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1. Introduction

Non-perturbative solutions of quantum field theory represent opportunities and challenges
that span particle physics and nuclear physics. Increasingly, it is also gaining attention
in condensed matter physics. Fundamental understanding of, among others, the phase
structure of strongly interacting systems, the spin structure of the proton, the neutron
electromagnetic form factor, and the generalized parton distributions of the baryons should
emerge from results derived from a non-perturbative light-front Hamiltonian approach. The
light-front Hamiltonian quantized within a basis function approach as described here offers a
promising avenue that capitalizes on theoretical and computational achievements in quantum
many-body theory over the past decade.

By way of background, one notes that Hamiltonian light-front field theory in a discretized
momentum basis (1) and in transverse lattice approaches (2; 3) have shown significant
promise. I outline here a Hamiltonian basis function approach following Refs. (4–10)
that exploits recent advances in solving the non-relativistic strongly interacting nuclear
many-body problem (11; 12). There are many issues faced in common - i.e. how to (1)
define the Hamiltonian; (2) renormalize for the available finite spaces while preserving all
symmetries; (3) solve for eigenvalues and eigenvectors; (4) evaluate experimental observables;
and, (5) take the continuum limit.

I begin with a brief overview of recent advances in solving light nuclei with realistic
nucleon-nucleon (NN) and three-nucleon (NNN) interactions using ab initio no-core
methods. After reviewing some advances with two-dimensional theories, I outline a
basis function approach suitable for light front gauge theories including the issues of
renormalization/regularization. I present an introduction to the approach for cavity-mode
QED, to systems in the absence of an external cavity and I discuss its extension to QCD.

2. No Core Shell Model (NCSM) and No Core Full Configuration (NCFC) methods

To solve for the properties of self-bound strongly interacting systems, such as nuclei, with
realistic Hamiltonians, one faces immense theoretical and computational challenges. Recently,
ab initio approaches have been developed that treat all the nucleons on an equal footing,
preserve all the underlying symmetries and converge to the exact result given sufficient
computational effort. The basis function approach (11; 12) is one of several methods shown
to be successful. The primary advantages are its flexibility for choosing the Hamiltonian, the
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method of renormalization/regularization and the basis space. These advantages support the
adoption of the basis function approach in light-front quantum field theory.

Refs. (11; 13–18) and (12; 19; 20) provide examples of the recent advances in the ab initio
NCSM and NCFC, respectively. The NCSM adopts a renormalization method that provides
an effective interaction dependent on the chosen many-body basis space (e.g. on the
harmonic oscillator length scale) and on its cutoff (Nmax below). The NCFC either retains the
un-renormalized interaction or adopts a basis-space independent renormalization so that the
exact results are obtained either by using a sufficiently large basis space or by extrapolation
to the infinite matrix limit. Recent results for the NCSM employ realistic nucleon-nucleon
(NN) and three-nucleon (NNN) interactions derived from chiral effective field theory to solve
nuclei with Atomic Numbers 10-13 (15) and Atomic Number 14 (17). For an overview of
the NCSM including applications to reactions and to effective interactions with a core, see
Ref. (18). Recent results for the NCFC feature a realistic NN interaction that is sufficiently
soft that binding energies and spectra from a sequence of finite matrix solutions may be
extrapolated to the infinite matrix limit (20). Experimental binding energies, spectra, magnetic
moments and Gamow-Teller transition rates are well-reproduced in both the NCSM and
NCFC approaches. Convergence of long range observables such as the RMS radius and the
electric quadrupole are more challenging since they are sensitive to the exponential tails of the
nuclear wavefunctions.

