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1. Introduction

Massey-Milnor linking theory was developed by J. Milnor [Mi1, Mi2] and W. Massey [Ma, Po]
algebraically and homological-theoretically in 1960’s, but still remains quite mysterious as the
explicit formulae thereof is missing.

Chern-Simons-Witten configuration space integrals are the Feynman graphs in the aspect
of perturbative quantum field theory, and are developed by E. Witten [ADW, AF1, AF2,
At, Aw, Ba1, Ba2, HM, MV, RT, Tu, Wi] in 1990’s. But, as in almost all quantum field
theories to compute Feynman graphs explicitly is always beyond any rigorous mathematical
attack for the time being [PS]. Nevertheless in this paper, in the aspect of the first
nonvanishing Massey-Milnor linking [Ma, Mi1, Mi2, Po] we compute explicitly the related
Chern-Simons-Witten configuration space integrals [HKT, Hs1, Hs2, Hs3, Hs4, Hs5, Hs6, Hs7,
HY], from which we derive the combinatorial formulae of the Massey-Milnor linking when
the link under study is represented as a link diagram on the plane R

2.

2. Set-up

In this section for the forthcoming presentation of Massey-Milnor linking theory and
Chern-Simons-Witten graphs in perturbative quantum field theory [AF1, AF2, Ba2, Wi], we
define the related concept as follows.

For the set-up suppose that a given link L = {L0, L1, . . . , Ln} oriented with base points
{xj ∈ Lj|j = 0, 1, . . . , n}, is in a general position with pairwise crossings specified in R

2 and is
represented schematically as

To be more precise, each component Lj is represented schematically by a trivial circle with
the base point xj placed outer the most on Lj of L = {L0, L1, . . . , Ln} which is arranged
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2 Will-be-set-by-IN-TECH

counter-clockwise with L0 as the root. Moreover each Lj is oriented counter-clockwise as
shown schematically.

Also for the link L = {L0, L1, . . . , Ln} of (n + 1) components, to define the invariant
Ln,n−1,...,1,0 below we assume that all invariants of strictly lower degrees vanish namely
that Lm,m−1,...,1,0 = 0, for any permutation of any subset {L∗

0 , L∗
1 , . . . , L∗

m} ⊆ L of (m + 1)
components and for any m ≤ n − 1.

3. Chern-Simons-Witten graphs

In this section we present the key concept of Chern-Simons-Witten configuration space
integrals in the framework of perturbative quantum field theory. Beyond that we define our
first knot invariant Ln,n−1,...,1 for a link {L0, L1, . . . , Ln}, for which all invariants of strictly
lower degrees vanish as in the setup.

Definition 1. (1) Given an oriented link L = {L0, L1, . . . , Ln−1, Ln} as above, a
Chern-Simons-Witten graph Γ supported on L is a uni-trivalent rooted tree with all univalent vertices
supported on L.—Notice that our trees are “honest” trees in strict sense that all edges rooted at a vertex
are all going upward therefrom.

(2) Given a Chern-Simons-Witten graph on L we define its degree to be

degree Γ = #{ edges of Γ} − #{ trivalent vertices of Γ}.

(3) Given a Chern-Simons-Witten graph Γ supported on L we define the associated
Chern-Simons-Witten configuration space to be the space as follows.

(3-1) For each trivalent vertex we assign a copy of R
3.

(3-2) For a univalent vertex supported on the component Lj of L we assign Lj to it.

And if some univalent vertices {U1, U2, . . . , Uk} ordered linearly with respect to the orientation and
the base point xi ∈ Lj are supported on Lj, then we assign to {U1, U2, . . . , Uk} the subset of (Lj)

k

which respects the linear order of Lj, namely the subset {(y1, y2, . . . , yk)|xj ≤ y1 ≤ y2 ≤ · · · ≤ yk ≤

xj} ⊆ (Lj)
k with the induced orientation.

As the configuration space of Γ we take the abstract product of the spaces in (3-1) and (3-2), but with
the orientation specified (or the ordering of the factors of the product) as follows:

(3-2-1) Always start with the root L0.

(3-2-2) Going up for each edge.

(3-2-3) From the right edge to the left edge at each trivalent vertex.

(3-2-4) Endow the connected subgraphs with the above orientations and then take the product of the
orientation of all components. It does not matter how to get the product of the orientation of the
components as all components are even dimensional spaces.

(4) For an edge joining vertices A and B in Γ, we assign a differential 2-form to it by pulling-back the

standard area form on the unit sphere in R
3 by the map

A − B

|A − B|
where vertex A sits below vertex B

in Γ. And we define the differential form associated to Γ to be the product of the 2-forms indexed by
all edges of Γ. Notice that it does not matter how we “arrange” the order of the product, as all these

156 Advances in Quantum Field Theory

www.intechopen.com



Quantum Field Theory and Knot Invariants 3

differential forms are 2-forms. Also notice that if univalent vertices U1, . . . , Uk are supported on a
component Lj, then they are “positioned” on Lj with the same “height”.

(5) Finally for a Chern-Simons-Witten graph Γ supported on a given link L = {L0, L1, . . . , Ln−1, Ln},
we define the associted Chern-Simons-Witten configuration space integral to be the integral of the
differential form constructed in (4) over the configuration space constructed in (3).

Next in Definition 2 we define the first non-vanishing invariant Ln,n−1,...,1,0 for the link
{L0, L1, . . . , Ln} represented diagrammatically as in the setup. We coin the construction as
HIST-transform where HI comes from the IHX-relation and ST comes from the STU-relation
in the perturbative Chern-Simons-Witten quantum field theory [Oh, Wi, Ye].

Definition 2. (1) We define the HI-transform as:

.

where vertices A, B, C and D are generic vertices of a Chern-Simons-Witten graph which are not
necessarily uni-valent ones.

(2) We define the ST-transform as:

.

where vertices A and B are generic vertices and vertex i is a univalent vertex sitting on some knot
component.

(3) For the construction of connected Chern-Simons-Witten graphs of degree n supported on
{L0, L1, . . . , Ln}, and to ease the notation, we define “double round brackets” ((n, n − 1, . . . , 2, 1))
as follows.

(3-1) ((2, 1)) = 2 ∧ 1

(3-2) ((3, 2, 1)) = ((3, 2)) ∧ 1 + 3 ∧ ((2, 1))

(3-3) ((4, 3, 2, 1)) = ((4, 3, 2)) ∧ 1 + ((4, 3)) ∧ ((2, 1)) + 4 ∧ ((3, 2, 1))

· · · · · ·

(3-4) ((n, n− 1, . . . , 2, 1)) = ((n, n− 1, . . . , 2))∧ 1+((n, n− 1, . . . , 3))∧ ((2, 1))+ · · ·+((n, n−
1)) ∧ ((n − 2, n − 3, . . . , 2, 1)) + n ∧ ((n − 1, n − 2, . . . , 2, 1))

(4) The construction of connected Chern-Simons-Witten graphs of degree n on {L0, L1, . . . , Ln} is as
follows.

157Quantum Field Theory and Knot Invariants
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4 Will-be-set-by-IN-TECH

(4-1) For generic vertices A and B, we assign to (A ∧ B), this is we connect vertices A and
B arranged as above, to a new vertex—the root shown here—by a “Y”. And by definition the new
vertex—the root—is denoted as (A ∧ B), if we need to continue doing this construction therefrom.

(4-2) For two connected Chern-Simons-Witten graphs A and B, to (A + B) we assign the disjoint
copies of A and B.

(5) On {L0, L1, . . . , Ln} for the construction of the first non-vanishing Chern-Simons-Witten graph
Ln,n−1,...,1,0: Start with the connected ones in (4) and apply ST-transform exactly once to get the
set of all Chern-Simons-Witten graphs of two components; repeat ST-transforms till we get finally
the Chern-Simons-Witten graphs of exactly n components. And Ln,n−1,...,1,0 is the “sum” of the
Chern-Simons-Witten graphs constructed above.

Before giving some examples we make the following remarks to make more sense of
Definition 2.

Note 1. (1) It is easy to see that the connected Chern-Simons-Witten graphs constructed in (4) of
Definition 2 is closed under the HI-transforms.

(2) If we coin the connected Chern-Simons-Witten graphs as 0-connected, those ones of two components
as (−1)-connected, the ones of three components as (−2)-connected and so forth and so on, then
it is easy to see that for any l the set of l-connected Chern-Simons-Witten graphs of degree n
supported on L = {L1, . . . , Ln} are closed under HI-transform; moreover, the set of l-connected
Chern-Simons-Witten graphs constructed as above will produce exactly the set of (l − 1)-connected
ones after doing ST-transform exactly once.

(3) Our Chern-Simons-Witten graphs are always not edge-overlapping, that is when edges of the graphs
are represented as line segment in R

2 they never intersect with one another except obviously at the
vertices proper.

Here are some examples to show the idea.

