φ0) as
N → ∞ in the sense of tempered ultra-hyperfunctions. Thus they satisfy the above axioms.
The proof of the spectral condition (R2) is easier than in the case of hyperfunction quantum
field theory because W̃N

n−1(q) and W̃n−1(q) are distributions, and W̃N
n−1(q) converge weakly

to W̃n−1(q) as N → ∞ in the sense of distributions. Since the limit in the sense of distributions
preserves the support, (R2) is valid for ρ(x). Accordingly we formulate the main result of the
section.

Theorem 5.3 (Existence of fields with fundamental length). For a free field φ of mass m ≥ 0 the
Wick power series (5.1) (or more specifically (5.5)) define ultra-hyperfunction quantum fields with a
fundamental length ℓ given by equations (5.4) and (5.11).

Remark 5.4. We explained this only in the case of m = 0, but the above theorem is valid for
m ≥ 0. For details we have to refer to [Brüning & Nagamachi (2008)].

For the explicit form of (Φ0, ρ(1)(x1) · · · ρ(n)(xn)Φ0), we have the following proposition.

Proposition 5.5. Abbreviate

ρ(j)(xj) =: e−rj il
2φ(xj)

2
:

with rj = ±1. Then the vacuum expectation values of these fields are given by

(Φ0, ρ(1)(x1) · · · ρ(n)(xn)Φ0) = (det A)−1/2, (5.13)
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20 Will-be-set-by-IN-TECH

where A is the n × n symmetric matrix whose entries aj,k are given by

aj,k = ak,j = 2hrj hrk
l2D

(−)
m (xj − xk)

for h±1 = e±iπ/4, j < k and aj,j = 1.

Proof. The proof is given in [Brüning & Nagamachi (2008)].

6. Proof of equation 2.2

In order to prove statement B) we need some further properties of Wick products. Thus we
begin by recalling some basic facts about Wick products of free fields which are then used to
derive this statement.

Let H be the Hilbert space defined by

H = ⊕∞
n=0Hn.

Here, Hn is the set of symmetric square-integrable functions on the direct product of the
momentum space hyperboloids

ξ2
k = m2, ξ0

k > 0, k = 1, . . . , n (6.1)

with respect to the Lorentz invariant measure
n

∏
k=1

dΩm(ξk), given by

dΩm(ξ) =
dξ1dξ2dξ3

√

∑
3
k=1(ξ

k)2 + m2
.

In the fundamental paper [Wightman & Gårding (1964)], we find the following quite general
formula (3.44) for the definition of Wick products of a free field φ of mass m as operators in H:
For f ∈ S(R4) and Φ ∈ H one has:

(: Dα(1)
φDα(2)

φ · · · Dα(l)
φ : ( f )Φ)(n)(ξ1, . . . , ξn) (3.44)

=
πl/2

(2π)2(l−1)

l

∑
j=0

[

(n − l + 2j)!
n!

]1/2 ∫

· · ·
∫

(

j

∏
k=1

dΩm(ηk)

)

×

∑
1≤k1<k2<...<kl−j≤n

(j!)−1 ∑
P

P
(

(−iη1)
α(1) · · · (−iηj)

α(j)
(iξk1

)α(j+1) · · ·

· · · (iξkl−j
)α(l)

f̃

(

j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

))

Φ(n−l+2j)(η1, . . . , ηj, ξ1, . . . , ξ̂k1
, . . . , ξ̂kl−j

, . . . , ξn),
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where in the summation
l

∑
j=0

, only those terms are to be retained for which n − l + 2j ≥ 0,

and the sum ∑
P

is over all permutation P of the variables η1, . . . , ηj, (−ξk1
), . . . , (−ξkl−j

). We

reconsider this formula in the sense of operator-valued ultra-hyperfunctions. Let |β| = 1 and
|α(1)| = |α(2)| = . . . = |α(l)| = 0. Then we have from (3.44)

(: φl : (−Dβ f )Φ)(n)(ξ1, . . . , ξn) =
πl/2

(2π)2(l−1)

l

∑
j=0

[

(n − l + 2j)!
n!