It is important to note two recent analytical and technical advances. First, non-perturbative
renormalization has been developed to accompany these basis-space methods and their
success is impressive. Several schemes have emerged and current research focuses on
understanding of the scheme-dependence of convergence rates. Among the many issues
to consider, I note that different observables converge at different rates (19) even within a
fixed scheme. Second, large scale calculations are performed on leadership-class parallel
computers to solve for the low-lying eigenstates and eigenvectors and to evaluate a suite
of experimental observables. Low-lying solutions for matrices of basis-space dimension
10-billion on 215,000 cores with a 5-hour run is the current record. However, one expects
these limits to continue growing as the techniques are evolving rapidly (16) and the computers
are also growing dramatically. Matrices with dimensions in the several tens of billions will
soon be solvable with strong interaction Hamiltonians. Note, however, that it is not simply
the matrix dimension that controls the level of the computational challenge but a set of
issues that includes the sparsity of the Hamiltonian matrix (which depends dramatically on
whether NNN interactions are employed), the density of the eigenvalue spectrum, the range
of excitation energies desired, etc.

In a NCSM or NCFC application, one adopts a 3D harmonic oscillator (HO) with HO energy
ω (using h̄ = 1 units) for all the particles in the nucleus, treats the neutrons and protons
independently, and generates a many-fermion basis space that includes the lowest oscillator
configurations as well as all those generated by allowing up to Nmax oscillator quanta of
excitations. The single-particle states specify the orbital angular momentum projection and
the basis is referred to as the m-scheme basis. For the NCSM one also selects a renormalization
scheme linked to the basis truncation while in the NCFC the renormalization is either absent or
of a type that retains the infinite matrix problem. In the NCFC case (12), one either proceeds
to a sufficiently large basis that converged results are obtained (if that is computationally
feasible) or extrapolates to the continuum limit as I now illustrate.
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Fig. 1. (Color online) Calculated ground state (gs) energy of 12C for Nmax = 2−10 (symbols)
at selected values of ω indicated in the legend. For each ω, the results are fit to an
exponential plus a constant, the asymptote, constrained to be the same for all ω(12).
Horizontal lines indicate the experimental gs and the NCFC result (uncertainty = 0.5 MeV).

I show in Fig. 1 results for the ground state (gs) of 12C as a function of Nmax obtained with a
realistic NN interaction, JISP16 (14). The smooth curves portray fits that achieve asymptotic
independence of Nmax and ω. The NCFC gs energy (the common asymptote) of −94.5 MeV
indicates ∼ 3% overbinding. The assessed uncertainty in the NCFC result is 0.5 MeV indicated
in parenthesis in the figure. The largest 12C calculations correspond to Nmax = 10, with a
matrix dimension near 8 billion. Nmax = 12 produces a matrix dimension near 81 billion
which we hope to solve in the future.

In order to further illustrate the successes of the ab initio NCSM, I display in Fig. 2 the
natural-parity excitation spectra of four nuclei in the middle of the 0p−shell with both the
NN and the NN+NNN effective interactions from χEFT (15). Overall, the NNN interaction
contributes significantly to improve theory in comparison with experiment. This is especially
well-demonstrated in the odd mass nuclei for the lowest, few excited states. The case of the
g.s. spin of 10B and its sensitivity to the presence of the NNN interaction is clearly evident.
The results of numerous ab initio NCSM applications not only show good convergence with
regard to increasing size of the basis space but also have reproduced known properties of
0p-shell nuclei (nuclei up to 16O) as well as explained existing puzzles and made predictions
of, as yet, unexplained nuclear phenomena. I cite another prominent example to illustrate this
point.

We recently evaluated the Gamow-Teller (GT) matrix element for the beta decay of 14C,
including the effect of chiral NNN forces (17). These investigations showed that the very
long lifetime for 14C arises from a cancellation between 0p-shell NN-and NNN-interaction
contributions to the GT matrix element, as shown in Figure 3. The net result is a GT matrix

33Ab Initio Hamiltonian Approach to Light-Front Quantum Field Theory
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Fig. 2. States dominated by 0p-shell configurations for 10B, 11B, 12C, and 13C calculated at
Nmax = 6 using h̄Ω = 15 MeV (14 MeV for 10B). Most of the eigenstates are isospin T=0 or
1/2, the isospin label is explicitly shown only for states with T=1 or 3/2. The excitation
energy scales are in MeV (adopted from Ref (15)).

element close to zero (final point of the green curve in the lower half of Fig. 3) which is far
more consistent with the 5730 year halflife of 14C. The same calculations show that including
the NNN-interactions also bring the binding energies of 14C and 14N into closer agreement
with experiment. These A=14 beta decay results were obtained in the largest basis space
achieved to date with NNN interactions, Nmax = 8, or approximately one billion m-scheme
configurations.

