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1. Introduction

The usual ideology when dealing with many-body systems using second quantization is
to treat elementary excitations, say electrons, as the main entities determining the physical
properties of the system: the states are enumerated by population numbers, the response is
described using Green’s functions defined in terms of the elementary excitation, and so on.
The situation changes drastically when interaction allows for the formation of bound states.
The whole view of the system has to be revisited. Perhaps the most famous example is given
by superconductors. In the normal state the material fits the canonical universal description
when, roughly speaking, most of the properties are explained (at least qualitatively) by
the position of the Fermi level. In the superconducting state, however, one has complete
reconstruction of the ground state. Now properties of the material are defined by Cooper pairs
with behavior qualitatively different from that of individual electrons. For one the exclusion
principle has significantly diminished effect, so that pairs can even condense. Such change
in the character of elementary excitations leads to significant consequences: resistivity drops
practically to zero.

In the present chapter we review the basic approaches to treating such new states in
semiconductors, where elementary excitations, electrons and holes, have opposite charge
and the Coulomb attraction leads to formation of excitons, bound states of electron-hole
pairs. Excitons are the major factor determining the semiconductor optical response below
the fundamental absorption edge: they are responsible for resonant absorption at these
frequencies, where in the absence of excitons the material would be transparent. Therefore the
problem of main interest addressed in the present chapter is the interaction with an external
electromagnetic field tuned in resonance with interband transitions.

In Section 2 we present the general description of semiconductor optical response based
on the perturbative treatment of light-matter interaction. We develop a diagrammatical
representation of the perturbation series which we use to discuss the optical response
of initially unperturbed semiconductor and semiconductor where dark excitons form
Bose-Einstein condensate. The essential component of such a description is the solid
knowledge of the dynamics of semiconductor many-body excitations. In Section 3 the
application of time-dependent density functional theory (TDDFT) to the problem of exciton
dynamics is reviewed. TDDFT is a rapidly growing area of research, which shows a great
potential to be used in studies of the dynamics of real systems, including ultrafast processes.
We review our recent results on studies of the bound states, excitons and biexcitons, using this
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2 Will-be-set-by-IN-TECH

approach. Also, we discuss some nonlinear effects in the excitonic systems obtained by means
of the TDDFT approach.

2. Semiconductor optical response

2.1 Dynamics of semiconductor excitations

In the most general setup the problem of combined time evolution of semiconductor
excitations and electromagnetic field requires considering very complex Hamiltonians of
electrons in a periodic lattice and coupled to quantized field, whose dynamics, in turn,
may be affected by the spatial variation of the dielectric function. However, the physics of
phenomena of our main interest, as will be seen, is quite rich on its own. Therefore, in order
to demonstrate the major effects we consider the simplest case of a semiconductor with well
separated spherical bands excited by a classical electromagnetic field. An example of such a
material is GaAs, where the approximation of spherical bands proved to be good. Keeping in
mind the applications of techniques discussed below for GaAs we consider the case when
the states in the valence band are characterized by the projections σ = ±3/2 of angular
momentum (heavy holes).

We will be interested in interband optical transitions, when the external electromagnetic
field has its frequency tuned close to the value of the gap separating the conduction and
valence bands. Due to the high main frequency the vector potential can be presented in a
form convenient for adopting the rotating wave approximation A(x, t) = AΩ(x, t)e−iΩt +
A∗

Ω(x, t)eiΩt with relatively slowly changing amplitude AΩ(x, t).

The dynamics of excitations is described by the semiconductor-light Hamiltonian H = HSC +
HF +Hexc, which is composed of the Hamiltonians of the nonperturbed semiconductor HSC,
the free electromagnetic field HE and the light-matter interaction Hexc. We will concentrate on
interband optical transitions so that the frequency of the relevant photon modes is close to the
value of the gap (throughout the chapter we use units with h̄ = 1). If the external field is not
too strong such an interaction is well described by the rotating wave approximation that takes
into account only resonant transitions. Adopting this approximation and using the coordinate
representation we have in the rotating frame

HSC =
∫

dx

[

∑
s

c†
s (x)

(
ǫc −

∇2

2me
− 1

2
Ω

)
cs(x)− ∑

σ
v†

σ(x)

(
ǫv +

∇2

2mh
− 1

2
Ω

)
vσ(x)

]

+
1

2

∫
dx1dx2 ∑

s1,s2

c†
s1
(x1)c

†
s2
(x2)V(x1 − x2)cs2(x2)cs1(x1)

+
1

2

∫
dx1dx2 ∑

σ1,σ2

v†
σ1
(x1)v

†
σ2
(x2)V(x1 − x2)vσ2(x2)vσ1 (x1)

−
∫

dx1dx2 ∑
s,σ

c†
s (x1)v

†
σ(x2)V(x1 − x2)vσ(x2)cs(x1).

(1)

Here we have introduced c†
s (x) and vσ(x), operators creating electron with spin s and hole in

spin state σ, respectively, at point x. These are fermion operators satisfying the canonical
anticommutation relations {cs1(x1), cs2(x2)} = {c†

s1
(x1), c†

s2
(x2)} = {vσ1(x1), vσ2(x2)} =
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Quantum Field Theory of Exciton Correlations and Entanglement in Semiconductor Structures 3

{v†
σ1
(x1), v†

σ2
(x2)} = 0 and

{
cs1(x1), c†

s2
(x2)

}
= δs1,s2δ(x1 − x2),

{
vσ1(x1), v†

σ2
(x2)

}
= δσ1,σ2 δ(x1 − x2). (2)

The first line in Eq. (1) represents the Hamiltonian of non-interacting electrons and holes with
me,h being the respective masses and ǫc and ǫv denoting the positions of the bottom of the
conduction band and of the top of the valence band, respectively, so that ǫc − ǫv is the gap.
The last three lines describe the electrostatic interaction with the Coulomb potential V(x).

The Hamiltonian of interaction with external electromagnetic field is

Hexc =
∫

dx ∑
s,σ

[
AΩ(x, t) · ds,σv†

σ(x)c
†
s (x) + A∗

Ω(x, t) · dσ,scs(x)vσ(x)
]

, (3)

where ds,σ = d∗
σ,s = −i 〈s| ∇ |σ〉 e/m0, with m0 the electron mass in vacuum, quantifies

coupling between the respective states in conduction and valence bands. Interaction of light
with the semiconductor occurs through absorption and emission of electron-hole pairs thus
specifying the quantity of main interest.

Because the main technical tool used in this part is perturbation theory, it is convenient to
incorporate the time dependence into the Heisenberg representation of quantum operators

Õ = eiHSCtOe−iHSCt, so that i∂O/∂t = [HSC,O]. For electron-hole pair operator the equation
of motion has the form

i
∂

∂t
v†

σ(x2)c
†
s (x1) = −L̂s,σ(x1, x2)v

†
σ(x2)c

†
s (x1)− v†

σ(x2)c
†
s (x1) [U (x1)− U (x2)] , (4)

where operator L̂s,σ(x1, x2) describes the one-pair dynamics

L̂s,σ(x1, x2) = ǫc − ǫv − Ω − 1

2me
∇2

1 −
1

2mh
∇2

2 − V(x1 − x2) (5)

and U (x) accounts for interaction of the pair with surrounding charges

U (x) =
∫

dx′ V(x − x′)

[

∑
σ

v†
σ(x

′)vσ(x
′)− ∑

s
c†

s (x
′)cs(x

′)

]
. (6)

In the case when its contribution vanishes (for instance, when operators in Eq. (4) act
on vacuum state, i.e. state with empty conduction band and filled valence band) the
semiconductor dynamics becomes very simple and the structure of excitations is determined
by the spectral decomposition

L̂s,σ(x1, x2) f (x1, x2) = ∑
μ

Eμφ∗
μ(x1, x2)

∫
dx′1dx′2 φμ(x

′
1, x′2) f (x′1, x′2), (7)

where the formal summation over μ implies summing over the discrete quantum numbers
and integrating over continuous ones. In Eq. (7) Eμ and φμ are, respectively, the eigenvalues

and the eigenfunctions, L̂φμ = Eμφμ. The operator L̂ is self-adjoint and, hence, its eigenvalues
are real and the eigenfunctions form a complete orthonormal set. Convoluting both sides of
Eq. (4) (taken with U = 0) with φμ we find that operators

B†
μ =

∫
dx1dx2 φμ(x1, x2)v

†
σ(x2)c

†
s (x1) (8)
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4 Will-be-set-by-IN-TECH

acting on vacuum create eigenstates of the semiconductor Hamiltonian HSCB†
μ |0〉 =

EμB†
μ |0〉. Such electron-hole states are called excitons and, respectively, B†

μ are called exciton
operators. As follows from Eq. (7) excitons are characterized by a set of quantum numbers
describing the solutions of the respective Schrödinger equation. For convenience we also
include the spin variables into this set, so that μ = {sμ, σμ, nμ, ℓμ, Kμ}, where Kμ is the
momentum of the exciton center of mass, nμ is the principal quantum number, and ℓμ is
orbital momentum.