]1/2 ∫

· · ·
∫

(

j

∏
k=1

dΩm(ηk)

)

×∑
1≤k1<k2<...<kl−j≤n

(j!)−1 ∑
P

P

⎛

⎝i

(

j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

)β

f̃

(

j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

)

⎞

⎠×

×Φ(n−l+2j)(η1, . . . , ηj, ξ1, . . . , ξ̂k1
, . . . , ξ̂kl−j

, . . . , ξn).

=
πl/2

(2π)2(l−1)

l

∑
j=0

[

(n − l + 2j)!
n!

]1/2 ∫

· · ·
∫

(

j

∏
k=1

dΩm(ηk)

)

×∑
1≤k1<k2<···<kl−j≤n

(j!)−1 ∑
P

P

(

l(iη1)
β f̃

(

j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

))

×Φ(n−l+2j)(η1, . . . , ηj, ξ1, . . . , ξ̂k1
, . . . , ξ̂kl−j

, . . . , ξn).

Observe that

∑
P

P (ηi) = ∑
P

P
(

−ξkr

)

for any i and r. This implies for |β| = 1,

∑
P

P
(

(ηi)
β
)

= ∑
P

P
(

(−ξkr
)β
)

and therefore

∑
P

P

⎛

⎝i

(

j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

)β

f̃

(

j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

)

⎞

⎠ = ∑
P

P

(

l(iη1)
β f̃

(

j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

))

.

On the other hand, we also have from (3.44), for |α(1)| = 1, and |α(2)| = . . . = |α(l)| = 0

(: (Dα(1)
φ)φl−1 : ( f )Φ)(n)(ξ1, . . . , ξn)

=
πl/2

(2π)2(l−1)

l

∑
j=0

[

(n − l + 2j)!
n!

]1/2 ∫

· · ·
∫

(

j

∏
k=1

dΩm(ηk)

)

×∑
1≤k1<k2<...<kl−j≤n

(j!)−1 ∑
P

P

(

(iη1)
α(1)

f̃

(

j

∑
r=1

ηr −
l−j

∑
r=1

ξkr

))
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×Φ(n−l+2j)(η1, . . . , ηj, ξ1, . . . , ξ̂k1
, . . . , ξ̂kl−j

, . . . , ξn).

This shows that
(: φl : (−Dα(1)

f )Φ)(n) = l(: (Dα(1)
φ)φl−1 : ( f )Φ)(n), (6.2)

that is,
Dα(1)

: φ(x)l := l : (Dα(1)
φ(x))φl−1(x) : . (6.3)

Let D0 be the set generated by the vectors of the form

ρ(1)( f1) · · · ρ(n)( fn)Φ0, fk ∈ T (T(R4)),

where ρ(k)(x) is one of φ(x), ρ(x) and ρ∗(x), and Φ ∈ D0. Then it follows from the weak
conveargence of

ρ(−Dα(1)
f )Φ =: eigφ2

: (−Dα(1)
f )Φ =

∞

∑
l=0

(ig)l

l!
: φ2l : (−Dα(1)

f )Φ

which we have seen in the previous section that the above series is also strongly convergent,
and by (6.2)

: φ2l : (−Dα(1)
f )Φ = l : (Dα(1)

φ)φl−1 : ( f )Φ.

This shows that

∞

∑
l=0

(ig)l

l!
: φ2l : (−Dα(1)

f )Φ =
∞

∑
l=1

(ig)l

(l − 1)!
2 : (Dα(1)

φ)φφ2(l−1) : ( f )Φ

=
∞

∑
l=0

2(ig)
(ig)l

l!
: (Dα(1)

φ)φφ2l : ( f )Φ.

We write the last expression as

= 2(ig) : (Dα(1)
φ)φ

∞

∑
l=0

(ig)l

l!
φ2l : ( f )Φ = 2ig : (Dα(1)

φ)φρ : ( f )Φ.