Other noteworthy results include calculations for 12C explaining the measured 12C B(M1)
transition from the g.s. to the (1+, 1) state at 15.11 MeV and showing more than a factor
of 2 enhancement arising from the NNN interaction (13). Neutrino elastic and inelastic
cross sections on 12C were shown to be similarly sensitive to the NNN interaction and their
contributions significantly improve agreement with experiment (13). Working in collaboration
with experimentalists, we uncovered a puzzle in the GT-excited state strengths in A=14
nuclei (21). Its resolution may lie in the role of intruder-state admixtures, but this will require
further work.

In addition to numerous successful applications to spectra and electroweak transitions in light
nuclei, major efforts are underway to develop extensions to ab initio nuclear reactions(18).
Key motivations include the goal to further refine our understanding of the fundamental
strong interactions among the constituent nucleons and to provide, at the same time, accurate
predictions of crucial reaction rates for nuclear astrophysics.

An ab initio approach to nuclear reactions based on the NCSM requires a precise treatment
of the wave-function asymptotics and the coupling to the continuum. These requirements
have led to a new approach, the ab initio NCSM/RGM (22; 23), capable of simultaneously
describing both bound and scattering states in light nuclei, by combining the resonating-group
method (RGM) (24) with the ab initio NCSM. The RGM is a microscopic cluster technique
based on the use of A-nucleon Hamiltonians, with fully anti-symmetric many-body wave
functions built assuming that the nucleons are grouped into clusters. By combining the NCSM
with the RGM, one complements the ability of the RGM to deal with scattering and reactions
with the utilization of realistic interactions and a consistent ab initio microscopic description of
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Fig. 3. (Color online) Contributions to the 14C beta decay matrix element as a function of the
3D harmonic oscillator shell in the basis space when the nuclear structure is described by the
χEFT interaction (adopted from Ref. (17)). Top panel displays the contributions with (two
right bars, the red and green, of each triplet) and without (leftmost bar, the blue bar, of each
triplet) the NNN force at Nmax = 8. Contributions are summed within each shell to yield a
total for that shell. The bottom panel displays the running sum of the GT contributions over
the shells with the same color coding scheme. Two reasonable choices for coupling constants
(red and green components of the histogram and lines) in the NNN-interaction lead to
similar strong suppression of the GT matrix element. Note, in particular, the
order-of-magnitude suppression of the 0p-shell contributions arising from the NNN force.

the nucleonic clusters, while preserving important symmetries, including the Pauli exclusion
principle and translational invariance.

3. Light-front Hamiltonian field theory

It has long been known that light-front Hamiltonian quantum field theory has similarities
with non-relativistic quantum many-body theory and this has prompted applications with
established non-relativistic many-body methods (see Ref. (1) for a review). These applications
include theories in 1+1, 2+1 and 3+1 dimensions. Several of my efforts in 1+1 dimensions, in
collaboration with others, have focused on developing an understanding of how one detects
and characterizes phase transition phenomena in the Hamiltonian approach. To this end, I list
the following developments:
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Fig. 4. Expectation value of the square of the scalar field as a function of the coupling
constant λ at light-front harmonic resolution K=55 for the lowest five excitations of two
dimensional φ4 in the broken phase (27). The pattern of transitions correspond to 5 states
falling with increasing λ and crossing the 5 lowest states, thus replacing them and becoming
the new 5 lowest states. At selected values of λ, the character of the lowest states is indicated
on the figure with the top level of each column signifying the nature of the lowest state.
Successive excited states are signified by the labels proceeding down the column. The letter
“K” represents “kink” while “KK̄K” represents “kink-antikink-kink”.