Among the full variety of exciton states not all of them play an equally important role in the
dynamics of a semiconductor interacting with external electromagnetic field. In order to see
this we employ the fact that wave-functions φμ form a complete set and obtain the relation
between electron-hole and exciton operators

v†
σμ
(x2)c

†
sμ
(x1) = ∑

μ|sμ,σμ

B†
μφ∗

μ(x1, x2), (9)

where the sum is taken for fixed values of electron and hole spins. This relation allows us to
express Hexc in terms of the exciton operators

Hexc = ∑
μ

(
A∗

μ(t)Bμ + Aμ(t)B†
μ

)
, (10)

where Aμ(t) are the projections of the external field onto the respective exciton mode

Aμ(t) =
∫

dx AΩ(x, t) · dsμ,σμ φ∗
μ(x, x). (11)

As a result only states with ℓ = 0 are directly coupled with the electromagnetic field. Among
four possible heavy-hole exciton states two of them are dark because the respective transitions
between valence and conduction bands are dipole-forbidden (Ivchenko, 2005). This results
in a life-time of dark excitons that is significantly greater than the life time of bright states.
Additionally, the interaction of bright excitons with light raises their energy compared to dark
excitons (Combescot & Leuenberger, 2009). These circumstances are very important from the
perspective of exciton Bose-Einstein condensation as will be discussed below.

2.2 Dark excitons

A simple way to see why the dark exciton states have lower energies than the bright exciton
states (Combescot & Leuenberger, 2009) is to rearrange the electron-hole exchange scattering
diagram as shown in Fig. 1. Then it becomes obvious that the electron-hole exchange
corresponds to the exchange of a virtual photon between electron-hole pairs. Since only
bright excitons interact with photons, it is only possible for bright excitons to exchange
virtual photons among each other. This interaction pushes the energies of the bright excitons
above the energies of the dark excitons. The reason for adding energy can be intuitively
understood by comparing direct and exchange Coulomb interactions for electrons; i.e. the
direct interaction among electrons leads to repulsion, corresponding to adding energy, while
the exchange interaction leads to attraction, corresponding to reducing energy. In the case of
the Coulomb interaction between electrons and holes, this situation is completely reversed;
i.e. the direct interaction between electrons and holes leads to attraction, corresponding to
reducing energy, while the exchange interaction leads to repulsion, corresponding to adding
energy. It is this exchange-based repulsion which lets the bright exciton energies be higher
than the dark exciton energies.

128 Advances in Quantum Field Theory
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Quantum Field Theory of Exciton Correlations and Entanglement in Semiconductor Structures 5

(a) Interband Coulomb
exchange

(b) Valence-conduction
exchange diagram

(c) Rearranging the exchange diagram (b)

(d) Exchange diagram with electron-hole

Fig. 1. Interband Coulomb exchange interaction which shifts the bright exciton energy above
the dark exciton energy. Transition process either in terms of valence-conduction electrons
(b) and (c), or in terms of electron-hole (d). This interband Coulomb process is nothing but an
exchange of virtual photon between electron-hole pairs.

2.3 Perturbation theory

Coupled operator equations of motion of semiconductor excitations and electromagnetic field,
turn out to be too complex for a detailed analysis and, therefore, a reliable approximation
scheme must be applied. While such scheme can be worked out at the level of the equations
of motion it is convenient to start from the Hamiltonian formulation of the problem and to use
the standard approach developed in the quantum field theory on the ground of interaction
representation.

The equation of motion of the external electromagnetic field driven by semiconductor
excitations has the form of classical wave equation

1

c2
Ä(x, t)−∇2A(x, t) = −μ0J(x, t) (12)
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with a source
J(x, t) = ∑

μ
dσμ,sμ φμ(x, x)

〈
Bμ

〉
. (13)

This shows that the effect of material excitations is described by the exciton polarization

Pμ(t) =
〈
Bμ

〉
= Tr

[
ρ(t)Bμ

]
, (14)

where ρ(t) is the density matrix at instant t. Specifying the semiconductor state by the density
matrix allows one to address the most general situation. We, however, start from the special
case when the system at all times is in some pure state |Ψ(t)〉, so that Pμ(t) = 〈Ψ(t)| Bμ |Ψ(t)〉.
Next, we treat the interaction with the electromagnetic field, Hexc as a perturbation and follow
the standard prescription. First, we account the nonperturbed dynamics by introducing∣∣∣Ψ̃(t)

〉
= exp [iHSCt] |Ψ(t)〉, which satisfies i∂

∣∣∣Ψ̃(t)
〉

/∂t = H̃exc(t)
∣∣∣Ψ̃(t)

〉
, where H̃exc(t)

is the Hamiltonian of light-matter interaction in the Heisenberg picture

H̃exc(t) = eiHSCtHexce−iHSCt. (15)

Iterating the equation of motion we find

∣∣∣Ψ̃(t)
〉
= S(t)

∣∣∣Ψ̃(0)
〉
= S(t) |Ψ(0)〉 , (16)

where

S(t) = 1 +
∞

∑
n=1

(−i)n
∫

· · ·
∫

t1≤...≤tn≤t
dt1 . . . dtn H̃exc(t1) . . . H̃exc(tn). (17)

In what follows we will need the explicit form of such expansion. For a compact notation,
however, it is convenient to introduce the time ordering operator T+, so that one has

S(t) = T+ exp
{
−i

∫ t
0 dt′H̃exc(t

′)
}

. Following the same line of arguments we can also derive
〈

Ψ̃(t)
∣∣∣ =

〈
Ψ̃(0)

∣∣∣ S†(t), where S†(t) = T− exp
{

i
∫ t

0 dt′H̃exc(t′)
}

. Thus we obtain for the

exciton polarization (and, actually, for any observable)

Pμ(t) =
〈

Ψ̃(t)
∣∣∣ eiHSCtBe−iHSCt

∣∣∣Ψ̃(t)
〉
= 〈Ψ(0)| S†(t)B̃μ(t)S(t) |Ψ(0)〉 . (18)

Finally, the perturbational series for Pμ(t) is obtained substituting instead of S(t) and S†(t)
their expansions following Eq. (17).

This was the general consideration, which is applicable for arbitrary system and perturbation.
For the problem of our main interest, however, the fact of great importance is that exciton
operators entering Hexc change the total number of electrons and holes. In particular, if the
initial state |Ψ(0)〉 is characterized by a definite number of particles this form of perturbation
implies that only terms with matching numbers of exciton creation and annihilation operators
would make nonzero contribution. At the same time a lot of terms enter even low orders of
the perturbation series [as illustrated by Eq. (21) below]. Therefore, for analysis of the series it
is convenient to represent terms graphically using as building blocks

= ±iA∗
μ(t)B̃μ(t),

= ±iAμ(t)B̃†
μ(t).

(19)

130 Advances in Quantum Field Theory
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Quantum Field Theory of Exciton Correlations and Entanglement in Semiconductor Structures 7

The raising (lowering) line corresponds to the exciton annihilation (creation) operator in
the interaction representation at particular instant and a hollow vertex attached to the line
corresponds to the external field taken at the same instant. Thus the order of the diagram is
determined by the number of vertices. Integration over time is shown by filled vertex and
taking the diagonal matrix element is indicated by a horizontal line, for example

ν

µ

Ψ

≡ 〈Ψ| |Ψ〉 = −
∫ t

0
dt2

∫ t2

0
dt1 A∗

μ(t1)Aν(t2)
〈
B̃μ(t1)B̃†

ν(t2)
〉

Ψ
. (20)

While writing down an expression corresponding to particular term in the perturbational
series for Pμ(t) one should take into account that elements to the left and to the right from

Bμ originate from expansions for S† and S , respectively, which have factors i and −i in
correspondence rule (19). The diagrammatical representation of the first few terms of the
perturbational series for Pμ(t) has the form

Pμ(t) = + . . . =
〈
B̃μ(t)

〉
Ψ
−

− i
∫ t

0
dt′

〈
B̃μ(t)B̃†

ν(t
′)
〉

Ψ
Aν(t

′) + i
∫ t

0
dt′

〈
B̃ν(t

′)B̃μ(t)
〉

Ψ
A∗

ν(t
′) + . . . .

(21)

2.4 Linear and nonlinear responses of initially unperturbed semiconductor

We illustrate the application of this analysis by considering the optical response of a
non-perturbed semiconductor (Erementchouk & Leuenberger, 2010b; Ostreich et al., 1998),
that is when the initial state is vacuum |0〉 (empty conduction band and filled valence band).
We will emphasize this fact by using the dashed horizontal (vacuum) line in diagrams. It is
seen that only diagrams starting and ending at the vacuum line and above it provide non-zero
contributions into the series. The total number of lines in this case is even and, hence, the total
number of vertices is odd implying that we have only odd orders of the perturbation theory
in this case. In particular among the diagrams shown in Eq. (21) only the second diagram
survives yielding the polarization of linear response

P
(1)
μ (t) = = −i ∑

ν

∫ t

0
dt′

〈
Bμe−iHSC(t−t′)B†

ν

〉
0

Aμ(τ). (22)

For the following consideration it is constructive to analyze this expression in somewhat

excessive details. We introduce the vacuum exciton propagator Φ
(0)
μ,ν(τ) =

〈
Bμe−iHSCτB†

ν

〉
0

and differentiating with respect to τ we find that it satisfies the dynamical equation

Φ̇
(0)
μ,ν(τ) = −i

〈
Bμe−iHSCτ

[
HSC,B†

ν

]〉
0
= −iEνΦ

(0)
μ,ν(τ) (23)

with the initial value Φ
(0)
μ,ν(0) = δμ,ν, where we have taken into account that BμB†

ν |0〉 = δμ,ν |0〉
following from the commutation relation for the exciton operators

[
Bμ,B†

ν

]
= δμ,ν − Cμ,ν. (24)

Operators Cμ,ν describe the deviation of excitons from bosons

Cμ,ν =
∫

dx1dx2dx′1dx′2φ∗
μ(x1, x2)φν(x

′
1, x′2)

×
[

v†
σν
(x′2)vσμ(x2)δsμ,sν δ(x1 − x′1) + c†

sν
(x′1)csμ(x1)δσμ,σνδ(x2 − x′2)

]
.