That is, the formal expression (which is difficult to give a direct meaning)

2ig : (Dα(1)
φ(x))φ(x)(: eigφ(x)2

:) : Φ = 2ig : (Dα(1)
φ(x))φ(x)

∞

∑
l=0

(ig)l

l!
: φ2l(x) :: Φ

should be understood to be

∞

∑
l=0

2ig : (Dα(1)
φ(x))φ(x)

(ig)l

l!
φ2l(x) : Φ =

∞

∑
l=1

2 : (Dα(1)
φ(x))

(ig)l

(l − 1)!
φ2l−1(x) : Φ.

Then by (6.3), the above expression equals

∞

∑
l=1

(ig)l

l!
Dα(1)

: φ2l(x) : Φ,
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and this is equal to

Dα(1)
∞

∑
l=1

(ig)l

l!
: φ2l(x) : Φ = Dα(1)

ρ(x)Φ

in the sense of generalized functions. In the above understanding, we have

Dα(1)
ρ(x)Φ = 2ig : (Dα(1)

φ(x))φ(x)ρ(x) : Φ, (6.4)

that is, if the Wick product

: (Dα(1)
φ(x))φ(x)ρ(x) :

is defined by the Wick power series

∞

∑
l=0

2ig : (Dα(1)
φ(x))φ(x)

(ig)l

l!
φ2l(x) :,

then (6.4) holds and (2.2) follows.

7. Multiplier

As stated at the end of Section 5, {H, Φ0, U(a, Λ), φ(x), ρ(x), ρ∗(x)} satisfies the axioms of
UHFQFT (= ultrahyperfunction quantum field theory). Let ρ(κ)(x) = ρ(x) and ρ(κ̄)(x) =

ρ∗(x). Then, as we learned in Section 4.2, the vector-valued function ρ(λ1)(z1) · · · ρ(λn)(zn)Φ0
is holomorphic in

{(z1, . . . , zn) ∈ C
4n; Im z1 ∈ V+ + (ℓ/2,), Im (zj+1 − zj) ∈ V+ + (ℓj,)}

for some ℓj > ℓ > 0 (j = 1, . . . , n − 1), where ρ(λ)(x) is one of ρ(κ)(x), ρ(κ̄)(x) and φ(x). Let

ψ
(κ)
0,α (x) = ψ0,α(x) and ψ

(κ̄)
0,ᾱ (x) = ψ̄0,ᾱ(x) be free Dirac fields of mass M. Then the system

{K, Ψ0, V(a, Λ), ψ
(κ)
0,α (x), ψ

(κ̄)
0,ᾱ (x)}

satisfies the axioms of standard quantum field theory in terms of tempered distributions (and

consequently, that of UHFQFT), and therefore ψ
(λ1)
0,β1

(z1) · · ·ψ
(λn)
0,βn

(zn)Ψ0 is holomorphic in

{(z1, . . . , zn) ∈ C
4n; Im z1 ∈ V+, Im (zj − zj−1) ∈ V+},

where λ = κ, β = α or λ = κ̄, β = ᾱ. Therefore, ρ(z)Φ for Φ = ρ(λ2)( f2) · · · ρ(λn)( fn)Φ0,
f j ∈ T (T(R4)) is holomorphic in

{z ∈ C
4; Im z ∈ V+ + (ℓ/2,)}

and ψ0,α1 (z)Ψ for Ψ = ψ
(λ2)
0,β2

(g2) · · ·ψ
(λn)
0,βn

(gn)Ψ0, gj ∈ S(R4) is holomorphic there too.
The composite system

{H ⊗K, Φ0 ⊗ Ψ0, U(a, Λ)⊗ V(a, Λ), φ(x)⊗ IK , ρ(x)⊗ IK ,

ρ∗(x)⊗ IK , IH ⊗ ψ0,α(y), IH ⊗ ψ̄0,ᾱ(y)}
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is the tensor product of two systems and thus satisfies all the axioms of UHFQFT. Although
the tensor product is well-defined, the pointwise product is not necessarily well-defined for
generalized (vector-valued) functions. In the category of distributions, the following theorem
is well-known:

Theorem 7.1 (Theorem 8.2.10 of [Hörmander (1983)]). If u, v ∈ D′(X) then the product uv can
be defined as the pullback of the tensor product u ⊗ v by the diagonal map δ : X → X × X unless
(x, ξ) ∈ WF(u) and (x,−ξ) ∈ WF(v).