1. identification and characterization of the quantum kink solutions in the broken symmetry
phase of two dimensional φ4 including the extraction of the vacuum energy and kink mass
that compare well with classical and semi - classical results (25);

2. detailed investigation of the strong coupling region of the topological sector of the
two-dimensional φ4 theory demonstrating that low-lying states with periodic boundary
conditions above the transition coupling are dominantly kink-antikink coherent states (26);

3. switching to anti-periodic boundary conditions in the strong coupling region of the
topological sector of the two-dimensional φ4 theory and demonstrating that low-lying
states above the critical coupling are dominantly kink-antikink-kink states as well as
presenting evidence for the onset of kink condensation(27). Fig. 4 presents the
detailed transition of the lowest 5 mass eigenstates in the broken phase from kink to
kink-antikink-kink structure over a narrow range in the coupling. Increasing the resolution
K shrinks the range in coupling over which the transitions occur.

More recently, full-fledged applications to gauge theories in 3+1 dimensions have appeared
along with roadmaps for addressing QCD. A brief summary of some of the major
developments in 3+1 dimensional Hamiltonian light front field theory includes the solutions
of:

1. light-front QED wave equations for the electron plus electron-photon system (28–30)

2. simplified gauge theories with a transverse lattice (2; 3; 31)
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3. Hamiltonian QED for the electron plus electron-photon system in a trap with a basis
function approach (4; 7; 8) that I discuss in the next section.

4. Hamiltonian QED for the electron plus electron-photon system without an external trap
that I also discuss in the next section(9; 10)

These successes open pathways for ambitious research programs to evaluate non-perturbative
amplitudes and to address the multitude of experimental phenomena that are conveniently
evaluated in a light-front quantized approach. As one important example, consider the
deeply virtual Compton scattering (DVCS) process which provides the opportunity to study
the 3-dimensional coordinate space structure of the hadrons. Recent efforts with model
3+1 dimensional light-front amplitudes (32) have shown that the Fourier spectra of DVCS
should reveal telltale diffractive patterns indicating detailed properties of the coordinate space
structure.

Additional applications include the non-perturbative regime of QED that future experiments
with ultra-strong pulsed lasers will explore, for example, looking for non-perturbative lepton
pair production (33–35). Yet another application resides with the strong time-dependent
QED fields generated in relativistic heavy-ion collisions where puzzling excesses of
electron-positron pairs have been observed (36; 37).

4. Basis light-front quantization applied to QED

We define our light-front coordinates as x± = x0 ± x3, x⊥ = (x1, x2), where the variable x+

is light-front time and x− is the longitudinal coordinate. We adopt x+ = 0, the “null plane",
for our quantization surface. Here we adopt basis states for each constituent that consist
of transverse 2D harmonic oscillator (HO) states combined with discretized longitudinal
modes, plane waves, satisfying selected boundary conditions. This basis function approach
follows Refs. (4–6). Note that the choice of basis functions is arbitrary except for the standard
conditions of orthonormality and completeness. Adoption of this particular basis is consistent
with recent developments in AdS/QCD correspondence with QCD (38; 39).

The HO states are characterized by a principal quantum number n, orbital quantum number
m, and HO energy. Here we adopt the convention that Ω represents both the energy of the
transverse HO trap and the basis representation when the trap is present (i.e we match the
basis to the trap potential). To signal that the trap is absent we use ω to represent the frequency
choice for the basis.

Working in momentum space, it is convenient to write the 2D oscillator as a function of the
dimensionless variable ρ = |p⊥|/√M0Ω, and M0 has units of mass. The orthonormalized HO
wave functions in polar coordinates (ρ, ϕ) are then given in terms of the generalized Laguerre

polynomials, L
|m|
n (ρ2), by

Φnm(ρ, ϕ) = 〈ρϕ|nm〉

=

√

2π

M0Ω

√

2n!

(|m|+ n)!
eimϕρ|m|e−ρ2/2L

|m|
n (ρ2), (1)

with HO eigenvalues En,m = (2n + |m|+ 1)Ω. The HO wavefunctions have the same analytic
structure in both coordinate and momentum space, a feature reminiscent of a plane-wave
basis.