(25)
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Thus we find

P(1)(t) = −i
∫ t

0
dt′e−iEμ(t−t′)Aμ(t

′). (26)

Simple but important feature of the linear response is that wave vectors containing in the
external excitation directly transferred to the linear exciton polarization. For example, if

A(x) ∝ eiK·x then P
(1)
μ ∝ δ(Kμ − K).

In the next (third) order the exciton polarization is given by the following diagrams

P
(3)
μ (t) = +

+ + .

(27)

In order to present this expression in more familiar form we differentiate Eq. (27) with respect
to t remembering that we also need to differentiate the upper limits of the respective integrals.
This yields

Ṗ
(3)
μ (t) = −iωμP

(3)
μ (t)+ + +

+ + +

+

i
t

,

(28)

where the elements with the hollow vertices are taken at the instant t and the respective
diagrams describe the modification of the instantaneous effect of the electromagnetic field
and thus account for the phase-space filling effect. It can be seen that fifth and fourth
diagram cancel each other by virtue of [Bμ,Bν] = 0. The first and the second diagrams

combine together yielding −iAμ(t)∑ν |P(1)
ν (t)|2. This term is canceled by the commutator

appearing after combining the third and the sixth diagrams. Thus the phase-space filling
effect is described by

Kμ(t) = i ∑
κ,λ,ν

〈
BλCμ,νB†

κ

〉
0

Aν(t)P
(1)
λ

∗
(t)P

(1)
κ (t). (29)

The effect of the Coulomb interaction is described by the last term in Eq. (28), which has the
form

Mμ(t) = ∑
κ,λ,ν

P
(1)
λ

∗
(t)

∫ t

0
dt3

∫ t3

0
dt1 Aν(t3)Aκ(t1)

〈
Dλ,μe−iHSCtB̃†

ν(t3)B̃†
κ (t1)

〉
0

, (30)

where we have introduced Dλ,μ =
[
Bλ,

[
Bμ,HSC

]]
. This operator can be presented as

Dλ,μ =
∫

dx1dx2dx′1dx′2Bλ(x1, x2)Bμ(x
′
1, x′2)×

[
V(x1 − x′1) + V(x2 − x′2)− V(x1 − x′2)− V(x′1 − x2)

]
,

(31)
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Quantum Field Theory of Exciton Correlations and Entanglement in Semiconductor Structures 9

where we have denoted Bμ(x1, x2) = φμ(x1, x2)csμ(x1)vσμ(x2). Thus operator Dλ,μ describes
the Coulomb interaction between excitons λ and μ. Taking into account the symmetry with
respect to ν ↔ κ we can rewrite Mμ(t) in terms of polarizations of linear response resulting in

Mμ(t) =
1

2 ∑
κ,λ,ν

P
(1)
λ

∗
(t)

[
iβν,κ

λ,μP
(1)
κ (t)P

(1)
ν (t) +

∫ t

0
dt′ Fν,κ

λ,μ(t − t′)P(1)
κ (t′)P(1)

ν (t′)
]

, (32)

where βν,κ
λ,μ =

〈
Dλ,μB†

νB†
κ

〉
0

and Fν,κ
λ,μ =

〈
Dλ,μe−iHSCtD†

ν,κ

〉
0
. These coefficients contain

typical average of the form
〈
BλBμB†

κB†
ν

〉
, which determines the spin selection rules governing

different optical processes. In order to derive them we present this average in terms of the
electron and hole operators and rearrange operators to have

〈
vvv†v†

〉
0

〈
ccc†c†

〉
0 and then

expand each term using the Wick theorem for fermions. It produces four terms, which are
represented by the diagrams in Fig. 2. The points on the upper line of a diagram represent the
spin states of electrons in the conduction band and the points on the lower line stand for the
spin states of holes in the valence band. For example, the anticommutator {v†

σκ
, vσμ} ∝ δσκ,σμ

requires the equality of the respective hole spins in the valence band. We denote this equality
by connecting the vertices κ and μ on the lower line by the arc.

v

c

(a) (c) (d)(b)

Fig. 2. The spin diagrams corresponding to non-zero terms in
〈
BλBμB†

κB†
ν

〉
. Upper and

lower lines correspond to electron and hole spins, respectively. Arcs connecting two vertices
denote equal spins. The diagrams (a) and (b) lead to helicity selection rules ∝ δκ,σν δσλ,σμ and
∝ δσκ,σμ δσλ,σν , respectively. Diagrams (c) and (d) enter the average with minus sign and for
bright excitons require the spin states in the conduction band to be the same.

Also, diagrams in Fig. 2 show which coordinates are identified by delta-functions appearing
after anti-commutation and thus demonstrate how exciton wave functions are convoluted in
such averages. Thus diagrams in Fig. 2a and 2b describe direct exciton scattering, while those
shown in Fig. 2c and 2d take into account scattering with exchange by electron or hole.

The memory term in Eq. (32) accounts for the effect of exciton-exciton interaction.
Unfortunately, an exact evolution of this integral is impossible (it is related to four-particle
propagator) and one has to rely on approximation schemes. It should be noted, however, that
the most significant effect of this interaction is when excitons form a bound state (possibly
metastable). When the contribution of such a state is small or non-existent (e.g. there are no
bound states in the spectrum of two copolarized excitons) one can employ a short memory
approximation, which accounts for the effect of the nonlocal term as a modification of βν,κ

λ,μ.

The essential difference between linear and nonlinear responses is that the latter is a
combination of several linear polarizations. As a result if the external excitation has
components with different wave vectors the nonlinear polarization contains not only all of

them but also their combinations. More precisely one can easily show that P
(3)
μ ∝ δ(Kμ +Kλ −

Kν − Kκ). The four momenta have to add up to zero and therefore this is called four-wave
mixing response. Because the direction of the response is different from the direction of
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excitation this allows observing the effect of interaction that is not blurred by linear response
or non-absorbed light. This makes four-wave mixing spectroscopy possible.

We would like to emphasize the generality of the derivation of the exciton optical response.
For example, the specific form of the exciton states has not been used for the derivation of
main formulas and therefore the same arguments can be repeated for excitons in arbitrary
confinement potential. This allows using this approach for description of nonlinear optical
response of disordered quantum wells (Erementchouk et al., 2011).

Another important feature of the diagrammatic representation is that it establishes the
connection between nonlinear optical response and other phenomena which involve exciton
dynamics. As an example we would like to discuss the problem of entanglement of photons
interacting with a semiconductor quantum well. For simplicity we neglect the possible
effect of variation of the dielectric function and assume that the states of the quantized
electromagnetic field are plane waves so that the vector potential is presented as

A =
1

(2π)3/2 ∑
k̂

(ǫ)
k̂

1√
2ω

k̂

eik·xa†
k̂
+ h.c., (33)

where k̂ = {σ, k} combines all photon quantum numbers, polarization and wave vector. Then
the two-photon states are described by the density matrix, which in the interaction picture has
the form

ρk̂1,k̂2

q̂1,q̂2
(t) = 〈Ψ(t)| a†

q̂1
a†

q̂2
a

k̂1
a

k̂2
|Ψ(t)〉 , (34)

where |Ψ(t)〉 is the state of the semiconductor-photon system. As the first approximation
it suffices to consider vacuum as the initial state of the semiconductor |Ψ(0)〉 = |0〉 and to
neglect the processes of photon re-absorption, which is justified if the photon lifetime within
the quantum well is short (it should be noted that the situation may change in a cavity). In the
lowest approximation the photon annihilation operators in Eq. (34) act on a two-photon state

yielding the factorization ρk̂1,k̂2

q̂1,q̂2
(t) = Ψ∗

q̂1,q̂2
(t)Ψ

k̂1,k̂2
(t), where

Ψ
k̂1,k̂2

(t) =
〈

a
k̂1
(t)a

k̂2
(t)S(t)

〉
0

, (35)

where a
k̂
(t) are the photon operators in the Heisenberg representation. The interaction

Hamitonian in this case has the form Hexc = ∑μ

(
A†

μBμ + Aμ(t)B†
μ

)
, where

A†
μ =

1

(2π)3/2 ∑
k̂

1√
2ω

k̂

dσμ,sμ · ǫk̂
a†

k̂

∫
dx φμ(x, x)eik·x. (36)

Thus the same diagrams as before can be drawn with the only difference that B line is
accompanied with A†. Quick analysis shows that only two diagrams contribute into Ψ

Ψ
k̂1,k̂2

(t) = + . (37)

It is immediately seen that the first diagrams describes the emission of photons along the
direction of external excitation and the emitted photons are disentangled: the polarization
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two-photon state is the direct product of the external excitation polarization. The two-exciton
process represented by the second diagram, however, admits oblique emission with
non-trivial dependence of entanglement of emitted photons on the direction of observation
and the polarization state of the excitation field (Erementchouk & Leuenberger, 2010a) as
is summarized in Fig. 3. The polarization of external excitation is described using Poincare
sphere, that is the excitation is presented as a combination of left- and right-polarized
components with amplitudes A− = e−iχ/2 sin(β/2) and A+ = eiχ/2 cos(β/2), respectively,
where β is the polar angle on the Poincare sphere and χ is azimuthal angle (χ/2 is the angle
between the axis of the ellipse of polarization and the plane spanned by the wave vectors
of emitted photons). Near the frequency of the heavy-hole exciton resonance entanglement
may reach maximum EN = 1 only in the case of linear polarization of the pump field
and entanglement demonstrates interesting dependence on the orientation of the plane of
polarization. Near the light-hole exciton resonance the most advantageous orientation of the
ellipse of polarization is χ = 0, however, the direction along which the most emitted photons
are emitted strongly depends on the ellipticity of the external excitation.