Example 1. For n = 2, L = {L0, L1, L2}, the connected Chern-Simons-Witten graph of degree 2 is:

. As usual to ease the notation we use numerials i, j, k, . . . for the knot component Li, Lj, Lk

etc. The set of (−1)-connected ones are

It is easy to see that starting with the connected Chern-Simons-Witten graphs we get the set
of (−1)-connected ones after doing ST-transform exactly once.

Example 2. For n = 3, L = {L0, L1, L2, L3}, from the construction in (3), (4) of Definition 2 it is to

see that the connected Chern-Simons-Witten graphs of degree 3 are: and .
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For the (−1)-connected Chern-Simons-Witten graphs,we apply ST-transform exactly once to the set of
connected ones to get:

→

, , ,

→

, , ,

For the set of (−2)-connected Chern-Simons-Witten graphs, we apply ST-transform exactly once to
the set of (−1)-connected ones to get the graphs of three components in L3,2,1,0 listed below.

159Quantum Field Theory and Knot Invariants
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6 Will-be-set-by-IN-TECH

Also by Definition 1, the relevant Chern-Simons-Witten configuration space integrals of the above
example are shown in example 5.

Example 3. For n = 1, L = {L0, L1}, the invariant L1,0 is nothing but the integration of the 2-form
corresponding to the edge, over the configuration space L0 × L1:

L1,0 =
1

4π

∫

L0

∫

L1

det

⎛

⎝

y0 − y1

dy0

dy1

⎞

⎠

1

|y0 − y1|3
,

which is exactly the classic Gauss linking.

Example 4. n = 2, L = {L0, L1, L2} for which the invariants of strictly lower degrees Li,j = 0,
∀i 	= j, then L2,1,0 is the sum of the Chern-Simons-Witten configuration space integrals corresponding
to the Chern-Simons-Witten graphs listed in Example 1.

∫

L0

∫

R3

∫

L1

∫

L2

(0 − x) ∧ (x − 1) ∧ (x − 2),

∫

L0

∫ 0

x0

∫

L1

∫

L2

(x − 1) ∧ (x − 2),

∫

L0

∫

L1

∫ 1

x1

∫

L2

(0 − 1) ∧ (x − 2),

160 Advances in Quantum Field Theory
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Quantum Field Theory and Knot Invariants 7

∫

L0

∫

L1

∫

L2

∫ 2

x2

(0 − 2) ∧ (x − 1).

Example 5. n = 3, L = {L0, L1, L2, L3} for which the invariants of strictly lower degrees
vanish: Li,j = 0, Li,j,k = 0 for all distinct i, j, k, then the invariant L3,2,1,0 is the sum of the
following 22 Chern-Simons-Witten configuration space integrals which are the relevant integrals of
the Chern-Simons-Witten graphs listed in Example 2.

(A) =
∫

L0

∫

R3

∫

L1

∫

R3

∫

L2

∫

L3
(0 − x) ∧ (x − 1) ∧ (x − y) ∧ (y − 2) ∧ (y − 3),

(B) = −
∫

L0

∫

R3

∫

L3

∫

R3

∫

L1

∫

L2
(0 − x) ∧ (x − 3) ∧ (x − y) ∧ (y − 1) ∧ (y − 2),

(C) =
∫

L0

∫

L1

∫ 1
x1

∫

R3

∫

L2

∫

L3
(0 − 1) ∧ (x − y) ∧ (y − 2) ∧ (y − 3),

(D) =
∫

L0

∫

L3

∫ 3
x1

∫

R3

∫

L1

∫

L2
(0 − x) ∧ (3 − y) ∧ (y − 1) ∧ (y − 2),

(E) =
∫

L0

∫ 0
x0

∫

L1

∫

R3

∫

L2

∫

L3
(x − 1) ∧ (0 − y) ∧ (y − 2) ∧ (y − 3),

(F) = (+)
∫

L0

∫

R3

∫

L2

∫ 2
x2

∫

L1

∫

L3
(0 − x) ∧ (x − y) ∧ (y − 1) ∧ (x − 2),

(G) = (+)
∫

L0

∫

R3

∫

L1

∫ 1
x1

∫

L2

∫

L3
(0 − x) ∧ (x − 1) ∧ (y − 2) ∧ (x − 3),

(H) =
∫

L0

∫

R3

∫

L1

∫

L3

∫ 3
x3

∫

L2
(0 − x) ∧ (x − 1) ∧ (x − y) ∧ (y − 2),

(I) =
∫

L0

∫ 0
x0

∫

R3

∫

L1

∫

L2

∫

L3
(x − y) ∧ (y − 1) ∧ (y − 2) ∧ (0 − 3),

(J) =
∫

L0

∫

R3

∫

L1

∫

L2

∫ 2
x2

∫

L3
(0 − x) ∧ (x − 1) ∧ (x − 2) ∧ (y − 3),

(K) =
∫

L0

∫

L3

∫ 3
x3

∫

L2

∫ 2
x2

∫

L1
(0 − x) ∧ (3 − y) ∧ (2 − 1),

(L) =
∫

L0

∫ 0
x0

∫

L1

∫

Lx3

∫ 3
x3

∫

L2
(x − 1) ∧ (0 − y) ∧ (3 − 2),

(M) =
∫

L0
int0

x0

∫

L1

∫ 1
x1

∫

L2

∫

L3(x − 1) ∧ (y − 2) ∧ (1 − 3),

(N) =
∫

L0

∫

L1

∫ 1
x1

∫

L2

∫ 2
x2

∫

L3
(0 − 1) ∧ (x − 2) ∧ (y − 3),

(O) =
∫

L0

∫ 0
x0

∫ y
x0

∫

L1

∫

L2

∫

L3
(x − 1) ∧ (y − 2) ∧ (0 − 3),

(P) =
∫

L0

∫

L3

∫ 3
x3

∫ y
x3

∫

L1

∫

L2
(0 − x) ∧ (y − 1) ∧ (3 − 2),

(Q) =
∫

L0

∫

L2

∫ 2
x2

∫ y
x2

∫

L1

∫

L3
(0 − y) ∧ (x − 3) ∧ (2 − 1),

(R) =
∫

L0

∫

L1

∫ 1
x1

∫ y
x1

∫

L2

∫

L3
(0 − 1) ∧ (x − 2) ∧ (y − 3),

(S) =
∫

L0

∫

L3

∫ 3
x3

∫

L1

∫ 1
x1

∫

L2
(0 − x) ∧ (3 − 1) ∧ (y − 2),

(T) =
∫

L0

∫ 0
x0

∫

L3

∫ y
L2

∫ 2
x2

∫

L1
(0 − 3) ∧ (x − y) ∧ (2 − 1),

(U) =
∫

L0

∫

L1

∫ 1
x1

∫

L3

∫ 3
x3

∫

L2
(0 − 1) ∧ (x − y) ∧ (3 − 2),

(V) =
∫

L0

∫ 0
x0

∫

L1

∫

L2

∫ 2
x2

∫

L3
(x − 1) ∧ (0 − 2) ∧ (y − 3),
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4. Massey-Milnor linking theory

Although Massey-Milnor linking theory was developed in 1960’s [Fe, Ma, Mi1, Mi2, Po], the
explicit and combinatorial formulae thereof is still missing. In this section we develop the
“absolute version” of homological theory of Massey-Milnor linking [HKT, Hs1, Hs2, Hs3, Hs4,
Hs5, Hs6, Hs7, HY] in contrast to the relative homological theory of Massey’s [Fe, Ma, Po] for
the purpose of the first non-vanishing linking L∗

n,n−1,...,1,0 and its combinatorial formulae for

link L = {L0, L1, . . . , Ln} as in the set-up. First we need the following definition.

Definition 3. (1) For each component Lj ∈ L = {L0, L1, . . . , Ln}, we define a closed 1-form denoted
as j(x) associated to it as:

j(x) =
1

4π

∫

Lj

det

⎛

⎝

x − y
dx
dy

⎞

⎠

1

|x − y|3
△
=

∫

Lj

(x − y),

which is a smooth 1-form as long as x /∈ Lj. Notice also that by convention and by notation we set

(x − y)
def
=

1

4π
det

⎛

⎝

x − y
dx
dy

⎞

⎠

1

|x − y|3
def
=

1

4π
det

⎛

⎝

x1 − y1 x2 − y2 x3 − y3

dx1 dx2 dx3

dy1 dy2 dy3

⎞

⎠

1

|x − y|3

=
1

4π

1

|x − y|3
((x1 − y1)(dx2 ∧ dy3 − dx3 ∧ dy2)

+ (x2 − y2)(dx3 ∧ dy1 − dx1 ∧ dy3)

+ (x3 − y3)(dx1 ∧ dyx − dx2 ∧ dy1)).

This is nothing but the pull-back of the standard area form of the unit sphere S2 ⊆ R
3 by the map

x − y

|x − y|
, x, y in R

3.