37Ab Initio Hamiltonian Approach to Light-Front Quantum Field Theory
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The longitudinal modes, ψk, in our basis are defined for −L ≤ x− ≤ L with periodic boundary
conditions for the photon and antiperiodic boundary conditions for the electron:

ψk(x−) =
1√
2L

ei π
L k x−

, (2)

where k = 1, 2, 3, ... for periodic boundary conditions (we neglect the zero mode) and
k = 1

2 , 3
2 , 5

2 , ... for antiperiodic boundary conditions. The full 3D single-particle basis state
is defined by the product form

Ψk,n,m(x−, ρ, ϕ) = ψk(x−)Φn,m(ρ, ϕ). (3)

For illustrative purposes, we select a transverse mode with n = 1, m = 0 joined together with
the k = 1

2 longitudinal antiperiodic boundary condition mode of Eq. 2 and display slices of
the real part of this 3-D basis function at selected longitudinal coordinates, x− in Fig. 5. For
comparison, we present a second example with box boundary conditions for the longitudinal
mode in Fig. 6. Our purpose in presenting both Figs. 5 and 6 is to suggest the richness,
flexibility and economy of texture available for solutions in a basis function approach.

Next, we introduce the total invariant mass-squared M2 for the low-lying physical states in
terms of a Hamiltonian H times a dimensionless integer for the total light-front momentum K

M2 + P⊥P⊥ → M2 + const = P+P− = KH (4)

where we absorb the constant into M2. For simplicity, the transverse functions for both
the electron and the photon were taken as eigenmodes of the external trap in our initial
application (7) which we discuss here (below, we present results with the external trap
removed). The noninteracting Hamiltonian H0 = 2M0P−

c for this system with a trap is then
defined by the sum of the occupied modes i in each many-parton state:

H0 =
2M0Ω

K ∑
i

2ni + |mi|+ 1 + m̄2
i /(2M0Ω)

xi
, (5)

where m̄i is the mass of the parton i. The photon mass is set to zero throughout this work
and the electron mass m̄e is set at the physical mass 0.511 MeV in our nonrenormalized
calculations. We also set M0 = m̄e.

The light-front QED Hamiltonian interaction terms we need are the electron to
electron-photon vertex, given as

Ve→eγ = g
∫

dx+d2x⊥Ψ(x)γµΨ(x)Aµ(x)

∣

∣

∣

∣

x+=0

, (6)

and the instantaneous electron-photon interaction,

Veγ→eγ =
g2

2

∫

dx+d2x⊥ Ψγµ Aµ
γ+

i∂+
(γν AνΨ)

∣

∣

∣

∣

x+=0

, (7)

where the coupling constant g2 = 4πα, and α is the fine structure constant. The nonspinflip
vertex terms of Eq.(6) are ∝ M0Ω, whereas spinflip terms are ∝

√
M0Ωme. Selecting the initial

state electron helicity in the single electron sector always as “up” the process e → eγ is nonzero
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Fig. 5. (color online) Transverse sections of the real part of a 3-D basis function involving a
2-D harmonic oscillator and a longitudinal mode of Eq. 2 with antiperiodic boundary
conditions. The quantum numbers for this basis function are given in the legend. The basis
function is shown for the full range −L ≤ x− ≤ L (adapted from Ref. (4)).

for three out of eight helicity combinations, and the process eγ → eγ is nonzero only with all
four spin projections aligned (two out of 16 combinations), resulting in a sparse matrix.

We implement a symmetry constraint for the basis by fixing the total angular momentum
projection Jz = M + S = 1

2 , where M = ∑i mi is the total azimuthal quantum number, and
S = ∑i si the total spin projection along the x− direction. For cutoffs, we select the total
light-front momentum, K, and the maximum total quanta allowed in the transverse mode of

39Ab Initio Hamiltonian Approach to Light-Front Quantum Field Theory
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Fig. 6. (color online) Transverse sections of a 3-D basis function involving a 2-D harmonic
oscillator and a longitudinal mode with box boundary conditions (wavefunction vanishes at
±L). The quantum numbers for this basis function are given in the legend. The basis function
is shown for positive values of x− and is antisymmetric with respect to x− = 0 (adapted
from Ref. (4)).

each one or two-parton state, Nmax, such that

∑
i

xi = 1 =
1

K ∑
i

ki, (8)

