
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



12 

Responses of River Deltas to Sea-Level and 
Supply Forcing: Autostratigraphic View 

T. Muto1, A.L. Petter2, R.J. Steel3, J.B. Swenson4, A. Tomer1 and G. Parker5 
1Nagasaki University 

2St. Anthony Falls Laboratory, University of Minnesota, Minneapolis 
3Department of Geological Sciences, University of Texas at Austin 

4Department of Geological Sciences, University of Minnesota, Duluth 
5Departments of Civil & Environmental Engineering and Geology, 

University of Illinois, Urbana 
1Japan 

2,3,4,5USA 

1. Introduction 

A long-standing geological notion that dates back to Huttonian theory of the late 18th 

century (Schlager, 1993) suggests that (1) there can exist a balanced state between the effect 

of relative sea level rise and the effect of sediment supply to the depositional system, for 

example evidenced by coastal aggradation and a vertical shoreline trajectory, and that (2) 

regression and transgression reflect imbalances between the two primary drivers: i.e. 

regression when sediment supply dominates sea level rise, and transgression when sea level 

rise dominates sediment supply (Fig. 1A). More specifically, it has been taken as axiomatic 

that given steady external forcing by constant sediment supply (rate QS) and constant 

relative sea level rise (rate Rslr), a river delta grows to achieve an equilibrium configuration, 

produces a particular sediment-stacking pattern and maintains a constant rate of shoreline 

migration in a particular direction (Weller, 1960; Van Andel & Curray, 1960; Sloss, 1962; 

Curray, 1964; Swift, 1968; Swift et al., 1971; Curtis, 1970;  Vail et al., 1977; Mitchum et al. 

1977; Brown & Fisher, 1977; Posamentier et al., 1988; Galloway, 1989; Swift & Thorne, 1991; 

Shanley & McCabe, 1994; Stanley & Warne, 1994; Myers & Milton, 1996; Neal & Abreu, 

2009). We refer to this mode of stratigraphic response as equilibrium response, by which 

steady external forcing results in steady stratigraphic pattern of deposition. 

Autostratigraphy, a fairly new arrival in the field of geology, suggests that this presumed 

mode of stratigraphic response does not hold true in general, but instead that (1) even with 

steady forcing, river deltas generally fail to sustain a constant and uniform stratigraphic 

pattern of deposition (Fig. 1B), and (2) unsteady forcing can result in uniform stratigraphic 

configuration. Exploring such nonequilibrium responses (see below) is essential if we are to 

elucidate the complex stratigraphy that river deltas produce at different time scales. 

Introducing principles of autostratigraphy and related basic notions, the present chapter 

outlines these recent discoveries and gives a synthetic understanding of the origin of 

regression and transgression and of aggradation and degradation in deltaic settings. 

www.intechopen.com



 
Earth Sciences 

 

256 

2. Deterministic autogenesis 

Autogenesis has conventionally been associated with responses that are local (a small part 
of the system), stochastic and cyclic, such as typically illustrated with river avulsion or 
delta-lobe switching. There is also another type of autogenesis that is global (i.e. the entire 
system), deterministic and non-cyclic, as has been noticed recently (Fig. 2). A primary aim of 
autostratigraphy is to explore the latter and their stratigraphic responses, thereafter to 
identify allogenic stratigraphic products and responsible unsteady dynamic external 
forcing. Although stratigraphic records are generally composed of both autogenic and 
allogenic products, conventional stratigraphy has been apt to ignore the importance of 
autogenesis and thus to overrate allogenic processes. 
 

 

Fig. 1. Two different views of the origin of regression and transgression during relative sea 
level rise. (A) Conventional geology of river deltas, inherently based on the recognition of 
equilibrium response, suggests that there exists a balanced state between the effect of relative 
sea level rise (rate Rslr) and the effect of sediment supply (rate QS), and that given magnitudes 
of the two factors, the shoreline migrates at a constant rate in a particular direction. (B) A new 
view, provided by autostratigraphy, claims that regression, vertical aggradation and deltaic 
transgression all reflect transient states of a river delta that given enough time must become a 
nondeltaic transgressive system. Such a shoreline trajectory curve as shown in the diagram has 
conventionally been attributed to temporal change in Rslr or QS rather than nonequilibrium 
response. According to the new viewpoint advocated here, the constant linear shoreline 
trajectories shown in (A) must be due to unsteady dynamic forcing. 

The concept of deterministic autogenesis (Muto & Steel, 2002a; formally defined by Paola et al., 
2009) has given rise to innovative thinking in regard to the geology of river deltas. This new 
concept applied to, for example, typical regressive-transgressive/flooding successions such 
as those shown in Fig. 3A, illustrates that such successions can form solely as autogenic  
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Fig. 2. A conceptual division of the entire field of autogenesis in terms of whether it is on 
large-scale or small-scale and whether stochastic or deterministic. The primary interest of 
autostratigraphy is to explore large-scale and deterministic autogenesis, whereas small-scale 
and stochastic autogenesis has been well studied in conventional sedimentology.  