(2) Whenever the Gauss linking (here for convenience, we coin it as the Massey-Milnor linking of
degree one)

L∗
i,j =

∫

Li

∫

Lj

(x − y) =
1

4π

∫

Li

∫

Lj

det

⎛

⎝

x − y
dx
dy

⎞

⎠

1

|x − y|3

vanishes, we define a well-defined function as: d−1i(x) =
x
∫

xj

∫

i

(t − y), where t ∈ Li, x ∈ Lj and

xj ∈ Lj is the base point of Lj.

Similarly, whenever a given 1-form ψ defined on Lj with
∫

Lj
ψ = 0, we define the relevant function

ψ(x), x ∈ Lj as: ψ(x) = d−1(ψ) =
∫ x

xj
ψ, where xj ∈ Lj is the base point. And we also coin a

function of this sort as linking function.

(3) Given a closed 2-form φ in R
3, for simplicity we set 1-form φ

def
= d−1(φ)(x, y, z) =

∫ x
∞

φ(t, y, z),

where the path of integration is taken along the
∂

∂x
-direction starting from (−∞, y, z) up to (x, y, z),

the point of interests.
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(4) Using i(x)
def
= d−1(i)(x), φ(x) = d−1(φ)(x), whenever they make sense we define inductively

closed 2-form in R
3: the “round brackets” (m, m− 1, . . . , 1), and closed 1-forms of interests the “sharp

brackets” < m, m − 1, . . . , 1 > as follows.

(4-1) We define the round bracket (j, i) = (j) ∧ (i) + j(di)− i(dj) is a closed 2-form in R
3. Notice

that di is a Dirac-like singular 2-form supported on the knot component Li, and that j(x) in j(x)(di)
refers to x ∈ Li and is a well-defined function thereon (a so-called linking function) as we assume that
L∗

i,j = 0. Similar remarks hold for i(x)(dj), with x ∈ Lj.

Next, we define the sharp bracket < j, i >= (j, i) + j(x)i(x) which is a closed 1-form in a tubular
neighborhood of Lk with k 	= i, k 	= j.

(4-2) We define the round bracket

(k, j, i) = (k, j)∧ i + k ∧ (j, i) +< k, j >(di)− ki(dj) +< i, j >(dk)

which is a closed 2-form in R
3. We notice that (di)(x) is a Dirac-like singular 2-form supported on the

knot component Li, and that < k, j >(x) refers to x ∈ Li and is a well-defined function on Li(a linking
function), as we assume that the Massey-Milnor linkings of degree 2 vanish there. Similar remarks
hold for ki(dj) and < i, j >(dk).

Next, we define the sharp bracket which is a closed 1-form < k, j, i > (x) for x ∈ Ll , l 	= i, j, k as:

< k, j, i > (x) = (k, j, i)(x) + (k, j)(x)i(x) + k(x)< j, i >(x)

which is well-defined as L∗
i.l = 0 and L∗

j,i,l = 0 by the assumption of vanishing of Massey-Milnor

linkings of lower degrees.

(4-3) Inductively, we define the closed 2-form (j, j − 1, . . . , 2, 1) in R
3 as

(j, j − 1, . . . , 2, 1)

=(j, j − 1, . . . , 2) ∧ 1 + (j, j − 1, . . . , 3) ∧ (2, 1)

+ · · ·+ (j, j − 1) ∧ (j − 2, . . . , 1) + j ∧ (j − 1, j − 2, . . . , . . . , 1)

+< j, j − 1, . . . , 2 >(d1)−< j, j − 1, . . . , 3 >i(d2)

+< j, j − 1, . . . , 4 ·< 1, 2 >(d3) + · · ·+ (01)j
< 1, 2, . . . , j − 1 >(dj),

which is well-defined by the assumption of vanishing of Massey-Milnor linkings of strictly lower
degrees.

Next, we define the closed 1-form < j, j − 1, . . . , 1 > (x), x ∈ Ll with l 	= 1, 2, . . . , j as:

< j, j − 1, . . . , 1 > (x)

=(j, j − 1, . . . , 1)(x) + (j, j − 1, . . . , 2(x)1(x)

+ (j, j − 1, . . . , 3)(x)< 2, 1 >(x) + . . .

+ (j, j − 1)(x)(j − 2, j − 3, . . . , 1)(x)

+ j(x)< j − 1, j − 2, . . . , 1 >(x),

which is a well-defined function on Ll , as we assume that Massey-Milnor linkings of strictly lower
degrees vanish.
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(5) Finally for a link L = {L0, L1, . . . , Ln} of (n + 1) components for which all Massey-Milnor
linkings L∗’s of strictly lower degrees vanish, we define the first non-vanishing Massey-Milnor linking

L∗
n,n−1,...,1,0 =

∫

L0

< n, n − 1, . . . , 2, 1 > .

To conclude the presentation of Massey-Milnor linkings L∗
n,n−1,...,1, we notice that L∗

n,n−1,...,1,0
is an ambient isotopy invariant with respect to L0 as < n, n − 1, . . . , 1 > is a closed
1-form in a tubular neighborhood of L0 which is disjoint from {L1, L2, . . . , Ln}. But a
beautiful theorem of J. Milnor [Mi1, Mi2] asserting that L∗

n,n−1,...,0 = L∗
n−1,n−2,...,0,n =

L∗
n−2,n−3,...,0,n,n−1 = L∗

0,n,n−1,...,1 implies that the first non-vanishing Massey-Milnor linking
L∗

n,n−1,...,1,0 is an ambient isotopy invariant with respect to Li for i = 0, 1, . . . , n. And

notice that the “double round brackets” ((n, n − 1, . . . , 1)) defined in (3) of Definition 2 are
nothing but the “connected” part of (n, n − 1, . . . , 1), and also notice that the difference
between ((n, n − 1, . . . , 1)) and (n, n − 1, . . . , 1) is a Dirac-like singular 2-form supported on
{L1, L2, . . . , Ln}.

5. Some calculus lemma

Armed with the link L = {L0, L1, . . . , Ln} as in the setup—for example the cyclic
arrangement of L as shown there and the assumption of the vanishing of both invariants
L’s (Chern-Simons-Witten invariants defined in Section 3) and L∗’s (Massey-Milnor linkings
defined in Section 4) of strictly lower degrees—and for the purpose of the equality L = L∗

and the combinatorial formulae thereof, we prepare some calculus lemmas which mostly are
localization computation as our link L is represented as a link diagram lying entirely on the
plane R

2, except possibly the infinitesimally small neighborhood of crossings of L.

Lemma 1.

dA(A − B)− dB(A − B)

=(−)δ(A − B)(dA1 ∧ dA2 ∧ dB3 + dA2 ∧ dA3 ∧ dB1 + dA3 ∧ dA1 ∧ dB2),

where A, B ∈ R
3 are dummy variables,

(A − B)
def
=

(

1

4π

)

1

|A − B|3
det

⎛

⎝

A − B
dA
dB

⎞

⎠

and

(A − B)
def
=

(

1

8π

)

1

|A − B|3
det

⎛

⎝

A − B
dA
dA

⎞

⎠ ;

and δ(A − B) is the Dirac function in R
3.

Proof.

dA(A − B)

=dA(
1

4π
)

1

|A − B|3

⎛

⎝

A1 − B1 A2 − B2 A3 − B3

dA1 dA2 dA3

dB1 dB2 dB3

⎞

⎠ = dA

⎛

⎝

Γ1(A − B) Γ2(A − B) Γ3(A − B)
dA1 dA2 dA3

dB1 dB2 dB3

⎞

⎠ ,
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if we set Γ(x) = 1
4π|x|

=dA[Γ1(dA2 ∧ dB3 − dA3 ∧ dB2) + Γ2(dA3 ∧ dB1 − dA1 ∧ dB3)

+ Γ3(dA1 ∧ dB2 − dA2 ∧ dB1)]

=(Γ11dA1 + Γ12dA2 + Γ13dA3) ∧ (dA2 ∧ dB3 − dA3 ∧ dB2)

+ (Γ21dA1 + Γ22dA2 + Γ23dA3) ∧ (dA3 ∧ dB2 − dA1 ∧ dB3)

+ (Γ31dA1 + Γ32dA2 + Γ33dA3) ∧ (dA1 ∧ dB2 − dA2 ∧ dB1)

=(Γ11 + Γ22 + Γ33(dA1 ∧ dA2 ∧ dB3 + dA2 ∧ dA3 ∧ dB1)

+ dA3 ∧ dA1 ∧ dB2)

− (Γ11dA2 ∧ dA3 ∧ dB1 + Γ12dA2 ∧ dA3 ∧ dB2 + Γ13dA2 ∧ dA3 ∧ dB3)

− Γ21dA3 ∧ dA1 ∧ dB1 + Γ22dA3 ∧ dA1 ∧ dB2 + Γ23dA3 ∧ dA1 ∧ dB3)

− (Γ31dA1 ∧ dA2 ∧ dB1 + Γ32dA1 ∧ dA2 ∧ dB2 + Γ33dA1 ∧ dA2 ∧ dB3)

=− δ(A − B) + dB(Γ1dA2 ∧ dA3 + Γ2dA3 ∧ dA1 + Γ3dA1 ∧ dA2)

=− δ(A − B) =
1

8π
dB

1

|A − B|3
det

⎛

⎝

A − B
dA
dA

⎞

⎠

Lemma 2. For the variation with respect to A, we have

dA

⎛

⎜

⎝
+

⎞

⎟

⎠
= −

⎡

⎢

⎣
+ + +

+ + + +

⎤

⎥

⎦

where A, B, C, and D are distinct indices (or dummy variables) in {0, 1, 2, . . . , n}.