(a) (b)

Fig. 3. Dependence of two-photon entanglement on detection angle and on polarization of
external excitation in the vicinities of (a) heavy-hole and (b) light-hole exciton resonances.

2.5 Optical response of Bose-Einstein condensate

Bose-Einstein condensation (BEC) is a phenomenon when at non-zero temperature the
majority of particles occupy only a few states. This is in striking contrast to a distribution
prescribed by the classical theory, where it is governed by the Boltzmann exponent
exp(−E/kBT) and significant difference in occupations may be expected only when the
energy levels are sufficiently far away from each other ∆E/kBT ≫ 1. The Bose-Einstein
condensation, as is well known from the standard textbook consideration of ideal Bose gases
(see e.g. Chapter 12 in (Huang, 1987), where it is clearly shown how a condensate emerges
during the transition to the thermodynamic limit), does not require such level separation and
may as well appear in a system with continuous spectrum.

The effect of BEC is tightly connected to such highly unusual from the classical point of
view phenomena as superconductivity and superfluidity, which enjoy detailed developed
theories (Lifshitz & Pitaevskii, 2002) and still are inexhaustible sources of new questions.
In contrast to superfluidity and superconductivity, for which experiments have taken the
lead over theoretical considerations, experimental studies of BEC fall well behind the theory
(Moskalenko & Snoke, 2000): being predicted in 1925 BEC was obtained in a laboratory
only in 1995. The difficulty of observing BEC motivates the constant search for more
optimal systems. With this regard the significant attention has been paid to excitons in
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semiconductors. The physics of transition of semiconductors into the condensate state is
similar to the superconducting transition (in conventional superconductors). While the
elementary excitations are electrons, at sufficiently low temperatures Cooper pairs of electrons
play the important role, which are formed by phonon-mediated attraction. Pairs are no
longer subject to the exclusion principle and, moreover, at low densities obey the boson
commutation relation. Thus, they may undergo the transition into the BEC-state. With
excitons in semiconductors a similar scenario may take place and may even be more favorable
because the Coulomb interaction binds electron and hole instead of preventing them from
forming a bound state as it is in superconductors.

The finite life time of excitons, however, makes it difficult to reach the condensate state —
excitons decay before the equilibrium is established. Therefore, recently indirect excitons in
coupled quantum wells became the object of special interest (Butov, Gossard & Chemla, 2002;
Butov, Lai, Ivanov, Gossard & Chemla, 2002; Snoke et al., 2002). The electrons and holes
are spatially separated in such a structure that leads to increased life-time. Recently another
possibility, BE condensate formed by dark excitons, started to attract attention (Combescot &
Leuenberger, 2009).

The obvious difficulty related to dark excitons is how to observe them. One of possible ways
to test properties of dark excitons is to use indirect interband spectroscopy, which relies on
dynamics of bright states modified by the presence of dark excitons.

The problem of the optical response can be approached along the same lines as in the previous
sections. The Hamiltonian of light-matter interaction is treated as perturbation and using the
interaction picture the exciton polarization of bright excitons P = 〈B〉 is found in terms of S
operator, which produces the perturbation theory. Before we apply this ideology we need to
revisit the notion of averaging in formulas containing 〈. . .〉. In Section 2.4 the initial state of
semiconductor was taken to be vacuum. Here, however, we need to take into account that
initially the system is in thermal equilibrium and therefore its state is given by density matrix
ρ rather than by a vector of state. Thus for an operator O we need to consider

〈O〉 = Tr [ρO] . (38)

In the case when the system has BE condensate this expression significantly simplifies because
the main contribution results from the condensate states, which contain the macroscopic
number of particles. This observation is formally expressed by the spectral decomposition
for the density matrix ρ = ∑n wn |ψn〉 〈ψn|, where |ψn〉 are some orthogonal states and wn

are their weights. The ratio of the weights of non-condensate and condensate states is small,
wnc/wc ≪ 1, and thus the contribution of the respective terms in Eq. (38) can be neglected
leaving us with

〈O〉 = ∑
c

wc 〈ψc| Q |ψc〉 . (39)

We model the condensate state by a coherent state, which is obtained from vacuum by
Glauber’s shift operator |ψc〉 = D†

c (λ) |0〉, where

Dσ(λ) = exp
[
λ
(
B†

c −Bc

)]
(40)

with B†
σ
=

∫
dx1dx2 χ(x1, x2)v

†
σ(x2)c

†
s (x1). Here λ and function χ are parameters of the state

and will be determined later. It should be noted, however, that translational symmetry of the
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system implies that χ(x1, x2) should posses the symmetry with respect to translations of both
arguments χ(x1 + a, x2 + a) = eiP·aχ(x1, x2) with some P. Clearly P can be eliminated in a
moving frame and, hence, among states created by B†

σ
the smallest energy would be of those

with P = 0. Thus we need to consider

B†
σ
=

∫
dx1dx2 χ(x1 − x2)v

†
σ(x2)c

†
s (x1). (41)

The spin states of hole and electron entering the pair creation operator B†
σ

are denoted by
σ = {σ, s} and are such that the pair does not interact with the electromagnetic field. As has
been shown above, there are two such states with σ− = {3/2,−1/2} and σ+ = {−3/2, 1/2}.
In the absence of external static magnetic field the energy of these states is the same thus we
naturally have fragmented condensate approximately described by the density matrix ρ =
(|ψ+〉 〈ψ+|+ |ψ−〉 〈ψ−|)/2, where |ψ±〉 = D†

σ± |0〉. Using this approximation in Eq. (39) we
obtain

〈O〉 = 1

2
[〈ψ+| O |ψ+〉+ 〈ψ−| O |ψ−〉] , (42)

which reduces the problem of finding exciton polarization to the problem with pure initial
state similar to analyzed in Section 2.4. The first and the second terms in Eq. (42) turn into each
other under the inversion of spins in the condensate, which does not present any difficulty.
Therefore, we consider in details only the first term. In order to simplify notations we denote
the spin states of the condensate by simply σ and s and the complementary values by σ̄ and
s̄. Thus for |ψ+〉 we have σ = −3/2 and s = 1/2 while σ̄ = 3/2 and s̄ = −1/2. The bright
excitons correspond to spins {σ̄, s} and {σ, s̄}, while {σ̄, s̄} are the spins in the another fraction
(spanned by |ψ−〉).
Applying the diagrammatic representation of the perturbation series (as illustrated in Eq. (21)
one can immediately see that the series will contain only the same diagrams as in Section 2.4.
In contrast, if the condensate was made of bright excitons then all diagrams shown in Eq. (21)
would contribute. For example, the first diagram, without the external field, would describe
the radiative decay of excitons in the condensate. For dark condensate, however, this diagram
turns to zero because 〈cs̄〉ψ± = 〈cσ̄〉ψ± = 0. Thus one can see that only diagrams with

matching number of creation and annihilation operators of electrons or holes not containing
in the condensate are not vanishing and one need to keep only diagrams with the vacuum
line, where vacuum is understood for electrons with spin s̄ or for holes with spin σ̄.

Unitarity of the shift operator D+(λ) allows one to present the average as taken over vacuum
〈ψ+| O |ψ+〉 = 〈O(λ)〉0, where

O(λ) = D+(λ)OD†
+(λ). (43)

Only electron and hole operators with spins s and σ are affected by this transformation. In
order to find how they transform it is convenient to use the momentum representation, e.g.
vσ(x) = (2π)−d/2

∫
dkvσ(k)eik·x with d being the dimensionality of the problem. In this

representation we have

B†
+ =

∫
dk χ(k)v†

σ(k)c
†
s (−k) (44)

and thus
∂

∂λ
vσ(k; λ) = D+(λ)

[
B†
+, vσ(k)

]
D†

+(λ) = −χ(−k)c†
s (−k; λ). (45)

137Quantum Field Theory of Exciton Correlations and Entanglement in Semiconductor Structures

www.intechopen.com



14 Will-be-set-by-IN-TECH

Solving the system of equations we find the transformation induced by the shift operator is
equivalent to the Bogoliubov transformation

vσ(k; λ) = vσ(k)α(k)− c†
s (−k)β(−k), cs(k; λ) = cs(k)α(k) + v†

σ(−k)β(−k), (46)

where
α(k) = cos[λχ(k)], β(k) = sin[λχ(k)]. (47)

In order to clarify the physical meaning of the transformation we present Eq. (46) in coordinate
representation

vσ(x; λ) = vσ(x)−
∫

dx′ α̃(x − x′)vσ(x
′)−

∫
dx′ β(x − x′)c†

s (x
′), (48)

where α̃(x) is the Fourier transform of 2 sin2[λχ(k)/2].