∑
i

2ni + |mi|+ 1 ≤ Nmax, (9)

where, for example, ki defines the longitudinal modes of Eq.(2) for the ith parton. Equation
(8) signifies total light-front momentum conservation written in terms of boost-invariant
momentum fractions, xi. Since we employ a mix of boundary conditions and all states have

40 Advances in Quantum Field Theory
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Fig. 7. (color online). Eigenvalues (multiplied by K) for a nonrenormalized light-front QED
Hamiltonian for an electron in an external trap with Ω = 0.05 MeV which includes the
electron-photon vertex and the instantaneous electron-photon interaction. The cutoffs for the
basis space dimensions are selected such that K increases simultaneously with the Nmax.

half-integer total K, we will quote K values rounded downwards for convenience, except
when the precise value is required.

In our approach, the HO parameters Ω, M0, the electron mass me, and the total longitudinal
momentum K appear as prefactors for the matrix elements in the Hamiltonian. Therefore, we
can rather straightforwardly vary the size of the Hamiltonian matrix by keeping Nmax fixed,
and changing K alone. This facilitates examination of the convergence rates at each value of
Nmax.

In our initial applications, we focus on QED and consider a system including only |e〉 and
|eγ〉 sectors in a transverse scalar harmonic trap (7) and, more recently, in the absence of the
external trap (10; 40). Both of these setups, once the Fock space is extended, will be useful for
addressing a range of strong field QED problems such as electron-positron pair production in
relativistic heavy-ion collisions and with ultra-strong pulsed lasers planned for the future. We
adopt the sector dependent non-perturbative renormalization scheme (41).

In Fig. 7 we show the eigenvalues (multiplied by K) for a nonrenormalized light-front QED
Hamiltonian given in Eqs.(5,6,7), with fixed Ω = 0.05 MeV and simultaneously increasing K
and Nmax. The resulting dimension of the Hamiltonian matrix increases rapidly. For Nmax =
K = 2, 10, and 20, the dimensions of the corresponding symmetric d × d matrices are d =
2, 1670, and 26 990, respectively.

The number of the single electron basis states, considering all the symmetries, increases slowly
with increasing Nmax = K cutoff. For Nmax = K = 2, 10, and 20 the number of single
electron basis states is 1, 5, and 10, respectively. Our lowest-lying eigenvalue corresponds
to a solution dominated by the electron with n = m = 0. The ordering of excited states, due
to significant interaction mixing, does not always follow the highly degenerate unperturbed
spectrum of Eq.(5). States dominated by spin-flipped electron-photon components are evident
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ae ≡
g − 2

2
= lim

q2→0
F2(q

2). (10)
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in the solutions. Nevertheless, the lowest-lying eigenvalues appear with nearly harmonic
separations in Fig. 7 as would be expected at the coupling of QED. The multiplicity of the
higher eigenstates increases rapidly with increasing Nmax = K and the states exhibit stronger
mixing with other states than the lowest-lying states. In principle, the electron-photon
basis states interact directly with each other in leading order through the instantaneous
electron-photon interaction, but numerically the effect of this interaction is very weak,
and thus does not contribute significantly to the mixing. Even though we work within a
Fock-space approach, our numerical results should approximate the lowest order perturbative
QED results for sufficiently weak external field.

In the most recent application to QED, we still retain the truncated basis including only |e〉
and |eγ〉 sectors as in Ref. (7). However, we introduce major extensions and improvements.
For a more complete description, I refer to the paper by Zhao, et al. (10) and to a separate
paper (40). Here, I simply list a few of the key extensions and improvements.

1. In order to expand the range of applications, we extend the application of BLFQ to a free
space system by omitting the external transverse trap.

2. In order to improve computational efficiency and numerical precision, we replace
numerical integrations previously used in Ref. (7) to evaluate matrix elements of QED
interaction vertices with newly-developed analytic methods.

3. To achieve improved convergence, we allow the HO basis length scale to be fixed
separately in each Fock sector which allows a more efficient treatment of the transverse
center-of-momentum degree of freedom.