Proof. By definition, the configuration space integrals corresponding to +
are:

∫

AxByCD
(A − x) ∧ (x − B) ∧ (x − y) ∧ (y − C) ∧ (y − D)

+
∫

Dx AyBC
(D − x∧(x − A) ∧ (x − y) ∧ (y − B) ∧ (y − C).
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Taking dA, the exterior derivative of the LHS with respect to A, by our convention, is to take dA

of the associative configuration space integrals omitting the integration over A-chain, thereby
we get a 2-form in dA. To be more explicit,

dA

∫

xByCD
(A − x) ∧ (x − B) ∧ (x − y) ∧ (y − C) ∧ (y − C)

− dA

∫

xDyBC
(A − x) ∧ (x − D) ∧ (x − y) ∧ (y − B) ∧ (y − C)

=(−)
∫

ByCD
(A − B) ∧ (A − y) ∧ (y − C) ∧ (y − D)

+
∫

DyBC
(A − D) ∧ (A − y) ∧ (y − B) ∧ (y − C)

+
∫

xByCD
dx(A − x) ∧ (x − B) ∧ (x − y) ∧ (c − C) ∧ (y − D)

−
∫

xDyBC
dx(A − x) ∧ (x − D) ∧ (x − y) ∧ (y − B) ∧ (y − C)

=−
∫

ByCD
(A − B) ∧ (A − y) ∧ (y − C) ∧ (y − D)

∫

DyBC
(A − D) ∧ (A − y) ∧ (y − B) ∧ (y − C)

−
∫

xByCD
(A − x) ∧ (dx(x − B)) ∧ (x − y) ∧ (y − C) ∧ (y − D)

+
∫

xDyBC
(A − x) ∧ (dx(x − D)) ∧ (x − y) ∧ (y − D) ∧ (y − C)

−
∫

xByCD
(A − x) ∧ (x − B) ∧ (dx(x − y)) ∧ (y − C) ∧ (y − D)

+
∫

xDyBC
(A − x) ∧ (x − D) ∧ (dx(x − y)) ∧ (y − B) ∧ (y − C)

=−
∫

ByCD
(A − B) ∧ (A − y) ∧ (y − C) ∧ (y − D)

+
∫

DyBC
(A − D) ∧ (A − y) ∧ (y − B) ∧ (y − C)

+
∫

ByCD
(A − B) ∧ (B − y) ∧ (y − C) ∧ (y − D)

−
∫

DyBC
(A − D) ∧ (D − y) ∧ (y − B) ∧ (y − C)

+
∫

ByCD
(A − y) ∧ (y − B) ∧ (y − C)∧ (y − D)

−
∫

DyBC
(A − y) ∧ (y − D) ∧ (y − B) ∧ (y − C)

−
∫

xByCD
(A − y) ∧ (y − D) ∧ (y − B) ∧ (y − C)

−
∫

xByCD
(A − x) ∧ (x − B) ∧ (dy(x − y)) ∧ (y − C)∧ (y − D)

+
∫

xDyBC
(A − x) ∧ (x − D) ∧ (Dy(x − y)) ∧ (y − B) ∧ (y − C)
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=−
∫

ByCD
(A − B) ∧ (A − y) ∧ (y − C) ∧ (y − D)

+
∫

DyBC
(A − D) ∧ (A − y) ∧ (y − B) ∧ (y − C)

+
∫

ByCD
(A − B) ∧ (B − y) ∧ (y − C) ∧ (y − D)

−
∫

DyBC
(A − D) ∧ (D − y) ∧ (y − B) ∧ (y − C)

+
∫

xByCD
(A − x) ∧ (x − B) ∧ (x − y) ∧ (Dy(y − C)) ∧ (y − D)

−
∫

xDyBC
(A − x) ∧ (x − D) ∧ (x − y) ∧ (Dy(y − B) ∧ (y − C)

+
∫

xByCD
(A − x) ∧ (x − B) ∧ (x − y) ∧ (y − C) ∧ (Dy(y − D))

−
∫

xDyBC
(A − x) ∧ (x − D) ∧ (x − y) ∧ (y − B) ∧ (Dy(y − D))

=−
∫

ByCD
(A − B) ∧ (A − y) ∧ (y − C) ∧ (y − D)

+
∫

DyBC
(A − D) ∧ (A − y) ∧ (y − B) ∧ (y − C)

+
∫

ByCD
(A − B) ∧ (B − y) ∧ (y − C) ∧ (y − D)

−
∫

yBCD
(A − D) ∧ (D − y) ∧ (y − B) ∧ (y − C)

−
∫

xDBC
(A − x) ∧ (x − B) ∧ (x − C) ∧ (C − D)

+
∫

xDBC
(A − x) ∧ (x − D) ∧ (x − B) ∧ (B − C)

−
∫

xBCD
(A − x) ∧ (x − B) ∧ (x − D) ∧ (D − C)

+
∫

xDBC
(A − x) ∧ (x − D) ∧ (x − C) ∧ (C − B).
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The last eight integrals are difficult to read in general. So for the purpose of book-keeping
we use the graphic representation for them as in the above Lemma 2. Obviously the
correspondence and the association of Chern-Simons-Witten configuration space integrals to
edge-contracted Chern-Simons-Witten graphs, and vice versa are well-defined.

By definition the eight terms after the last equality sign in the above are the right hand side of
Lemma 2.

Lemma 3. d0( + ) = 0, if A 	= B in {0, 1, 2, . . . , n}.

Proof. By the definition of the associated Chern-Simons-Witten configuration space integrals
both sides of the above equality are 2-forms in dL0. That is

LHS =d0

∫

R3

∫

BA
(0 − x) ∧ (x − B) ∧ (x − A) + d0

∫ 0

x0

∫

BA
(x − B) ∧ (0 − A)

=(−)
∫

BA
(0 − B) ∧ (0 − A)−

∫

BA
(0 − A) ∧ (A − B)

−
∫

BA
(0 − B) ∧ (B − A) +

∫

BA
(0 − B) ∧ (0 − A)

=−
∫

BA
(0 − A) ∧ (A − B)−

∫

BA
(0 − B) ∧ (B − A).

Observe that (0 − A) and (0 − B) are both functions in A and B which do not involve any
differential forms in (dA) or (dB) respectively; so to carry out the above two integrations
we may regard (0 − A) and (0 − B) as weight functions by computing first

∫

BA(A − B) and
∫

BA(B− A) to get Gauss signs of crossings of LA ∩ LB when L = {L0, L1, . . . , Ln} is in a generic

position in R
2 with pairwise crossings specified. Also observe that

−
∫

BA
(0 − A)(A − B) = − ∑

LA∩LB

(0 − A)(A, B)

and
∫

BA
(0 − B)(B − A) = + ∑

LA∩LB

(0 − B)(A, B)

where (A, B), for the moment, stands for the Gaussian signs of crossings LA ∩ LB which is a
finite sum supported on LA ∩ LB; and this concludes the proof.

Lemma 4. d0( + ) = 0, if A, B are two sharp brackets.

Proof. The proof is exactly the same as that of Lemma 3. By integration-by-parts and by
Lemma 1, we could regard both A and B as d-closed since both of them are sharp brackets.
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From now on we assume that L = {L0, L1, . . . , Ln} is in a generic position in R
2 with pairwise

crossings specified.

First we introduce some more notations: (2, 1)∗ = 2 ∧ 1, (3, 2, 1)∗ = (3, 2)∗ ∧ 1 + 3 ∧

(2, 1)∗, and in general, (n, n − 1, . . . , 1)∗ = (n, . . . , 2)∗ ∧ 1 + (n, . . . , 3)∗ ∧ (2, 1)∗ + · · · + n ∧

(n − 1, . . . , 1)∗.

Lemma 5. The outer edge contractions of + at Li of the variation cancel

each other, where the graph components containing vertex B connect Li to L0.

Proof. Starting with the exterior differentiation at L0, d0 the integration by parts as in Lemma 2
up to x in the first graph, which is a dummy variable on Li to get the same resulting integrals
for the above graph of two components. Then do the integrations by part again at x and at y,
to get the same outer edge-contraction at Li except for a difference of (−) sign, so these two
outer edge contractions at Li cancel each other. This concludes the poof.

Lemmas 1 to 5 are essentially preparatory computation for the calculus relevant to
Ln,n−1,...,1,0—the Chern-Simons-Witten invariants; next we do some preparatory computation
for L∗

n,n−1,...,1,0—the Massey-Milnor linking theory.