Under transformation (43) the Heisenberg representation eiHSCtOe−iHSCt is mapped into the

Heisenberg representation with transformed Hamiltonian eiHSC(λ)tO(λ)e−iHSC(λ)t. Thus the
transformation can be interpreted as a transition to new particles. The condition of the
quadratic part of HSC(λ) to be diagonal yields an equation with respect to function χ(k)

[
Ẽ(k)− 2

∫
dqV(k − q)β2(q)

]
α(k)β(k) =

[
α2(k)− β2(k)

] ∫
dqV(k − q)α(q)β(q), (49)

where Ẽ(k) = ǫc − ǫv − Ω + k2/2me + k2/2mh . As the zeroth approximation we obtain

α(k) = 1 and β(k) = cφ(k), where φ(k) = 2
√

2r3
B/[π(r2

Bk2 + 1)2] is the Fourier transform

of 1s-exciton states in 3d and rB is the exciton Bohr radius. The constant c is found from the
“normalization condition": the electron (or hole) density is equal to the condensate density

n+ =
〈

c†
s (x)cs(x)

〉
+
=

1

(2π)3

∫
dkdqeix·(q−k)

〈
c†

s (k; λ)cs(q; λ)
〉

0
=

1

(2π)3

∫
dkβ2(k),

(50)
that is c2 = n+(2π)3. In the dilute regime, when the condition

η = 64πn+r3
B < 1 (51)

holds we have β(k) ≪ 1 and hence λχ(k) ≈ cφ(k) thus completely defining the condensate
state.

The major effect of the dark condensate on bright excitons is that the condensate changes
the structure of excitons. In order to see this we consider the polarization of linear response
given by Eq. (22) with transformed exciton operators. Let us consider for definiteness the case
of right polarized external excitation, which is coupled to bright exciton with σ = {σ, s̄} =
{−3/2,−1/2}. The time dependence of propagator Φμ,ν(τ) is determined by

D+(λ)
[
HSC, v†

σ(k1)c
†
s̄ (k2)

]
D†

+(λ) |0〉 = −
∫

dqL(k1, k2; q)v†
σ(k1 − p)c†

s̄ (k2 + p) |0〉

+
∫

dpdq V(p)
[
v†

σ(k1 − p)c†
s̄ (k2)α(k1 − p)

−v†
σ(k1)c

†
s̄ (k2 − p)α(k1)

]
v†

σ(q)c
†
s (p − q)A(p, q) |0〉 ,

(52)
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where A(p, q) = α(q)β(q − p)− α(q − p)β(q) and

L(k1, k2; q) =

[
ǫc − ǫv − Ω +

k2
1

2mh
+

∫
dpV(p)β(k1 − p)A(p, k1) +

k2
2

2me

]
δ(q)

− V(q) [1 − β(k1)A(q,−k1)] .

(53)

The last term in Eq. (52) yields the modification of the energy through perturbation of the
condensate. This term can be estimated to lead to relatively long beatings in the linear
response and will be neglected in the following.

Similarly to the case of the dynamics of initially unperturbed semiconductor Eq. (52) provides
the structure of elementary excitations given by the spectral decomposition of the kernel

L̃(k1, k2; k′
1, k′

2) = δ(k1 + k2 − k′
1 − k′

2)L(k1, k2; k1 − k2): its eigenfunctions define the
modified exciton operators, which then should be used in expansion (9). We present results
for the lowest energy state in Fig. 4.

Fig. 4. Modification of bright excitons due to interaction with dark BE condensate. (a)
Variation of the exciton binding energy (left scale) and the exciton radius (right scale) with
the condensate density [see Eq. (51)]. (b) Absorption spectra for different values of η: solid,
dashed, dotted and dash-dotted lines correspond to η = 0, 0.3, 0.6, 0.9, respectively. The inset
shows the exciton wave function in the momentum representation.

The exchange by hole with condensate leads to renormalizations of the mass of the hole
and its interaction with electron within the bright exciton. As a result the observed exciton
states exhibit a blue shift for the binding energy and increasing radius (see Fig. 4a and inset
in Fig. 4b) as functions of the condensate density. In Fig. 4 we have plotted the absorption
spectrum for different densities taking into account the variation of the exciton oscillator
strength, which is determined by |φ(x = 0)|2 ∝ 1/r3

B(η).

3. Ab initio approach - time-dependent density functional theory

In this Section, we present an alternative, ab initio, approach to describe ultrafast processes,
based on time-dependent density functional theory (TDDFT).(Runge & Gross, 1984) The main
advantage of this approach compared to the Green’s function many-body theory methods
is its simplicity. Being an effective single-electron theory, TDDFT uses time-dependent
single-electron density to describe the nonequilibrium response. The corresponding
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single-particle Kohn-Sham wave equation depends on one vector coordinate and one time
variable, which gives a big advantage compared to the Green’s function approaches,
where in strongly nonequilibrium case one needs to take into account many-time Green’s
functions, and the truncation used to have a finite system of equations is often not well
justified. Moreover, technically to solve this system of many-time Green’s functions is a very
complicated task since in general case there is no time translation invariance, and one cannot
use Fourier transforms and needs to consider time variables on the complex Keldysh type
time-contour (see for example (Kadanoff & Baym, 1962)). This analysis can consume a very
large amount of time (see, e.g., Refs. (Freericks et al., 2006; Onida et al., 2002)).

Another difficulty in the Green’s function case comes from the correct treating of the Coulomb
interaction. In the case of pulses shorter than the Coulomb scattering time, one cannot take
these effects into account within a phenomenological scattering time parameter, like in the
Boltzmann equation approach. Thus, one needs to take into account the electron correlation
effects more accurately in this case, which is a very complicated problem in the majority of
cases. In TDDFT, provided one has the correct exchange-correlation (XC) potential, these
effects are taken into account exactly in the framework of a simple single-particle Kohn-Sham
equation with relatively simple XC potential responsible for the electron correlation effects.
Even though the form of such a potential in the case of materials containing transition
metal atoms or atoms with f-electrons in the valence band is not solved yet, in the case of
familiar semiconductor and molecular systems standard local-density approximation (LDA)
and generalized gradient approximation (GGA) are often proved to be good approximations,
like in description of single-electron excitations in molecular systems.(Elliott et al., 2009)

One of the most important questions in TDDFT is its ability as an effective single-particle
theory to describe multi-particle effects, including multiple-electron excitations and bound
electron-hole states, like excitons and biexcitons. To be more specific, one needs to find
the form of the corresponding XC potential to describe these effects. At the moment
our knowledge about the structure of such potentials is rather limited. Though, recently
significant progress in this direction has been made.

In the case of a weak and slow perturbation, the algorithm based on the many-body
Bethe-Salpeter equation (BSE) to construct the XC potential able to describe excitonic
effects was proposed in Refs. (Botti et al., 2004; Marini et al., 2003; Reining et al., 2002).
It was shown also that in the linear response regime in frequency representation one
can construct a pure TDDFT potential, the time-dependent optimized effective potential
in exact-exchange approximation (XX-TDOEP), to describe excitonic effects in the optical
absorption spectra.(Kim & Görling, 2002a;b) Despite the progress of the approaches
mentioned above, these methods are rather complicated, which makes them difficult to apply
in general nonlinear case of strong ultrafast perturbations. Moreover, the question whether
they can describe higher order effects, like biexcitons or other nonlinear collective effects,
including Bose-Einstein condensation of excitons remains open.

Recently, we proposed formally simple and rather general TDDFT approach based on the
density-matrix representation, which is able to describe some of the phenomena mentioned
above.(Turkowski et al., 2009; Turkowski & Ullrich, 2008; Turkowski et al., 2010) In this
Section, we present the general formalism used in this approach. In particular, we present the
system of the TDDFT equations for the density matrix elements, which is the TDDFT version
of semiconductor Bloch equations, that includes nonlinear excitonic effects in all orders of
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magnitude. As we demonstrate, the solution of these equations in the case of excitons, and
their generalization on the case of biexcitons, gives the corresponding energies of the bound
states and wave functions, allows to analyze nonlinear effects like exciton-exciton interaction,
which can be applied to the description of four-wave mixing experiments. Finally, we discuss
the possibility to describe with the approach a highly nonlinear, collective effect of the Bose
condensation of excitons.

3.1 General formalism

In TDDFT the time evolution of the system is studied by solving time-dependent Kohn-Sham
equation:

i
∂

∂t
Ψ(r, t) = Ĥ(r, t)Ψ(r, t), (54)

where the time-dependent Hamiltonian

Ĥ(t) = −∇2

2
+ Vnucl(r) + VH [n](r, t) + Vxc[n](r, t) + V(r, t), (55)

consists of the kinetic energy part (first term), the nuclear potential Vnucl(r) for the electrons,
the Hartree potential VH [n](r) =

∫
dr′n(r′)/|r − r′|, the XC potential Vxc[n](r, t) and the

external field term V(r, t). Generally speaking, in the case of an external electric field
E(r, t), this field has to be included into the Kohn-Sham Hamiltonian through the standard
substitution ∇ → ∇ − (i/c)Aext(r, t), and the scalar potential term ϕext(r, t), where the
external vector potential Aext(r, t) and ϕext(r, t) define the electric field:

E(r, t) = −∇ϕext(r, t)− 1

c

∂Aext(r, t)

∂t
. (56)

In the case of extended systems one needs to use the vector potential in order to describe
the periodic system. Moreover, one should use the current-TDDFT with the macroscopic
current that leads to the periodicity of the system. However, in the case when the field
frequency is larger than the level spacing, the scalar potential V(r, t) = ϕext(r, t) =
−E(t)r, which significantly simplifies the solution and which we shall use below, is a good
approximation.(Schäfer & Wegener, 2002)

The XC potential takes into account all electron exchange and correlation effects beyond the
Hartree approximation. The Hartree and the XC potentials depend on the time-dependent
electron charge density, which can be expressed in terms of the wave-functions Ψi

k(r, t),
solutions of Equation (54),

n(r, t) = 2 ∑
i,k

|Ψi
k(r, t)|2θ(εF − εvi

k ), (57)

where k is the momentum and i is the band (with the energy εvi

k ) and all other quantum
number indices, and εF is the Fermi energy in the case of extended bulk system. The
bandstructure and the Fermi energy can be obtained from the stationary solution of the
Kohn-Sham problem (standard DFT theory(Kohn, 1999)). It is easy to generalize the
corresponding problem on the case of finite systems. The simplest well-known approximation
for the XC potential (the exchange only part) is the adiabatic LDA approximation:

VxLDA(n(r)) = − (3/π)1/3 n1/3(r). In the case of highly-correlated systems and strongly
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nonequilibrium processes more complicated forms for Vxc[n](r, t) have to be used. In
particular, in the case of the ultrafast processes the memory effects (dependence of the XC
potential on the charge densities in all previous times) can play an important role.