In our case, the condition that ρ(z)Φ and ψ0,α1 (z)Ψ have the common domain of holomorphy,

{z ∈ C
4; Im z ∈ V+ + (ℓ/2,)},

which corresponds to the condition of the wave front sets WF(u) and WF(v) of distributions,
implies that the product (ρψ0,α)( f ) is well-defined by the formula

(ρψ0,α)( f )(Φ ⊗ Ψ) =
∫

ΓN

f (z)ρ(z)Φ ⊗ ψ0,α(z)Ψdz, ΓN = {z ∈ C
4; z = x + i(N,)}

for suitable N > 0. Thus the field ψ0(x) is a multiplier of the field ρ(x). Similarly one can
show that ∂

∂xµ ψ0,α is a multiplier for ρ(x) and then we calculate

(
∂

∂xµ (ρψ0,α))( f )Φ ⊗ Ψ = (ρψ0,α)(−
∂

∂xµ f )Φ ⊗ Ψ =
∫

ΓN

(− ∂

∂xµ f (z))ρ(z)Φ ⊗ ψ0,α(z)Ψdz

=
∫

ΓN

f (z){ρ(z)Φ ⊗ ∂

∂xµ ψ0,α(z)Ψ +
∂

∂xµ ρ(z)Φ ⊗ ψ0,α(z)Ψ}dz

= (ρ
∂

∂xµ ψ0,α)( f )Φ ⊗ Ψ + ((
∂

∂xµ ρ)ψ0,α)( f )Φ ⊗ Ψ.

This gives

∂

∂xµ (ρ(x)ψ0,α(x))(Φ ⊗ Ψ) = ρ(x)
∂

∂xµ ψ0,α(x)Φ ⊗ Ψ + (
∂

∂xµ ρ(x))ψ0,α(x)Φ ⊗ Ψ.

Let ψ(x) = ρ(x)ψ0(x) and ψ̄(x) = ρ∗(x)ψ̄0(x). We can easily see that the fields
ψ(x), ψ̄(x), φ(x) satisfy the axioms of UHFQFT except for the condition of extended causality,
which is proven in the next section. In fact, W.I - W.V follow from those of the systems

{H, Φ0, U(a, Λ), φ(x), ρ(x), ρ∗(x)} and {K, Ψ0, V(a, Λ), ψ
(κ)
0,α (x), ψ

(κ̄)
0,ᾱ (x)} (for W.V the relation

(4.1) is used). For W.VI, we have only to restrict the Hilbert space H ⊗ K to the subspace
generated by

φ
(κ1)
j1

( f1) · · · φ
(κn)
jn

( fn)Φ0 ⊗ Ψ0, f j ∈ T (T(R4)) (n = 0, 1, . . .),

where φ
(κ)
j (x) is ψα(x) = (ρ(x)⊗ IK) · (IH ⊗ ψ0,α(x)) = ρ(x)⊗ ψ0,α(x) or ψ̄ᾱ(x) = (ρ∗(x)⊗

IK) · (IH ⊗ ψ̄0,ᾱ(x)) = ρ∗(x)⊗ ψ̄0,ᾱ(x) or φ(x)⊗ IK .
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8. Fundamental length quantum fields

In this section we are going to prove the condition of extended causality (the axiom W.VI).
In a first step we prove that Axiom W.VI is equivalent to a condition R6 for the Wightman
functionals. Then we proceed to verify condition R6.