Lemma 6. Denote( , respectively) as (+) ((−), respectively) for crossings of L =

{L0, L1}, then we have
∫

(+)(0 − 1) =
1

2
and

∫

(−)(0 − 1) = −
1

2
where to ease the notation we

keep the convention and notation in (1) of Definition 3.

Proof. Without loss of generality, we need only to prove

1

4π

∫

(+)

⎛

⎝

x − y
dx
dy

⎞

⎠

1

|x − y|3
=

1

2
× lim

ǫ→0
δ→0
δ≪ǫ

ǫ
∫

−ǫ

δdxdy

(x2 + y2 + δ2)
=

1

2

as above the 1 form

i ∧ j(x) =
∫ x

−∞
i(t) ∧ j(t)

Note 2. As our link L = {L0, L1, . . . , Ln} is represented by a link diagram in the plane R
2 with

arbitrarily small “germs” of pairwise crossings specified, it is easy to see that the only contribution of
Gauss linking—which is equal to both L∗

i,j and Li,j—comes from the crossing part of Li and Lj, and is

denoted as (i, j) or (j, i).

Lemma 7. For two knot components Li and Lj in {Li, Lj, Lk} with the associated 1-form i(x), j(x)
as above the 1-form

i j( )
∫ x

i( ) j( )
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x ∈ R
2 is a Dirac-like 1-form supported on the horizontal positive

∂

∂x
-ray through the crossing of Li

and Lj in the link diagram of {Li, Lj, Lk}. Moreover,

∫

Lk

i ∧ j(x)
def
= (i, j)k

=

⎧

⎪

⎨

⎪



1

4
— if , , ,

−
1

4
— if , , ,

Proof. By the very defintion of integration along positive
∂

∂x
-direction in the plane R

2, we

have
∫ x
−∞

i(t)∧ j(t) ≡ (
∫ x
−∞

i(t))∧ j(x)− i(x)∧
∫ x
−∞

j(t)). And also notice that
∫ x
−∞

i(t)∧ j(t)

as a 1-form in x ∈ R
2, is supported on the horizontal

∂

∂x
-ray passing through the crossing of

the link diagram of Li and Lj by a simple localization computation. Another simple localized

estimate shows that
∫

Lk
i ∧ j =

∫

Lk
(
∫ x
−∞

i(t))∧ j(x)−
∫

Lk
i(x)∧ (

∫ x
−∞

j(t)) = (i, j)k as claimed.

6. Main theorem

In this section we will state the main theorem of this paper and some proofs for the case of
low degrees: L1,0 = L∗

1,0, L2,1,0 = L∗
2,1,0 and L3,2,1,0 = L∗

3,2,1,0. We will come back to the proof
of the main theorem in Section 7 in full generality.

Here is the main theorem and as usual we use numerals i, j, k, . . . , etc. for the corresponding
knot components Li, Lj, Lk, . . . , etc. to ease the notation.

Theorem 1. Given a link L = {L0, L1, . . . , Ln} of (n + 1) components arranged diagrammatically
as in the setup for which all Chern-Simons-Witten graphs Lm,m−1,...,1,0 = 0, and all Massey-Milnor
linkings L∗

m,m−1,...,1,0 = 0, where the sublink {L∗
0 , L∗

1 , . . . , L∗
m} ⊆ {L0, L1, . . . , Ln} is any ordered

subset of (m+ 1) components, m ≤ n − 1, then for the first non-vanishing invariants Ln,n−1,...,1,0 and
∗
n,n−1,...,1,0 we have

(1) Ln,n−1,...,1,0 = L∗
n,n−1,...,1,0, and

(2) Both Ln,n−1,...,1,0 and L∗
n,n−1,...,1,0 are independent of the base point xj ∈ Lj, for j = 0, 1, 2, . . . , n.

We will prove this theorem in full generality in Section 7. Here to make the presentation
smoother and to show the idea, we do the “detailed” proof of: L1,0 = L∗

1,0, L2,1,0 = L∗
2,1,0 and

L3,2,1,0 = L∗
3,2,1,0 as follows.

Example 6. For n = 1 and L = {L0, L1}, by the very definition of L1,0 and L∗
1,0 it is obvious

that both L1,0 and L∗
1,0 are exactly the Gauss linking and are formulated combinatorically as L1,0 =

L∗
1,0 = ∑L1∩L0

(1, 0). Here we follow the convention and notation of the Note 2 after Lemma 6:

(1, 0) = (± 1
2 ) according to the arrangement of L1 and L0 around the crossing “L1 ∩ L0” in the link

diagram of {L0, L1}.
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Example 7. For n = 2 and L = {L0, L1, L2}, we assume that all pairwise invariants Li,j = 0 = L∗
i,j

then for the first non-vanishing invariants: L2,1,0 = L∗
2,1,0 and they can be computed combinatorically

as follows. First recall that invariants L2,1,0—the Chern-Simons-Witten graph defined in Section 4—is
the sum of 4 configuration space integrals defined in Example 1; and L∗

2,1,0—the Massey-Milnor linking
defined in Definition 4—is

Example 8. For n = 3, L = {L0, L1, L2, L3}, for which all pairwise Li,j = L∗
i,j = 0 and all triple-wise

Li,j,k = L∗
i,j,k = 0, then for the first non-vanishing invariants: we have L3,2,1,0 = L∗

3,2,1,0 and also they

can be computed as listed below correspondingly, both graphically and combinatorically as follows:

L2,1,0 = (2, 1)0 + ∑
1<

0
2
(1, 0)(2, 0) + ∑

2<
1

0
(2, 1)(0, 1)

+ ∑
0<

2
1
(0, 2)(1, 2)

And this concludes the proof that L2,1,0 = L∗
2,1,0. And by using the combinatoric formulae of

L∗
2,1,0—that in Lemma 6 and Lemma 7—we derive the explicit formulae of L2,1,0 = L∗

2,1,0

∫

0
2 ∧ 1 =

∫

0
dφ =

∫

0
dφ +

∫

0
dφ =

∫

0
φ = the configuration space integral of “Y′′.

Proof. With the link L = {L0, L1, L2} represented by a link diagram in the plane R
2 and in the

spirit of localization computation of Lemma 6 and Lemma 7, a direct computation concludes
the proof by using the integration by part in Lemma 1.

And so,

φ(0)
def
=

∫

R3

∫

L1

∫

L2

(0 − x) ∧ (x − 1) ∧ (x − 2)

which is a part of the configuration space integrals of the Chern-Simons-Witten graph “Y”, then
dφ(0) = (2 ∧ 1)(0).

So to prove L2,1,0 = L∗
2,1,0, we need only to prove that the configuration space integral of

“Y-graph”—which is nothing but the first integral in Example 4—in Example 1 is
∫

0 2 ∧ 1 in
L∗

2,1,0.

Claim 1. If we set the 1-form

L∗
2,1,0 =

∫

0
2 ∧ 1 +

∫

0
2 ∧ d1 −

∫

0
1d2 +

∫

0
21
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+ + +

+ + + +

+ + + +

+ + + +

+ + + +

+ +
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and

∑
(2,1)<

0
3

(2, 1)0(3, 0) + ∑
1<

0
(3,2)

(3, 2)0(1, 0) + ∑
(3,2)<

1
0

(3, 2)1(0, 1)

+ ∑
2<

1
(0,3)

(0, 3)1(2, 1) + ∑
(0,3)<

2
1

(0, 3)2(1, 2) + ∑
3<

2
(1,0)

(1, 0)2(3, 2)

+ ∑
(1,0)<

3
2

(1, 0)3(2, 3) + ∑
0<

3
(2,1)

(2, 1)3(0, 3) + ∑
1<

0
2<

0
3

(0, 1)(0, 2)(0, 3)

+ ∑
2<

1
3<

1
0

(1, 2)(1, 3)(1, 0) + ∑
3<

2
0<

2
1

(2, 3)(2, 0)(2, 1) + ∑
0<

3
1<

3
2

(3, 0)(3, 1)(3, 2)

+ ∑
1<

0
3

2<
1

0

(1, 0)(3, 0)(2, 1) + ∑
2<

1
0

3<
2

1

(2, 1)(0, 1)(3, 2) + ∑
3<

2
1

0<
3

2

(3, 2)(1, 2)(0, 3)

+ ∑
0<

3
2

1<
0

3

(0, 3)(2, 3)(1, 0) + ∑
2<

0
3

0<
2

1

(2, 0)(3, 0)(1, 2) + ∑
2<

1
3

0<
3

1

(2, 1)(3, 1)(0, 3)

+ ∑
3<

1
0

1<
3

2

(3, 1)(0, 1)(2, 3) + ∑
1<

0
2

3<
2

0

(1, 0)(2, 0)(3, 2) .

For this example we try to be as explicit as possible to show the general scheme of the proof
of the main theorem.