In order to study the optical transitions in the system, it is convenient to express the
time-dependent wave functions as linear combinations of the ground-state wave functions:

Ψ
vi

k (r, t) = ∑
j

[
c

vivj

k (t)ψ
vj

k (r) + c
vicj

k (t)ψ
cj

k (r)
]

, (58)

where c
vi lj

k (t) are momentum and time-dependent complex coefficients, and li = vi, ci are
the valence and conduction band indices. One can solve the problem by studying the
time dependence of these coefficients, however from the physical point of view it is more

convenient to analyze the solution for the density matrix: ρvi ;lm l̄n

k;qp (t) = cvilm

kq (t)
[
cvi l̄n

kp (t)
]∗

.

The elements of this matrix correspond are related to the probability of the optical transitions
between different bands and their occupation. The density matrix satisfies the Liouville-von
Neumann equation:

i
∂

∂t
ρ

vi;lml ′n
k (t) = [H(t), ρ]

vi;lml ′n
k = ∑

l ′′j

[
H

lml ′′j
kk (t)ρ

vi;l
′′
j l ′n

k (t)− ρ
vi;lml ′′j
k (t)H

l ′′j l ′n
k (t)

]
, (59)

where

H
lml ′n
kq (t) =

∫

cell
drψlm∗

k (r)H(t)ψ
l ′n
q (r) = εlm

k δlml ′n + E(t)d
lml ′n
kq + V

lml ′n
Hkq(t) + V

lml ′n
xckq(t), (60)

d
lml ′n
kq =

∫
cell drψlm∗

k (r)rψ
l ′n
q (r) are the dipole matrix elements, and the space integration is

performed over the unit cell. In Eq. (60), V
lml ′n
Hkq(t) and V

lml ′n
xckq(t) are the matrix elements for the

difference between the time-dependent and ground state (at t ≤ t0) potentials VH [n](r, t)−
VH [n](r, t0) and VXC[n](r, t)− VXC[n](r, t0) . The Liouville-von Neumann equation has to be
solved together with the corresponding charge density equation

n(r, t) = 2 ∑
i,lm,l ′n,k,q,p

ρ
vi;lml ′n
k,q,p (t)ψ

l ′n∗
p (r)ψlm

q (r)θ(εF − εvi

k ). (61)

As follows from the last equation, the density matrix defines the time-dependence of the
electron charge density. It also allows to calculate many other physical quantities, including

the dynamical polarization D(t) = ∑i,lm,l ′n,k,q,p ρ
vi ;lml ′n
k;qp (t)d

l ′nlm
pq .

3.2 Exciton states

To analyze the possibility of excitonic states in the optical absorption spectrum of the
system, in principle it is enough to find the dynamical polarization from the solution of the
Liouville-von Neumann equations (59) in the case of an external perturbation, like an external

femtosecond pulse: E(t) = E0e−t2/τ2
(τ ∼ 1 − 100fs). The optical absorption spectrum A(ω)

can be found from the expression for the polarization P(ω): A(ω) = −2Re[P(ω)/E(ω)]. In
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the last equation the total polarization is the sum of polarizations for all possible interband
transitions:

Pcivj (ω) = i(4π/
√

ǫb)(ε
ci
0 − ε

vj

0 )Ωcell

∫
dk

(2π)3

∫
dteiωt|dvjci

k |2ρ
civj

k (t) (62)

where ǫb is the dielectric constant, εci
0 − ε

vj

0 is the corresponding bandgap and Ωcell is the
volume of the unit cell.

For simplicity, in this Subsection we shall concentrate on the two-band case with 2 × 2 density
matrix with two independent matrix elements: the conduction band occupancy ρcc

k (t) and
the polarization ρcv

k (t). The other two elements, the valence band occupancy ρvv
k (t) and the

polarization de-excitation matrix element ρvc
k (t), can be found from the first two elements by

using the conservation of particles equation ρvv
k (t)+ ρcc

k (t) = 1 and the definition of the matrix
elements, which gives ρvc

k (t) = ρcv∗
k (t). The independent TDDFT matrix equations have the

following form:

∂

∂t
ρvv

k (t) = −2Im [(E(t)dcv
k + Vcv

Hk + Vcv
xck)ρ

vc
k (t)] , (63)

∂

∂t
ρcv

k (t) = −i[εc
k − εv

k]ρ
cv
k (t)− i[ρvv

k (t)− ρcc
k (t)]E(t)dcv

k

− i[ρvv
k (t)− ρcc

k (t)](Vcv
Hk(t) + Vcv

xck(t))

− i[Vcc
Hk(t) + Vcc

xck(t)− Vvv
Hk(t)− Vvv

xck(t)]ρ
cv
k (t). (64)

They correspond to the many-body theory semiconductor Bloch equations,(Haug & Koch,
2004) but in the TDDFT case the correlation effects are taken into account exactly without
making the Hartree-Fock truncation.

In order to get a better feeling of the correspondence between both theories, it is instructive
to compare both systems of the equations. Applying the same expansion of the wave
function in terms of the stationary wave functions and writing down the corresponding
Liouville-von-Neumann equation for the density matrix in the case of the Hartree-Fock
equation

i
∂Ψv

k(r, t)

∂t
=

[
−∇2

2
− E(t)r +

∫
dr′

∑q Ψv∗
q (r′, t)Ψv

q(r
′, t)

|r − r′|

]
Ψv

k(r, t)

−
∫

dr′
∑q Ψv∗

q (r′, t)Ψv
q(r, t)

|r − r′| Ψv
k(r

′, t), (65)

one can obtain familiar set of the semiconductor Bloch equations (in linear expansion in the
polarization, see below):

∂

∂t
ρvv

k (t) = − 2Im

[(
E(t)dcv

k +
∫

dq

(2π)3
V(k − q)ρcv

q (t)

)
ρvc

k (t)

]
, (66)

∂

∂t
ρcv

k (t) = − i[εc
k − εv

k −
∫

dq

(2π)3
V(k − q)(ρcc

q (t)− ρvv
q (t))]ρcv

k (t)

− i[ρvv
k (t)− ρcc

k (t)]

(
E(t)dcv

k −
∫

dq

(2π)3
V(k − q)ρcv

q (t)

)
. (67)
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Comparizon of the systems of equations (63), (64) and (66), (67) suggests that the electron-hole

interaction term
∫ dq

(2π)3 V(k− q)ρcv
q (t) resposible for the Rydberg series of the bound states in

the Bloch equation case is contained in the nonlinear functional of the polarization ρcv
q (t) of the

matrix element Vcv
xck(t) (through the polarization that enters in the charge density, Eq. (61)).

We have analyzed the optical absorption spectrum in the case of several XC potentials and
found that in some cases the spectrum contains an excitonic peak below the conduction band
edge.(Turkowski & Ullrich, 2008) In particular, we have found that the optical absorption
spectrum demonstrates a pronounceable excitonic peak when the XC kernel contains the
Coulomb singularity 1/q2, like in the case of the KLI and Slater potentials.(Krieger et al., 1992)
This result is in agreement with Kim and Görling (Kim & Görling, 2002a;b) who showed that
in the translational-invariant systems in order to have the excitonic peaks one needs to have
such a singularity. On the other hand, it was found that the standard LDA and GGA potentials
are "too weak" to produce the peaks.

In order to get a deeper understanding of the structure of the XC kernels necessary to produce
the excitonic bound state one can analyze the linearized TDDFT equation for the polarization
which corresponds to the Wannier equation

[
−(∇2/2mr)− (1/ǫr)

]
φ(r) = Eφ(r) for the

exciton eigenenergies and eigenfunctions (mr is the reduced electron-hole effective mass and ǫ
is the static dielectric constant of the material).(Wannier, 1937) The solution of the last equation
demonstrates a Rydberg series of the excitonic binding energies qualitatively described by the
Elliott formula (Haug & Koch, 2004).