Proposition 8.1. Assuming the validity of the other axioms, the axiom of extended causality WVI is
equivalent to the following condition

R6 For all n = 2, 3, . . . and all i = 1, . . . , n − 1 denote

Lℓ
i = {x = (x1, . . . , xn) ∈ R

4n; |xi − xi+1|1 < ℓ},

Wℓ
i = {x = (z1, . . . , zn) ∈ C

4n; zi − zi+1 ∈ Vℓ},

Vℓ = {z ∈ C
4; ∃ x ∈ V, |Re z − x| < ℓ, |Im z|1 < ℓ}. (8.1)

Then, for any ℓ′ > ℓ,

a) the functional

T (T(R4n)) ∋ f → W (κ1 ...κn)
µ1 ...µn

( f ) ∈ C

is extended continuously to T (T(Lℓ′
i )), and

b) the functional on T (T(R4n))

f → W (κ1 ...κjκj+1 ...κn)
µ1 ...µjµj+1 ...µn

( f ) +W (κ1 ...κj+1κj+ ...κn)
µ1 ...µj+1µj ...µn

( f ) ∈ C

is extended continuously to T (Wℓ′
i ).

Proof. Since the spinor/tensor indices do not play a role in this statement the proof given
in [Brüning & Nagamachi (2004)] for the scalar case applies (see Propositions 4.3, 4.4 and
Theorem 5.1 of [Brüning & Nagamachi (2004)]).

Proposition 8.2. The Wightman functions W r
α as given in [Nagamachi & Brüning (2008)] or in

formula (8.6) below satisfy condition R6.

Proof. The determinant det A of (5.13) can be expressed as

det A = 1 + Pn(aj,k) (8.2)

where Pn(aj,k) is the sum of homogeneous polynomials of degrees m = 2, · · · , n in the entries
aj,k, 1 ≤ j < k ≤ n with integer coefficients.

Introduce
Qn,j(ai,k) = ∑

(i,k,...,l) �=(1,2,...,n)

(i,k,...,l) �=(1,2,...,j+1,j,...,n)

sgn (i, k, . . . , l)a1,ja2,k · · · an,l (8.3)

and denote by σ(j + 1, j) the permutation (1, . . . , j − 1, j, j + 1, . . . , n) −→ (1, . . . , j − 1, j +
1, j, . . . , n). Then we have
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Pn(ai,k) = sgn (σ(j + 1, j))a1,1a2,2 · · · aj−1,j−1aj,j+1aj+1,jaj+1,j+1 · · · an,n

+ Qn,j(ai,k) = −a2
j,j+1 + Qn,j(ai,k) = ±4l2D

(−)
m (zj − zj+1)

2 + Qn,j(ai,k).

Hence we can rewrite (8.2) as

det A = 1 + Pn(ai,k) = 1 ± 4l4D
(−)
m (zj − zj+1)

2 + Qn,j(ai,k).

It is clear from (8.2), (8.3) and the details provided about the polynomial Pn that each term of

Qn,j(ai,k) contains products of 2-points functions D
(−)
m at arguments different from zj − zj+1.

Assume
y0

j+1 − y0
j > ℓ = l/(

√
2π). (8.4)

Then we have |4l4D
(−)
m (zj − zj+1)

2| < 1 by the estimate

|D(−)
m (x0 − iǫ,x)| ≤ (2πǫ)−2 for all x ∈ R

4. (8.5)

If we choose the arguments y0
k − y0

i (i < k) in these 2-points functions sufficiently large,
Qn,j(ai,k) becomes very small; and for these points zj the determinant (det A(z))−1/2

is holomorphic and the function (det A(z))−1/2W r
0,α(z1, . . . , zn) defines a functional in

T (T(Lℓ′
j ))