4. We correct the evaluation of the anomalous magnetic moment ae and a factor appearing in
the vertex matrix elements. These corrections go in opposing directions for the previously
evaluated ae in an external trap (7) and updated results will be provided in a separate
paper (40).

5. Results for electron anomalous magnetic moment ae

With the methods and improvements summarized in Secs. 3 and 4, we evaluate and
diagonalize the light-front QED Hamiltonian in |e〉 and |eγ〉 sectors without the external
transverse trap and evaluate ae from the resulting light-front amplitude for the lowest mass
eigenstate.

In Ref. (7) the electron anomalous magnetic moment was approximated (based on
non-relativistic quantum mechanics) by the squared modulus of the helicity-flip (for the
constituent electron) components of the eigenstates. The precise definition of the electron
anomalous magnetic moment in relativistic QED is ae, the electron Pauli form factor F2

evaluated at momentum transfer q2 → 0 (42),

In BLFQ the ae can be calculated by sandwiching the operator corresponding to F2(0) with the
solution for the ground state for the electron with opposing helicities,
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Here 〈eγ, i′|F2(0)|eγ, i〉 is the matrix element of the Pauli form factor in the BLFQ basis. The

〈eγ, i|Ψ↑(↓)
e 〉 is the wavefunction of a physical electron with helicity up (down) in the |eγ〉

sector (the only sector contributing to ae in our truncated basis). The i denotes a complete
set of quantum numbers. Although Eq.(11) involves two electron eigenstates with opposite
helicities, in practice one needs only to solve for one of them and infer the other by exploiting
the parity symmetry in light-front QED (43). The explicit expression for 〈eγ, i′|F2(0)|eγ, i〉 and

the exact relation between 〈eγ, i|Ψ↑
e 〉 and 〈eγ, i|Ψ↓

e 〉 will be reported in a later work (40).

In this work without the external trap we reduce the QED coupling constant α by a factor of
104 in order to reduce higher order effects and facilitate comparison with ae from perturbation
theory (44). In addition, we omit the instantaneous electron exchange vertex for the same
reason.

We define our basis space with total longitudinal momentum K=80 which we found adequate
for the present application but will be extended in the future. In fact, the results presented
in Ref. (10) already extend the basis to K=160. Furthermore, we use 2D HO single-particle
states with frequencies ω ranging from 0.01MeV to 1.4MeV. These ω’s bracket the electron
mass me=0.511 MeV, the only scale-setting parameter in the QED Hamiltonian. At each ω we
calculate ae with Nmax in the range of 10 to 118 to map out its convergence behavior with
increasing Nmax. Larger Nmax translates to a larger basis with higher effective ultraviolet
cutoff and lower effective infrared cutoff in the transverse plane. We expect that, with
increasing Nmax, the results more closely approximate the Schwinger result. The rate of
convergence may be different for different ω’s, depending on ae’s sensitivity to the effective
cutoffs of the basis space. Our results agree with this expectation and approach the Schwinger
result uniformly as Nmax increases with increments of 4.

In Fig. 8 I present the results evaluated with ω=0.1MeV. For comparison, see the results
in Ref. (10) at ω=0.02MeV and ω=0.5MeV. For each ω the results exhibit a simple pattern
with increasing Nmax: the results with even Nmax/2 are systematically larger than those
with odd Nmax/2 so that the former and the latter separate into two individual groups.
Within each group the results define a trend which is understandable by analysis of the
perturbative calculation in light-front QED (10; 39; 40). Other features of these results are
similarly understandable (10; 40).

The data points in Fig. 8 appear to define straight lines as a function of 1/
√

Nmax as can be seen
by the linear fits to all the points shown (solid lines). We can therefore easily extrapolate to
the limit of no basis truncation (Nmax → ∞) where we expect to recover the Schwinger result.
Indeed as seen in Fig. 8 the lines converge close to the Schwinger result in this limit. Their
intercepts at 1/Nmax=0 are: 0.1131(1.0%) and 0.1133(1.4%) for even Nmax/2 and odd Nmax/2,
respectively. The percentages in the parenthesis are their corresponding relative deviation
from the Schwinger result, ae

e2 = α
2πe2 = 1

8π2 ≈0.012665.