The corresponding TDDFT Wannier equation can be obtained by linearizing equation (64):

∑
q

[
ωcv

q δkq + Fkq(ω)
]

ρcv
q (ω) = ωρcv

k (ω) (68)

with the effective electron-hole interaction

Fkq(ω) =
2

Ω2

∫

Ω
d3r

∫

Ω
d3r′ ψ∗

ck(r)ψvk(r) fxc(r, r′, ω)ψ∗
vq(r

′)ψcq(r
′) (69)

(in the momentum representation). The corresponding real-space equation can be
obtained after the Fourier transforms ρ(R, ω) = ∑k e−ikRρcv

k (ω) and Veh(R, R′, ω) =

∑k,q e−ikRFkq(ω)eiqR′
, where R is a direct lattice vector. Since the excitonic wave function

extends over many lattice sites, one can consider R as a continuous variable. In this case the
TDDFT Wannier equation takes the following form

[
− h̄2∇2

2mr
+ EKS

g − ω

]
ρi(r) +

∫

all
space

d3r′Veh(r, r′, ω)ρi(r
′) = 0 , (70)

(m−1
r = m−1

c + m−1
v is the reduced mass and EKS

g is the KS band gap). The solution of the

last equation gives the exciton eigenfunctions ρ(R, ω) and eigenenergies, which are defined
by a nonlocal, frequency-dependent electron-hole interaction Veh(r, r′, ω). This interaction is
defined by the XC kernel. The analysis of the solution in the case of the of LDA kernel, shows
again that it is too weak to produce bound states. On the other hand, it was found that a
phenomenological local kernel f contact

xc (r, r′) = −Aδ(r − r′) (A is a positive constant), and a
long-range kernel with the Coulomb singularity∼ 1/q2 in the momentum space, f LRC

xc (r, r′) =
−α/4π|r− r′| (α is an adjustable parameter, which might be interpreted as an effective inverse
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screening), give correct lowest excitonic energy at proper choice of the parameters A and α.
These values are of the same order of magnitude for one group of semiconductors - zincblende
or wurtzite, but can be one or two orders of magnitude different for the semiconductors from
different groups.(Turkowski et al., 2009) This suggests that these kernels, similarly to the LDA
case, might be defined by system parameters, in particular the electron density and the volume
of the unit cell. The generalization of this formalism, based on two-particle density matrix,
was used to study the biexcitonic binding energies.(Turkowski et al., 2010)

3.3 Biexcitons

The above formalism can be generalized to the case of multiple excitations, in particular
on the case of biexcitons, correlated double electronic excitations.(Turkowski et al., 2010)
In principle, one can obtain double excitations and possibly coupled (biexcitonic) states
within single-particle TDDFT in the case of non-adiabatic XC kernel. In this case, nonlinear
Casida equation for the eigenenergies will have extra solutions in addition to single-particle
excitations. In this Subsection, we analyze how one can obtain biexcitonic states within
adiabatic approximation since this case corresponds to a transparent biexciton eigenproblem.
In order to find such an approach, one may use the natural orbital (NO) representation for the
stationary electron eigenfunctions.(Giesbertz et al., 2008; 2009; Pernal et al., 2007) In this case
multi-particle excited states can be described by elements of one- and two-electron density
matrices, defined as

γ(x1, x′1, t) = N
∫

dx2

∫
dx3...

∫
dxNΨ(x1, x2, ..., xN , t)Ψ∗(x′1, x2, ..., xN , t), (71)

Γ(x1, x2, x′1, x′2, t) = N(N − 1)
∫

dx3...
∫

dxNΨ(x1, x2, ..., xN , t)Ψ∗(x′1, x′2, ..., xN , t), (72)

where Ψ is the N-particle wave function and xi = (ri, si) denotes the space coordinate and
spin index.(Giesbertz et al., 2008; 2009; Pernal et al., 2007) In principle, all ground state
properties can be obtained from the the single-particle matrix γ(x1, x′1), due to one-to-one
correspondence between the matrix and the ground state many-body wave function Ψ (the
density matrix functional theory generalization of the Hohenberg-Kohn theorem (Gilbert,
1975)). Though to study the excited states the two-electron density matrix is necessary. We
shall concentrate on an effective two-electron theory described by the Hamiltonian

Ĥ(r1, r2, t) = ĥad(r1, t) + ĥad(r2, t) + w[n2](r1, r2, t), (73)

where ĥad is the single-particle TDDFT Hamiltonian (55). In order to have biexcitonic
states in the adiabatic approximation, one can introduce an effective two-particle interaction
w[n2](r1, r2, t) which depends on two-particle density n2(r1, r2, t) = Ψ∗(r1, r2, t)Ψ(r1, r2, t).
Similar to the excitonic case, one can expand the two-electron wave-function in terms of the
NOs χk(r), which in the singlet case gives Ψ(r, r′, t) = ∑k,l Ckl(t)χk(r)χl(r

′), where Ckl(t) is a
symmetric matrix with respect to quantum number indices k abd l. In this case, it is easy to
show that

γ(x1, x′1, t) = ∑
k,l

γkl(t)χk(x1)χ
∗
l (x

′
1), (74)

Γ(x1, x2, x′1, x′2, t) = ∑
klmn

Γklmn(t)χk(x1)χl(x2)χ
∗
m(x

′
1)χ

∗
n(x

′
2), (75)
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where γkl(t) = 2 ∑m Ckm(t)C
∗T
lm (t) and Γklmn(t) = 2Ckl(t)C

∗
mn(t). Some of the elements of the

last two matrices are proportional to the excitonic and the biexcitonic wave functions (with
indices cv and ccvv in the notations of the previous Subsection, correspondingly). Matrix
elements Ckl(t) satisfy the following equation of motion:

i
∂Ckl(t)

∂t
= ∑

r
(hkr(t)Crl(t) + Ckr(t)hrl(t)) +∑

rs
wklrs(t)Crs(t) (76)

with the initial condition Ckl(t = 0) ∼ δkl . The matrix elements hkr(t) are defined above and

wklmn(t) =
∫

dr1

∫
dr2χ∗

k (r1)χ
∗
l (r2)w[n2](r1, r2, t)χm(r1)χn(r2). (77)

From equation (76) one can obtain the equations for γkl(t) and Γklmn(t):

i
∂γkl

∂t
= ∑

r
(hkrγrl − γkrhrl) + ∑

r,s,m
(Γ∗

krsmw∗
msrl − Γkrsmwmsrl) , (78)

i
∂Γklmn

∂t
= ∑

r
(hkrΓrlmn + hrlΓkrmn − hrmΓklrn − hrnΓklmr) + ∑

r,s
(wklrsΓrsmn − w∗

mnrsΓklrs) .(79)

This is a closed system of equations and is the generalization of the single-electron problem
problem from the previous Subsection (at w = 0 and Γ = 0) on the two-electron case. Namely,
at w = 0 in the linear approximation for two bands one obtains the TDDFT-Wannier equation:

Ev
nqγcv

nk,q = ∑
k′

[(
εc

k′+q − εv
k′

)
δkk′ + Fkk′

]
γcv

nk′,q , (80)

where k is the electron momentum and q is the sum of the electron and hole momenta (we
consider more general case of nonzero exciton momentum). The electron-hole interaction Fkk′

is defined in Eq. (69).

Similarly, in the case of two-bands one can obtain the equation for the biexciton function:

0 =

[
i

∂

∂t
− εc

k+q − εc
k′ + εv

k + εv
k′+q

]
Γccvv

k+q,k′,k,k′+q −∑
k′

Gk+q,k′;k̄+q̄,k̄′,k̄,k̄′+q̄Γccvv
k̄+q̄,k̄′,k̄,k̄′+q̄

,

(81)
where Gk+q,k′;k̄+q̄,k̄′,k̄,k̄′+q̄ are the matrix elements of the one- and two-electron density

kernels g1(r, r1, r2) =
δVxc(r)

δn(r1,r2)
and g2(r1, r2, r3, r4) =

δw(r1,r2)
δn(r3,r4)

with respect to the Kohn-Sham

eigendunctions, similar to Fkk′ (we refer the reader to paper (Turkowski et al., 2010), where the
explicit expression for the matrix elements is presented). Eq. (81) can be solved by expanding
the biexcitonic function in terms of the complete set of the excitonic functions γcv

n,k,q with

eigenenergies En,q (n is the number of the bound state). These quantities can be found from
the solution of Eq. (80). The next step is to antisymmetrize the corresponding function with
respect to interchange of holes and electrons. Then one can get the following expressions for
the singlet (−) and triplet (+) biexcitonic functions(Schäfer & Wegener, 2002; Turkowski et al.,
2010):

Γ̃cc′vv′±
k+q,k′,k,k′+q = ∑

n,m

[
γv

n,k+q,qγv′
m,k′+q,−qb±nm,q ∓ γv

n,k′,k′−kγv′
m,k+q,k−k′b±nm,k′−k

]
. (82)
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The solution of the eigenproblem for b±nm,q

∑
n′,m′,q′

[(
ω − Enq − Emq

)
δnn′δmm′δqq′ − H±

nm,n′m′,qq′

]
b±n′m′,q′ = 0, (83)

gives one the biexcitonic eigenvectors and eigenenergies. In the last equation H±
nm,n′m′,qq′

are functionals of the excitonic functions and interaction elements Fkk′ and Gkk′pp′ (see

Ref. (Turkowski et al., 2010)).

We tested the formalism in the case of several semiconductors by using phenomenological
local one-particle kernel f contact

xc (r, r′) and two-particle "contact biexciton" kernels
glocal

1 (r, r1, r2) = −C0A1δ(r − r1)δ(r − r2) and glocal
2 (r, r′, r1, r2) = −A2δ(r − r′)δ(r −

r1)δ(r − r2). It was found that indeed the TDDFT can describe the biexcitonic states in the
adiabatic approximation.