First we derive the related combinatorical formulae of the Massey-Milnor linkings L∗
n,n−1,...,1,0

as defined in Section 4 from which we do use the vanishing of Massey-Milnor linkings of
strictly lower degrees. Also to ease the notation we use: j(x) =

∫ x
xi

j(t), where xi, x ∈ Li and xi

is the base point of Li, whenever Li,j = 0. And < j, k >(x) =
∫ x

xi
< j, k > (t) where xi , x ∈ Li

and xi is the base point of Li, whenever Lj,k,i = 0. And obviously by induction they could be
represented graphically as follows:

j(x) =

and

< j, k >(x) = + + +
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Recalling that:

L∗
3,2,1,0 =

∫

0
< 3, 2, 1 >=

∫

0
(3, 2, 1) +

∫

0
(3, 2)1 +

∫

0
3< 2, 1 >

=
∫

0
(3, 2) ∧ 1 +

∫

0
3 ∧ (2, 1) +

∫

0
< 3, 2 >d1

−
∫

0
31d2 +

∫

0
< 1, 2 >d3 +

∫

0
(3 ∧ 2)1

+
∫

0
3d21 −

∫

0
2d31 +

∫

0
3< 2, 1 >

=
∫

0
(3 ∧ 2) ∧ 1 +

∫

0
(3d2) ∧ 1 −

∫

0
(3d2) ∧ 1

+
∫

0
3 ∧ (2 ∧ 1) +

∫

0
3 ∧ (2d1)−

∫

0
3 ∧ (1d2)

+
∫

0
< 3, 2 >d1 −

∫

0
31d2 +

∫

0
< 1, 2 >d3 +

∫

0
(3 ∧ 2)1

+
∫

0
3d21 −

∫

0
2d31 +

∫

0
3< 2, 1 >;

and using the above inductive scheme and by induction we have combinatorically,

L∗
3,2,1,0

=
∫

0
(3 ∧ 2 ∧ 1 +

∫

0
3 ∧ (2 ∧ 1) + ∑

3<
2
(1,0)

(1, 0)2(3, 2)

+ ∑
(1,0)<

3
2

(1, 0)3(2, 3) + ∑
2<

1
(0,3)

(0, 3)1(2, 1) + ∑
(0,3)<

2
1

(0, 3)2(1, 2)

+ ∑
(3,2)<

1
0

(3, 2)1(0, 1) + ∑
2<

1
3<

1
0

(2, 1)(3, 1)(0, 1) + ∑
2<

1
0

3<
2

1

(2, 1)(0, 1)(3, 2)

+ ∑
3<

1
0

1<
3

2

(3, 1)(0, 1)(2, 3) + ∑
3<

2
0<

2
1

(3, 2)(0, 2)(1, 2) + ∑
1<

3
(2,1)

(2, 1)3(0, 3)

+ ∑
0<

3
1<

3
2

(0, 3)(1, 3)(2, 3) + ∑
3<

2
1

0<
3

2

(3, 2)(1, 2)(0, 3) + ∑
2<

1
3

0<
3

1

(2, 1)(3, 1)(0, 3)

+ ∑
1<

0
(3,2)

(3, 2)0(1, 0) + ∑
1<

0
2

3<
2

0

(1, 0)(2, 0)(3, 2) + ∑
1<

0
3

0<
3

2

(1, 0)(3, 0)(2, 3)

+ ∑
(2,1)<

0
3

(2, 1)0(3, 0) + ∑
1<

0
2<

0
3

(1, 0)(2, 0)(3, 0) + ∑
2<

1
0

1<
0

3

(2, 1)(0, 1)(3, 0)

+ ∑
2<

0
3

0<
2

1

(2, 0)(3, 0)(1, 2)
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For the reamining two integrals above we have

Claim 2.

∫

0
(3 ∧ 2) ∧ 1 = 0 and

∫

0
3 ∧ (2 ∧ 1) = 0.

Proof. Firstly we do the Massey-Milnor linking: L∗
3,2,1,0. By notation for a given over-barred

2-form φ which is 1-form after doing the horizontal
∂

∂x
-integration which is the inverse of

exterior differentiation, (after gauge-fixing) evaluated on the plane R
2—as all integrations

defined in the Massey-Milnor linkings L∗
n,n−1,...,1,0 are carried out in the plane R

2. We need to

define the suitable d−1 as the average of horizontal
∂

∂x
-integrations, both infinitesimally above

R
2 and infinitesimally below R

2. And so for each wedge product 2-form like (3 ∧ 2) ∧ 1, once

we do the horizontal
∂

∂x
-integration again (the average of two, one above R

2 infinitesimally

and one below R
2 infinitesimally) we always get zero by simply observing that (3 ∧ 2) ∧ 1 =

(−)(3 ∧ 2)1 = 0

Next we do the Chern-Simons-Witten graph: L3,2,1,0. By induction the new and nontrivial

graphs appearing in the Chern-Simons-Witten graphs L3,2,1,0 are: and of which

the Chern-Simons-Witten configuration space integrals are defined in Example 5. Now by
shifting gear we regard these two configuration space integrals as two suitable 1-forms in d0
before carrying out the “final” integration over L0; namely the two relevant 1-forms in d0 are:

φ(0) =
∫

R3

∫

1

∫

R3

∫

2

∫

3
(0 − x) ∧ (x − 1) ∧ (x − y) ∧ (y − 2) ∧ (y − 3),

and

ψ(0) =
∫

R3

∫

R3

∫

1

∫

2

∫

3
(0 − x) ∧ (x − y) ∧ (y − 1) ∧ (y − 2) ∧ (y − 3).

By stoke’s theorem:
∫

0
φ(0) + ψ(0) =

∫

0
dφ(0) + dψ(0) = sum of following eight integrals

(which will be made explicit in lemma 10 in Section 7):

+ + + + + + +

In L3,2,1,0, corresponding to the above eight contracted graphs we have eight lower
Chern-Simons-Witten linking together with an extra 1-chord:
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But to compute the latter 8 Chern-Simons-Witten configuration space integrals aiming at the
combinatorial formulae we need to take into account the boundary terms for each related
Chern-Simons-Witten graphs of degree 2—say the first graph along L0. For example by
induction L2,1,0 = L∗

2,1,0, but not now; as we don’t have full cycles as before (as L0 is cut
into finitely many pieces of arcs by L3). And the beauty of computing the extra correction due
to the end points of the set of arcs along L0 is that: the correction is compensated by those 8
integrals in

∫

0 φ(0) + ψ(0) which is just a discrete sum on the corresponding end points of the
pieces of arcs—cut by the attached chord in the contracted Chern-Simons-Witten graphs—of
the configuration space integrals of Y-graphs thereof.

In greater details: take and as an example to show the details proper. For

simplicity we assume that a piece of arc lying on L0 is cut out by L1 as shown.

By induction: applying linking of degree 2 to this piece of arc as shown we need to artificially
attach two horizontal rays to both A and B to make it a cycle as shown above. Then on

this full cycle, we could compute both integrals of and , by replacing the

original sub-arc AB with the full “cycle” made up of two horizontal rays and AB to get two
extra corrections of opposite signs along the two added horizontal rays at A and B in the
above two integrals. More precisely these two corrections—up to signs—are nothing but the
configuration space integrals of Y-graph: , where ray at the root denotes the added ray
and numeral 2 (respectively numeral 3) stands for L2 (respectively L3).

With the same computation for the other 7 pairs of Chern-Simons-Witten graphs listed above,
we are done with the proof of L∗

3,2,1,0 = L3,2,1,0 if we have proved the following.

Claim 3. Consider as either a 2-form in d0: η(0) =
∫

(0 − 1)(1 − x)(x − 2)(x − 3) or a

2-form in d1: η(1) =
∫

(0 − 1)(1 − x)(x − 2)(x − 3) where we carry out all related integrations

except that over L0 in η(0) and except that over L1 in η(1), then we have
∫

L0
η(0) =

∫

L1
η(1).
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Note 3. Before giving the proof we notice that this scheme of proof works fine for the other contracted
Chern-Simons-Witten graphs in L3,2,1,0. And this proves that L3,2,1,0 = L∗

3,2,1,0, and also derives the
combinatorial formulae of L∗

3,2,1,0.

Note 4. We will repeat the same trick for connected Chern-Simons-Witten graphs in Ln,n−1,...,1,0 in
Lemma 10, and will be more explicit in detail in this aspect. More precisely there are three aspects in
this trick: firstly, we do contraction on the set of connected Chern-Simons-Witten graphs to get a bunch
of 2-forms in d0 (namely those ones corresponding to the connected Chern-Simons-Witten graphs
contracted at uni-valent vertices); secondly, for a connected Chern-Simons-Witten graph contracted at

a vertex Lj with j 	= 0, we repeat the proof of the above claim to show:
∫

L0
η(0) =

∫

Lj
η(j); thirdly, we

compute explicitly
∫

Lj
η(j) and prove that it compensates the corresponding correction coming from the

disconnected Chern-Simons-Witten graph which has the same contracted graph after being contracted
at vertex Lj.