′ for any ℓ′ > ℓ by the formula

W r
α( f ) =

∫

∏
n
j=1 Γj

(det A(z))−1/2W r
0,α(z1, . . . , zn) f (z)dz (8.6)

for all f ∈ T (T(Lℓ′
j )), where Γj = R4 + i(y0

j , 0, 0, 0) and

W r
0,α(z1, . . . , zn) = (Ψ0, ψ

(r1)
0,α1

(z1) · · ·ψ
(rn)
0,αn

(zn)Ψ0)

is the Wightman function of free Dirac field. In fact, for ℓ′ > ℓ, we choose ℓ′ > y0
j+1 − y0

j > ℓ

and the other y0
k − y0

i sufficiently large so that (det A(z))−1/2 is a bounded function of x. Then
the corresponding integration path ∏

n
j=1 Γj of (8.6) is contained in

T(Lℓ′
j ) = {z = x + iy ∈ C

4n; |yj − yj+1|1 < ℓ
′},

where |y|1 = |y0|+ |y|. We conclude that the functional defined by

(det A(z))−1/2W r
0,α(z1, . . . , zn)

satisfies condition a) of R6.

The transposition of zj and zj+1 causes the change of aj,j+1 = aj+1,j:

D
(−)
m (zj − zj+1) → D

(−)
m (zj+1 − zj)
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and for an index k with j < k �= j + 1 the change

aj,k = ak,j = D
(−)
m (zj − zk) → D

(−)
m (zj+1 − zk) = aj+1,k = ak,j+1,

aj+1,k = ak,j+1 = D
(−)
m (zj+1 − zk) → D

(−)
m (zj − zk) = aj,k = ak,j,

results while for an index k with j > k �= j + 1 the change is

aj,k = ak,j = D
(−)
m (zk − zj) → D

(−)
m (zk − zj+1) = aj+1,k = ak,j+1,

aj+1,k = ak,j+1 = D
(−)
m (zk − zj+1) → D

(−)
m (zk − zj) = aj,k = ak,j.

We consider the matrix B = (bi,j) obtained from A by the change of j-th and (j + 1)-th rows
and j-th and (j + 1)-th columns. Then we have det A = det B. Next we consider the matrix
C = (cj,k) obtained from B by changing only bj,j+1 = bj+1,j = aj,j+1 = aj+1,j, i.e., cj,j+1 =

cj+1,j = D
(−)
m (zj+1 − zj). If xj and xj+1 are space-like separated, then D

(−)
m (xj − xj+1) is

analytic (space-like points x are Jost points of D
(−)
m (x)) and D

(−)
m (xj − xj+1) = D

(−)
m (xj+1 −

xj). Therefore for space-like separated xj, xj+1 (y0
j − y0

j+1 = 0) and the other y0
k − y0

i sufficiently

large, we have det A = det C. Note that W r
0,α(z1, . . . , zn) is also expressed by the sum of

the products of the two-point functions of the free Dirac field as in the scalar case, and for
space-like separated xj, xj+1 (y0

j − y0
j+1 = 0) and the other y0

k − y0
i positive, one has

W r
0,α(z1, . . . , xj, xj+1, . . . , zn) = −W r

0,α(z1, . . . , xj+1, xj, . . . , zn).

In order to proceed, we need some estimate for D
(−)
m (xj − xj+1).

Proposition 8.3 (Corollary 2.4 of [Brüning & Nagamachi (2008)]). Denote by dist (x, V̄) the
distance between x and the closed light cone V̄, and for ℓ > 0,

Vℓ = {x ∈ R
4; dist (x, V) < ℓ}.

Define ǫℓ(x) by ǫℓ(x) = ℓ if dist (x, V̄) < ℓ/
√

2, ǫℓ(x) =
√

2ℓ2 − 2dist (x, V̄)2 if ℓ/
√

2 ≤
dist (x, V̄) < ℓ and ǫℓ(x) = 0 if dist (x, V̄) ≥ ℓ. Then 0 ≤ ǫℓ(x) ≤ ℓ and supp ǫℓ(x) ⊂ V̄ℓ. Let
ℓ = l/(

√
2π) and assume ml < 2. Then, if ℓ′′ > ℓ, the estimate

2l2|D(−)
m (x0 − iǫℓ′′ (x),x)| < 1

holds.