ae ≡
g − 2

2
= 〈Ψ↓

e |F2(0)|Ψ↑
e 〉

= ∑
i′ ,i

〈Ψ↓
e |eγ, i′〉〈eγ, i′|F2(0)|eγ, i〉〈eγ, i|Ψ↑

e 〉. (11)
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Fig. 8. (Color online) Anomalous magnetic moment of the electron calculated in BLFQ
compared to the Schwinger result (44). The vertical axis is the square root of anomalous
magnetic moment normalized to electron charge, e, so the Schwinger value is
√

1
8π2 = 0.11254. The horizontal axis is the square root of the reciprocal of Nmax. Symbols are

for the BLFQ results. Squares: even Nmax/2; circles: odd Nmax/2. The HO frequency for the
basis is 0.1 MeV as indicated in the legend. The lines are linear extrapolations of BLFQ results
based on all the points shown which span Nmax = 10 − 118

What is not so apparent from a visual inspection of Fig. 8 is the fact that the extrapolated
values come closer to the Schwinger result if one limits the linear fit to results for only
the larger values of Nmax. For example, if the linear fit is performed for Nmax ≥ 64 the
extrapolated values improve to 0.1129(0.7%) and 0.1130(0.9%) for even Nmax/2 and odd
Nmax/2, respectively. Continuing this avenue of investigation, if the linear fit is performed
only for results with Nmax ≥ 100 the extrapolated values improve to 0.1128(0.4%) and
0.1129(0.6%) for even Nmax/2 and odd Nmax/2, respectively. This is an encouraging sign
of expected systematic improvement with increasing Nmax.

What is also important to note is that these results are systematically improvable. We will
extend the calculations to larger K and Nmax values to further improve accuracy and reduce
extrapolation uncertainties. That is, we will evaluate additional results in regions where they

are expected to scale more accurately as a function of
√

1
Nmax

. In order to compare with the

perturbative result for ae with the rescaling as shown in Fig. 8 (i.e. to achieve results for ae

e2 ) it

is also advantageous to further decrease the fine structure constant below 10−4α, the value for
the results presented here.

6. Conclusion

The recent history of light-front Hamiltonian field theory features many advances that pave
the way for non-perturbative solutions of gauge theories. The goal is to evaluate the light-front
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amplitudes for strongly interacting composite systems and predict experimental observables.
High precision tests of the Standard Model may be envisioned as well as applications to
theories beyond the Standard Model.

We can extend the BLFQ approach to QCD by implementing the SU(3) color degree of freedom
for each parton - 3 colors for each fermion and 8 for each boson. We have investigated two
methods for implementing the global color singlet constraint and we illustrate the resulting
multiplicity of color configurations for each space-spin configuration in Fig. 9. In the first
case, we follow Ref. (45) by constraining all color components to have zero color projection
and adding a Lagrange multiplier term to the Hamiltonian to select global color singlet
eigenstates. This produces the upper curves in each panel of Fig. 9. In the second case,
we restrict the basis space to global color singlets (4–6; 46). The second method produces
the lower curves in each panel of Fig. 9 and shows a factor of 30-40 lower many-parton
basis space dimension at the cost of increased computation time for matrix elements. Either
implementation provides an exact treatment of the global color symmetry constraint but the
use of the second method provides overall more efficient use of computational resources.
Nevertheless, the computational requirements of this approach are substantial, and we foresee
extensive use of leadership-class computers to obtain practical results.
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Fig. 9. (color online) Number of color space states that apply to each space-spin configuration
of selected multi-parton states for two methods of enumerating the color basis states. The
upper curves are counts of all color configurations with zero color projection. The lower
curves are counts of global color singlets (adapted from Ref. (4)).
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I would like to close by mentioning that we are extending the QED application in several
directions. One specific goal is to include the capability for treating strong time-dependent
laser pulses to address non-perturbative QED processes (35). In addition, we are launching
an initial effort to evaluate the properties of charmonium in a BLFQ treatment of QCD with
a first application to the heavy-quarkonia sector leading to predictions for the hybrid states
(states dominated by q-qbar-glue configurations).
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