Now we come to the proof of the claim.

Proof. Recall that the over-bars on 2-forms, by definition, are horizontal
∂

∂x
-integrations from

x = −∞ up to points of interests; and that if the point of interests is a planar point, the

horizontal
∂

∂x
-integration should be defined as the average of the one infinitesimally above

R
2 and the one infinitesimally below R

2.

(A) First we define and state contracted Chern-Simons-Witten graphs and the corresponding
2-forms—either in d0 or d1 explicitly. But this is nothing but the content of Lemma 1 and
Lemma 2 in Section 5.

(B) Next we compute:
∫

L1
η(1) = ∑L0∩L1

(0, 1)
∫

hori

∫

2

∫

3

∫

R3 (h − x)(x − 2)(x − 3), where hori

stands for horizontal
∂

∂x
-ray starting/ending at the crossings of L1 and L0, (0, 1) is the Gauss

linking of L1 and L0, and h denotes the dummy variable on the horizontal
∂

∂x
-rays stated

above.

(C) Next we compute
∫

L0
η(0). To apply the calculus Lemma 1 and Lemma 2 to an sub-arc on

L1 cut-off by crossing with L0, we need to artificially add two horizontal
∂

∂x
-rays at the ends

of this arc to make it a full cycle. Now carry out the fundamental theorem of calculus as stated
in Lemma 1 and Lemma 2 for this sub-arc of L1 to get exactly the extra boundary evaluation
at the ends of the configuration space integrals of Y-graph , and then identify Y-graph
with symbols (3, 2)1 = (2, 1)3 = (1, 3)2 for L2, L3 and the artificial cycle L1 (which is the union

of the above sub-arc and two horizontal
∂

∂x
-rays) to conclude the proof of the claim.

Note 5. The proof of the claim applies also to any double round brackets in Definition 2, the
so-called connected Chern-Simons-Witten graphs. In short in the Massey-Milnor linkings L∗

n,n−1,...,1,0,
connected Chern-Simons-Witten graphs always contribute nothing except those connected Y-graphs of
degree 2.

Note 6. We notice that we could only do the trick of contraction for connected graphs as above, but not
for non-connected ones.
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Note 7. In next section we will repeat the same trick of contracting connected Chern-Simons-Witten
graphs to compensate the corrections on the “cut-points”—due to lower linking functions (by
induction, a discrete sum) along a specific knot component of interests—of suitable configuration
space integrals involving artificial horizontal rays starting/ending at the cut-points, and other knot
components proper.

Note 8. In essence the proof and the computation for L∗
3,2,1,0 = L3,2,1,0 and the combinatorial formulae

thereof prevail in general case, because we assume the vanishing of linkings; and so we could compute
the related lower linking functions along some specific knot component—which by induction are just
some discrete sums along that knot component.

7. Proof of the main theorem—general case

In this section we prove the main theorem of this paper. Here are some preparatory lemmas.

Lemma 8. In the Massey-Milnor linking L∗
n,n−1,...,1,0 or the associated 1-form < n, n − 1, . . . , 2, 1 >

on L0, the Dirac-like singular one-form when evaluated at x ∈ R
2, dj(x) is nothing but the one-form

j(x) =
∫

Lj
(x − t) where (x − t) =

1

4π

1

|x − t|3
det

⎛

⎝

x − t
dt
dx

⎞

⎠, and the over-bar denotes the horizontal

∂

∂x
-integration as defined in Definition 3.

Proof. By de Rham theory for any 1-form j(x) in R
3 we have j(x) = dj + dj, where as usual

the over-bar stands for the inverse of exterior differentiation—after gauge-fixing, which is the

horizontal
∂

∂x
-integration from x = −∞ up to the point of interests. But in Massey-Milnor

linking the integrations of either j(x) or dj(x) are carried out in R
2, so the suitable horizontal

∂

∂x
-integration (namely the over-bar) in dj should be defined as the average of the two natural

ones—either infinitesimally above R
2 or infinitesimally below R

2. Hence j(x) = 0 when
restricted to the plane R

2, and this concludes the proof.

Note 9. From Lemma 8 when restricted to the plane R
2 dj ∧ i is nothing but j(x) ∧ i(x), so in

particular
∫

0 dj ∧ j =
∫

0 j ∧ i = (j, i)0, in the notation of Lemma 7.

Lemma 9. In Massey-Milnor linking L∗
n,n−1,...,1,0, all connected Chern-Simons-Witten graphs of

degree larger than 2 contribute nothing.

Proof. For connected Chern-Simons-Witten graphs of degree larger than 2 we have double
round brackets of length larger than 2. Take a double round bracket of length 3 such as
∫

0 (3 ∧ 2 ∧ 1 = +
∫

0 (3 ∧ 2) ∧ 1 −
∫

0 (3 ∧ 2) ∧ 1 = 0, we get nothing simply because the term

(3 ∧ 2) has repeated
∂

∂x
-integrations and 1(x) vanishes by the proof of Lemma 8. So any

double round bracket of length larger than 2 also contributes nothing as it contains double
round brackets of length 3.

For the Chern-Simons-Witten perspective Ln,n−1,...,1,0, we have the following.
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Lemma 10. (A) Regard the set of connected Chern-Simons-Witten graphs in Ln,n−1,...,1,0—namely
those corresponding to double round brackets in Definition 2—as 1-forms in d0 after doing all related
integrations except the one over the component L0. And if we take the exterior differentiation once with
respect to d0 of the sum of these 1-forms, then we are left with only those Chern-Simons-Witten graphs
contracted at the uni-vertices.

(B) For any contracted Chern-Simons-Witten graph in (A), if the contracted vertex—only one such
for each contracted Chern-Simons-Witten graph—is Lj, j 	= 0, then it is the same as the contracted
Chern-Simons-Witten graph when considered as taking the exterior differential with respect to the
coordinate j(the dummy variable for Lj). More precisely, for example if the contracted connected
Chern-Simon-Witten graph Γ looks like

Then
∫∫

D0
Γ =

∫∫

Dj
Γ, where the Γ inside the integral sign on the left hand side is considered as a

2-form in d0, say η(0)—as we take an exterior differentiation with respect to d0 once; and where the Γ

in the integral sign on the right hand side is considered as a 2-form in dj, say η(j)—as, this time we

take an exterior differentiation with respect to djonce. In short,
∫∫

D0
η(0) =

∫

L0
η(0) =

∫∫

Dj
η(j) =

intLj
η(j).

Proof. (A) The content (A) is nothing but a corollary of Lemma 1 and Lemma 2 in Section 5.

(B) We repeat the trick and the proof of the claims in Example 8. That is to each connected
Chern-Simons-Witten graph contracted at a vertex Lj, with j 	= 0, we associated two 2-forms

(one in d0 ∧ d0, and one in dj ∧ dj), η(0) and η(j). We will proceed by induction:
∫

L0
η(0) =

∫

Lj
η(j), where the over-bars are the average of horizontal

∂

∂x
-integration: one infinitesimally

above R
2 and one infinitesimally below R

2 from x = −∞ up to the points of interests in R
2.

(B-1) We treat
∫

Lj
η(j) first. The connected Chern-Simons-Witten graph contracted at the vertex

Lj is considered now in another perspective, as the contraction of two distinct connected
graphs of strictly lower degree at the vertex Lj. By induction a connected component of the
above two distinct graphs could be regarded as a part of linking function of lower degree
at Lj, and hence would cut off Lj into finitely many sub-arcs. Repeat the trick of the claims
in Example 8 for the set of knot components attached to the other graph compoment and a

specific subarc of Lj to get the horizontal
∂

∂x
-rays start/end at the ends of the sub-arc of Lj

cut-off by the combinatorial formulae (a part of the lower linking function associated to that
graph component).

Repeat the same computaton with the roles of these two graph components switched. That

is obvious as η(j) = α(j) ∧ β(j) = α(j)β(j)− α(j)β(j) which is a nontrivial and key formulae
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in our discrete computation of horizontal
∂

∂x
-integration, but it is easy to see in the following

set-up: cut the knot component Lj by the discrete contributions due to these two connected
Chern-Simons-Witten graphs (which give rise to two 1-forms α(j) and β(j) above); and as

above we add artificially horizontal
∂

∂x
-rays strating/ending at these cut-point so that we

could apply induction scheme for these two subgraphs of lower degree to suitable knot
components attached thereon and the artificial cycles, each of which consists of a subarc of

Lj and the two horizontal
∂

∂x
-rays added onto the boundary points of the subarc. Finally do

the obvious discrete sum along Lj to get the net contribution as claimed.

(B-2) Next we treat
∫

L0
η(0).

As the graph component containing L0 is of strictly lower degree than n, by induction
and after carrying out all the integrations of the configuration space integral of that graph
component we are left with an honest function (not a differential form) on Lj. This also can
be regarded as the boundary evaluation of the associated configuration space integral when

adding the artificial horizontal
∂

∂x
-ray to the sub-arc of Lj to make a full cycle so that we

could apply Lemma 1 and Lemma 2. And this boundary evaluation is exactly the horizontal
∂

∂x
-integration of the configuration space integral by the trick of Example 8.