For any ℓ′ > ℓ, we choose ℓ < ℓ′′ < ℓ′. Let ǫ(x) = ǫℓ′′ (x) and aj,j+1 = D
(−)
m (xj − xj+1 + iǫ(xj −

xj+1)) and for other ai,k, y0
k − y0

i sufficiently large. Then (det A(x))−1/2 and (det C(x))−1/2

are well-defined continuous functions of x and (det A(x))−1/2 = (det C(x))−1/2 if xj − xj+1 ∈
R4\Vℓ′ . Denote

W r
α(z1, . . . , zn) = (det A(z))−1/2W r

0,α(z1, . . . , zn)

and
W r,j

α (z) = W r′
α′ (z′), z′ = (z1, . . . , zj+1, zj, . . . , zn),
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r′ = (r1, . . . , rj+1, rj, . . . ,n ), α′ = (α1, . . . , αj+1, αj, . . . , αn).

Then, by deforming the path Γj × Γj+1 in Eq. (8.6) into Gj,j+1, we can write

W r
α( f ) +W r,j

α ( f ) =
∫

Gj,j+1 ∏i �=j,j+1 Γi

W r
α(z) f (z)dz +

∫

Gj+1,j ∏i �=j,j+1 Γi

W r,j
α (z) f (z)dz,

where y0
j = y0

j+1 and

Gj,j+1 = {(x0
j + iy0

j − iǫ(xj − xj+1),xj, x0
j+1 + iy0

j+1,xj+1); (xj, xj+1) ∈ R
2·4},

Gj+1,j = {(x0
j + iy0

j ,xj, x0
j+1 + iy0

j+1 − iǫ(xj+1 − xj),xj+1); (xj, xj+1) ∈ R
2·4}.

Since W r
α(z) +W r,j

α (z) = 0 for xj − xj+1 ∈ R4\Vℓ′ ,

W r
α( f ) +W r,j

α ( f ) =
∫

Gℓ′
j,j+1 ∏i �=j,j+1 Γi

W r
α(z) f (z)dz +

∫

Gℓ′
j+1,j ∏i �=j,j+1 Γi

W r,j
α (z) f (z)dz,

where

Gℓ′
j,j+1 = {(x0

j + iy0
j − iǫ(xj − xj+1),xj, x0

j+1 + iy0
j+1,xj+1); (xj, xj+1) ∈ R

2·4 ∩ Vℓ′},

Gℓ′
j+1,j = {(x0

j + iy0
j ,xj, x0

j+1 + iy0
j+1 − iǫ(xj+1 − xj),xj+1); (xj, xj+1) ∈ R

2·4 ∩ Vℓ′}.

Since Gℓ′
j,j+1 ∏i �=j,j+1 Γi, Gℓ′

j+1,j ∏i �=j,j+1 Γi ⊂ Wℓ′
j , this shows that

T (Wℓ′
j ) ∋ f → W r

α( f ) +W r,j
α ( f ) ∈ C

is continuous and satisfies the condition b) of R6.

Remark 8.4. In our previous paper [Brüning & Nagamachi (2004)], we defined a complex
neighbourhood Vℓ′ by

Vℓ′ = {z ∈ C
4; ∃x ∈ V; |Re z − x|+ |Im z|1 < ℓ

′}. (8.7)

But we found that to treat the present model, the neighbourhood (8.1) is convenient, and by
this change of the ℓ′-neighbourhood of V, our theory [Brüning & Nagamachi (2004)] is not
affected.

9. Conclusion

In the space of operator-valued tempered ultrahyperfunctions we have solved Heisenberg’s
linearized equation (1.2). This equation contains a parameter l which has the dimension of a
length and it has been found that this parameter l is proportional to the fundamental length
ℓ of our recently developed relativistic quantum field theory with a fundamental length. We
found (see (5.11), (8.4) and Proposition 8.3)

ℓ = l/(
√

2π).
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The use of tempered ultrahyperfunctions was unavoidable, at least in our solution strategy.
In this sense we conclude that Heisenberg’s linearized equation only has a solution in
the framework of relativistic quantum field theory with a fundamental length, not in the
framework of ordinary relativistic quantum field theory.
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