3.4 Nonlinear effects

It is straightforward to extend the formalism developed above to the nonlinear case, including
dynamical exciton-exciton interaction and memory effects. These processes play an important
role in the case of ultrafast processes, including four-wave mixing experiments. So far, these
nonlinear effects were studied only in the framework of many-body effective models. In most
cases, the problem was analyzed by solving a third-order polarization equation. Beyond the
importance of developing the TDDFT approach to describe the ultrafast processes, there is
another important reason for this. Namely, from the experimental data one can learn about
the non-adiabatic structure of the XC kernels, since our knowledge on the non-adiabatic
kernels is much more limited comparing to the static adiabatic case. Below, we analyze
some possible types of the response of the system by taking into account the memory effects
and by using the known asymptotic limits of the XC kernels at low and high frequencies,
and compare qualitatively the TDDFT results with the corresponding phenomenological
many-body solution.

From equation (64) one can obtain the system of equations for the first and the third order
polarizations:

i
∂

∂t
P
(1)
k (t) = [εc

k − εv
k] P

(1)
k (t) + ∑

q

∫
dt′αkq(t, t′)P(1)

q (t′) + dcv
k E(t), (84)

i
∂

∂t
P
(3)
k = [εc

k − εv
k] P

(3)
k + ∑

q

∫
dt′ᾱkq(t, t′)P(1)

k (t)|P(1)
q (t′)|2

+ ∑
q,p,p′

∫
dt′

∫
dt′′

∫
dt′′′βkqpp′ (t, t′, t′′, t′′′)P∗(1)

k (t′)P(1)
p (t′′)P(1)

p′ (t
′′′), (85)

where

αkq(t, t′) = 2
∫

dr

∫
dr′Ψc(0)∗

k (r)Ψ
v(0)
k (r) fxc(r, r′, t, t′)Ψc(0)∗

q (r′)Ψv(0)
q (r′) (86)

ᾱkq(t, t′) = 2
∫

dr

∫
dr′Ψc(0)∗

k (r)Ψ
v(0)
k (r) fxc(r, r′, t, t′)Ψc(0)∗

q (r′)Ψv(0)
q (r′), (87)
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and βkqpp′ (t, t′, t′′, t′′′) is a sum of matrix elements of fXC and its first two derivatives

with respect to the particle density, similar to Eqs. (86) and (87). In the case of four-wave
mixing experiments the system of equations (84), (85) can be solved by solving first the
linear equation, and then the nonlinear effects can be found by solving Eq. (85). To study
nonlinear effects one can also analyze the approximate effective third order equation for the
total polarization which corresponds to the system (84), (85):

i
∂P

∂t
=

(
δ +

β

2
|P|2

)
P − 1

2

(
1 − |P|2

nc

)
Ω − iP∗

2

∫ t

−∞
F(t − t′)P(t′)2dt′, (88)

similar to the many-body equation analyzed in Refs. (Ostreich et al., 1995; 1998). In the last
equation,

δ = εc
k − εv

k,

β ≃ 2
[
α

cc(3)
Hkk − α

vv(3)
Hkk − 2α

cv(1)
Hkk − 2α

cv(1)
kk

]
(0, 0)

+ 2
[

β
cc(2)
kkk − β

vv(2)
kkk

]
(0, 0, 0) + γ

cv(2)
kkkk(0, 0, 0, 0)

F(t, t′) ≃ 1

2

∫
drdr′dr′′Ψc(0)∗

k (r)Ψ
v(0)
k (r) f ′xc(r, t, r′, t, r′′, t′)(|Ψc(0)

k (r′)|2 − |Ψv(0)
k (r′)|2)

× Ψ
c(0)∗
k (r′′)Ψv(0)

k (r′′), (89)

Ω is the Rabi frequency and nc is the maximum density corresponding to the Pauli blocking
term (we neglect the momentum variable below).

As it follows from Eq. (89), the nonlinear time-dependent effects are defined by the
memory function F(t − t′), which depends on the non-adiabatic part of the XC kernel.
In the many-body approach, the memory function usually depends on the exciton-exciton
correlation function, which is difficult to find, so in this case a phenomenological approach
has to be used. For example, as it was proposed in Ref. (Ostreich & Sham, 1999), in the case of
slowly varying polarization the memory term can be approximated by

− iP∗

2

∫ t

−∞
F(t − t′)P(t′)2dt′ ≃ − iP∗

2
P(t)2

∫ t

0
F(t − t′)dt′, (90)

so the time-correlation effects are defined by the function g(t) =
∫ t

0 F(t′)dt′. This function

can be expressed in terms of the spectral density ρ(ω): g(t) ∼
∫ ∞

0 dωρ(ω)ω−1e−iωt. In the
low-frequency limit, which defines the long-time asymptotic behavior of the system, the
spectral density can be approximated by a power low-function ρ(ω) ∼ ωα. This function
defines the dissipation processes in the system, i.e. the role of the environment (other excitons)
on the behavior of given exciton. In the cases when α is smaller, equal or larger than 1, the
dissipation is called "sub-ohmic", "ohmic" and "super-ohmic" (Caldeira & Leggett, 1983). Since
the spectral function must decay at large frequencies, the general form of the spectral density
was approximated by

ρ(ω) = Aωαe−ω/ωF , (91)

where ωF is the frequency scale and A is the normalization constant. Thus, the memory
function can be approximated by(Ostreich & Sham, 1999)

F(t) = A
∫ ∞

0
dωωαe−ω/ωF e−iωt. (92)
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In the case of an one-dimensional model for excitons, the authors of Ref. (Ostreich & Sham,
1999) found α = 1.

One can in principle construct an fXC such that the functions on the right hand sides of the
Eqs. (89) and (92) are equal. In this case, the equation for polarization will coincide with the
many-body equation, and the solution in both cases will be the same. However, as we show
below due to some constraints on the frequency-dependent fXC, the last equation should be
corrected. Namely, it is known that the exact asymptotic of the XC kernel at large frequencies
is fXC ∼ a + bω−2 (van Leeuwen, 2001). In the case of low frequencies, the information about
the exact behavior of fXC is more limited. In particular, it is known that it can have poles in
the case of finite system in the discrete part of the spectrum. To get an idea about possible
frequency-dependence of the XC kernel for all ranges of frequencies one can consider the case
of the homogeneous electron gas, when fXC(ω → 0) → 0, fXC(ω → ∞) → ω−3/2 (Marques
& Gross, 2003). From these results one can suggest the following rather general form for the
non-adiabatic part of the XC kernel:

fXC(ω) = A
ωα

1 + (ω/ωF)
α+β

, (93)

where α is of order of 1, and β = 2, though the case β = 3/2 is also worth of special
attention. Below we solve Eq. (88) in the case of different values of α and β = 1.5 and 2.
We approximate the XC kernel in the following way: fXC(r, t, t′) = f A

XC[n(r, t)] fXC(t − t′),
where f A

XC[n(r, t)] is the adiabatic part and fXC(t − t′) the last term is defined in Eq. (93).
Substitution of this expression into Eq. (89) leads to the following form of the memory
function: F(t) = A

∫ ∞

0 dωωα[1 + (ω/ωF)
α+β]−1e−iωt, where A is the integral over the

derivative of the adiabatic part with respect to the particle density multiplied by the static
wave functions (see Eq. (89)).

We analyze qualitatively possible solutions of Eq. (88) by considering two characteristic cases:
an approximate time-evolution of the excitonic density and collective excitations in the case of
two different memory functions: the exponentially decaying kernel (91) and the TDDFT-type
algebraically decaying kernel (93). The time-dependence of the excitonic density n(t) can

be obtained from the equation for polarization by using the ansatz P0 =
√

n(t)exp(iφ),

which gives n(t) ≃ n(0)[1 + n(0)Re
∫ t

0 g(t′)dt′]−1. One can show that the equilibration takes
much longer time in a more realistic case of the TDDFT spectral function, comparing to the
exponential one (see Fig. 5).

One can analyze the collective excitations in the excitonic system by separating the slow and
fast components of polarization, P = P0 + P1, so the fast component satisfies the following

approximate equation: ∂P1/∂t = −|P0|2
[
iβP1 +

∫ t
0 F(t − t′)P1(t

′)dt′
]

. The eigenvalues of

this equations can be found numerically from the corresponding equation in frequency
representation:

ω/n = β − F(0)
∫ ∞

0

ρ(ω′)dω′

ω′ − ω − i0
(94)

(for details, in particular for the normalization of the function ρ and the spectral sum rule
for F(t), see Ref. (Ostreich & Sham, 1999)). It is possible to show that the number of possible
collective modes increases from 0 to 2 with the exciton density increasing (the zero-frequency
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Fig. 5. The time-dependence of the exciton density in the case of β = 2" (a) and exponential
spectral function (b). We have used the parameters for the 3D model of semiconductor from
(Ostreich & Sham, 1999): β = 52ωx/3, F(0) = 14ω2

x, ωx = 6.7meV. The time is given in units
of 1/ωx and n(0) = 0.1.

mode corresponds to the Goldstone mode). Since at small frequencies the change of the
right hand side of Eq. (94) with frequency is faster in the case of power spectral function,
the critical value for the density above which there are collective oscillations is lower in this
case. Also, the corresponding energies for these oscillations are lower in the case of power
spectral function.

Finally, similar to the many-body case, one can analyze the two-dimensional Fourier spectrum
of the system by taking into account memory effects. It is possible to show that the presence
of the memory function in Eq. (88) can not only result in a shift of the excitonic peak in the
spectrum but also lead to coupled exciton-exciton states. The detailed results of these studies
will be published in the nearest future.

To summarize, we have shown that our TDDFT approach for excitons, despite being at the
early stage of the development, shows to be a very promising and powerful method that can
be used in many applications, in particular in studies of ultrafast processes.
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