Similarly switch the roles of these two graph components to get the other horizontal
∂

∂x
-integration of the configuration space integral of one graph component; while the other

graph component plays the role of lower linking function and so is just a discrete evaluation
there; and hence cuts off Lj into sub-arcs whose boundary points support the artificially

horizontal
∂

∂x
-rays as above. In short the boundary evaluation at the ends of a specific

subarc of Lj of the configuration space integral of the subgraph containing L0, by Lemma 1

and Lemma 2 is exactly the horizontal
∂

∂x
-integration of the artificial rays as above simply

by computing the Chern-Simons-Witten configuration space integrals in two ways—one, we
integrate over just that specific sub-arc to get the extra boundary evaluation; and the other,
we integrate over the full cycle consisting of the above sub-arc and two added horizontal
∂

∂x
-rays.

With all the preparatory lemmas we come to the proof of Theorem 1 in Section 6.

Step 1. Massey-Milnor linking L∗
n,n−1,...,1,0.

By assumption all Massey-Milnor linkings of lower degree vanish and by Lemma 9 all
connected Chern-Simons-Witten graphs of degree larger than 2 contribute nothing to
L∗

n,n−1,...,1,0. The combinatorial formulae of L∗
n,n−1,...,1,0 could be read out directly from the

expansion of the sharp bracket < n, n − 1, . . . , 2, 1 >. More precisely, regard lower linkings
as linking functions supported on some knot component Lj which corresponds to some dj
in < n, n − 1, . . . , 1 >. By induction only those Chern-Simons-Witten connected graphs
of degree one and two contribute to the combinatorial formulae of L∗

n,n−1,...,1,0. Also for a
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connected Chern-Simons-Witten graph of degree 2 which is not symmetric with respect
to its vertices {i, j, k}, the symbol (k, j)i is naturally and canonically assigned to this Y-graph
without ambiguity simply by inspecting the related linking function therewith.

Step 2. Chern-Simons-Witten graph Ln, n − 1, . . . , 1, 0.

(A) Consider the set of connected Chern-Simons-Witten graphs first. Mimicking the trick
of contraction of connected Chern-Simons-Witten graphs in L3,2,1,0 in Section 6, we regard
this set of contracted connected Chern-Simons-Witten graphs a sum of 2-forms with only one

contracted vertex for each, along which we will construct artificially horizontal
∂

∂x
-rays as

before. And as in the Section 6 this kind of Chern-Simons-Witten configuration space integrals
that involves the artificial horizontal rays will compensate those boundary evaluation of the
associated lower linking functions at the contracted vertex (equivalently the knot component
corresponding to the vertex numeral). In short even in Chern-Simons-Witten graphs, the
connected graphs of degree larger than two do not contribute anything to the combinatorial
formulae thereof. This is obvious by the above argument and by induction.

(B) For Chern-Simons-Witten graphs of degree 3 L3,2,1,0, we have explicit combinatorial
formulae as given in Example 8. And so by induction only connected Chern-Simons-Witten
graphs of degree one and two contribute to the combinatorial formulae of Ln,n−1,...,1,0. And
for Y-graph , joining 3 knot components {Li, Lj, Lk} we need to apply the identification
of Massey-Milnor linkings and Chern-Simons-Witten graphs of strictly lower degrees to
determine the suitable symble (k, j)i for this Y-graph.

Step 3. Massey-Milnor linkings = Chern-Simons-Witten graphs; that is L∗
n,n−1,...,1,0 = Ln,n−1,...,1,0.

(A) We have done this for n = 1, 2 in Section 6.

(B) By induction.

Assume that we are done for all such of degrees less than n, that is we have identified all
those non-connected Chern-Simons-Witten graphs once they are grouped together in the
manner of lower linking function which correspond to those over-barred sharp brackets
with some dj attached besides, in L∗

n,n−1,...,1,0. And obviously, we are left with only
those connected Chern-Simons-Witten graphs of degree n in both Massey-Milnor linking
and Chern-Simons-Witten graph set-ups. In the former, connected Chern-Simons-Witten
graphs correspond to double round brackets, and so contribute nothing by Lemma 10 to
L∗

n,n−1,...,1,0; in the latter, the connected Chern-Simons-Witten graphs will compensate the

artificial horizontal
∂

∂x
-rays derived from the lower linkings functions and the suitable

sub-graphs contracted there on.

Step 4. Both Ln,n−1,...,1,0 and L∗
n,n−1,...,1,0 are independent of the base points xj ∈ Lj, j =

0, 1, 2, . . . , n.

Due to cyclic symmetry of L∗
n,n−1,...,1,0—as is obvious from the Chern-Simons-Witten

perspective—we need only to prove that L∗
n,n−1,...,1,0 is independent of the choice of x0 ∈ L0.

And we denote the change or the variation due to the change of base point x0 ∈ L0 by the
notation δ. For example, δ may stand for changing the old base point x0 ∈ L0 to the new base
point x∗0 ∈ L0; and within [x0, x∗0 ] ⊆ L0, we may have
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or .

By definition, L∗
n,n−1,...,1,0 =

∫

0 (n, n − 1, . . . , 1 +
∫

0 (n, . . . , 2)1 +
∫

0 (n, . . . , 3) · < 2, 1 > +

· · · +
∫

0 n< n − 1, . . . , 1 >, and if for some k such that δ< k, k − 1, . . . , 1 > = c 	= 0 and

δ< k − 1, . . . , 1 > = 0 = δ< k − 2, . . . , 1 > = · · · = δ< 3, 2, 1 > = δ< 2, 1 > = δ1 = 0,
then we have

Claim 4.
δ< k + 1, k, . . . , 1 > = C(k + 1),

δ < k + 2, k + 1, . . . , 1 >= C< k + 2, k + 1 >,

δ < k + 3, k + 2, . . . , 1 >= C< k + 3, k + 2, k + 1 >,

. . . . . . . . .

δ< n − 1, n − 2, . . . , 1 > = C< n − 1, n − 2, . . . , k + 1 >.

Proof. By the very definition of < k + 1, . . . , 1 >, < k + 2, . . . , 1 >, · · · , < n − 1, n − 2, . . . , 1 >,
for x ∈ L0 we have (being the dumming variable of L0), δ< k + 1, . . . , 1 >(x) =

δ
x
∫

x0

(k + 1, . . . , 1) + δ
x
∫

x0

(k + 1, . . . , 2)1 + δ
x
∫

x0

(k + 1, . . . , 3)< 21 > + · · · + δ
x
∫

x0

(k +

1)< k, . . . , 1 > = C
x
∫

x0

(k + 1) = C(k + 1)(x), where as usual, for j ∈ {1, 2, . . . , n}, j(x)

is regarded as 1-form.

Similarly, δ< k + 2, k + 1, . . . , 1 > = δ
x
∫

x0

(k + 2, . . . , 1) + δ
x
∫

x0

(k + 2, . . . , 2)1 + · · · + δ
x
∫

x0

(k +

2)< k + 1, . . . , 1 > = C
x
∫

x0

(k + 2, k + 1) + C
x
∫

x0

(k + 2)< k + 1 > = C< k + 2, k + 1 >(x).

In general, δ < l, l − 1, . . . , 1 >= δ
x
∫

x0

(l, l − 1, . . . , 1) + δ
x
∫

x0

(l, l − 1, . . . , 2)1 + · · · +

δ
x
∫

x0

l< l − 1, l − 2, . . . , 1 > = C
x
∫

x0

(l, l − 1, . . . , k + 1) + C
x
∫

x0

(l, l − 1, . . . , k + 2)(k + 1) + · · · +

C
x
∫

x0

l< l − 1, . . . , k + 1 > = C< l, l − 1, . . . , k + 1 >(x). And this concludes the proof of the

claim.

Now, we come back to the proof of independence of the choice of base point x0 ∈ L0.
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By the very definition of L∗
n,n−1,...,1,0, we have

δL∗
n,n−1,...,1,0

=δ
∫

0
(n, n − 1, . . . , 1) + δ

∫

0
(n, n − 1, . . . , 2)1

+ δ
∫

0
(n, n − 1, . . . , 3)< 2, 1 >+ · · ·

+ δ
∫

0
n< n − 1, n − 2, . . . , 1 >

=C
∫

0
(n, n − 1, . . . , k + 1)

+ C
∫

0
(n, n − 1, . . . , k + 2)< k + 1 >+ · · ·

+ C
∫

0
(n, n − 1)< n − 2, . . . , k + 1 >

+ C
∫

0
n< n − 1, n − 2, . . . , k + 1 >

=L∗
n,n−1,...,k+2,k+1,0

=0,

by the assumption that all Massey-Milnor linkings of lower degrees vanish.

And this concludes the proof of Theorem 1.
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