 

 

Fig. 3. (A) Schematic N-S cross-section through the Middle Jurassic Brent Delta, northern 
North Sea, showing an overall regressive-transgressive succession associated with back-
stepping delta lobes. Simplified from Graue et al. (1987). (B) Longitudinal profile of a delta 
that was built during an experimental run conducted with constant rates of sediment supply 
and sea-level rise. See Muto (2001) for details of the experiments. Note that the stratigraphic 
architecture of the Brent Delta is similar to a significant degree to that of the experimental 
delta. (C) Repeated stochastic autogenesis (lobe switching) interacts with longer term 
deterministic autogenesis to form the details of the shoreline migration pattern reflected in 
the “shazzam” facies boundaries of (A). From Muto & Steel (2001). 
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responses to steady rise of relative sea level (e.g. constant subsidence without eustatic 
fluctuation) in conjunction with steady sediment supply, a result that is reproducible in 
flume/tank experiments (Fig. 3B; Muto, 2001). Consideration of the various forms of such 
deterministic autogenic behavior that may be manifested in nature leads us to believe that 
many existing stratigraphic studies on river deltas require thorough re-examination in light 
of this new perspective. In the following sections we argue the impact of deterministic 
autogenesis on the interpretation of stratigraphy, and as a result, strongly suggest that the 
science of river deltas currently stands at a crossroads for further major advances. 

3. External forcing and stratigraphic responses 

Conventional understanding of river deltas inherently relies on the assumption that 
equilibrium response holds true in general, and consequently is apt to favor the 
interpretation that any large-scale facies break or change in the stratigraphic pattern within 
a deltaic succession reflects unsteady external forcing such as temporal changes in Rslr or QS 
(allogenic general response). However, equilibrium response is not the only response to steady 
forcing, nor even necessarily the expected response. Theoretically, there are two other 
modes of stratigraphic response in such a cause-and-effect relationship. These are autogenic 
nonequilibrium response (unsteady stratigraphic configuration caused by steady forcing) and 
allogenic nonequilibrium response (steady stratigraphic configuration maintained by unsteady 
forcing) (Fig. 4). Nonequilibrium responses essentially arise from downstream 
transformation of the sediment-supply signal from constant to variable due to systematic 
deposition and erosion along the path of transport. Unfortunately, stratigraphic 
interpretation of equilibrium response can often be flawed due to a failure to appropriately 
consider nonequilibrium responses. 
 

 

Fig. 4. Stratigraphic response of a depositional system to external forcing. From the viewpoint of 
a cause-and-effect relationship, we can imagine four different modes of stratigraphic response: 
equilibrium response (steady stratigraphic configuration by steady forcing), autogenic nonequilibrium 
response (unsteady stratigraphic configuration by steady forcing), allogenic nonequilibrium response 
(steady stratigraphic configuration by unsteady forcing), and allogenic general response (unsteady 
stratigraphic configuration by unsteady forcing). The importance of nonequilibrium responses 
has only recently become widely recognized in the geological community.  
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New insight into the problem has been obtained via experimental research on stratigraphy 
in general (Paola et al., 2009), as well as numerical (Muto & Steel, 1992; Milton & Bertram, 
1995; Ritchie et al., 1999; Swenson et al., 2000; Parker et al., 2008a) and experimental research 
(Paola, 2001; Muto, 2001; Muto & Steel, 2001, 2004; Kim et al., 2009) that specifically 
addresses the question of how river deltas react to steady and unsteady forcing. This work, 
when combined with site-specific field application (Muto & Steel, 2002a; Parker et al., 
2008b), provides a view of the problem that differs rather markedly from the conventional 
model in three ways. First, although equilibrium response is possible, it is restricted to very 
specific conditions which are rare in natural systems (Muto & Swenson, 2006). Second, 
steady sea-level forcing is much more likely to generate autogenic nonequilibrium response 
than equilibrium response (Swenson & Muto, 2007). Third, deltaic systems can have 
different stratigraphic responses to the same external forcing depending on geomorphic 
conditions (Petter & Muto, 2008). 
A long-standing geological notion suggests that steady external forcing results in a steady 
stratigraphic pattern of deposition (equilibrium response; Fig. 4), and that this mode of 
stratigraphic response is true in general. Prior to the recognition of nonequilibrium 
responses, any large-scale unsteady stratigraphic features were attributed to unsteady 
external forcing (i.e. allogenic general response). Autostratigraphy suggests that unsteady 
stratigraphic configuration can be caused by steady forcing (autogenic nonequilibrium 
response) and steady stratigraphic configuration can be maintained by unsteady forcing 
(allogenic nonequilibrium responses).  

4. Regression and transgression as nonequilibrium responses  

The nonequilibrium view of river deltas, along with the idea of deterministic autogenesis, has 
led to the following understanding of regression and transgression, two of the basic building 
blocks of stratigraphy. With constant Rslr (>0) and constant QS (>0), it is inevitable that a river 
delta initially experiencing regressive growth must eventually turn around into a transgressive 
mode, which is referred to as autoretreat (Muto & Steel, 1992; Swenson et al., 2000). After the 
onset of shoreline transgression, the subaqueous slope of the delta (foreset) may continue to 
accrete for some time. As sea level rise continues, however, the delta inevitably meets a critical 
event (autobreak; Fig. 3B) in which sediment supply to the delta front eventually drops to zero, 
the delta foreset is abandoned, and the shoreline undergoes rapid transgression by drowning 
(Muto, 2001; Parker et al., 2008a). After this time, the depositional system is no longer deltaic 
because sediment is not delivered beyond the shoreline, but has instead become an estuary 
(sensu Darlymple, 1992). In fact, the stratigraphic record is full of flooding events similar to 
those that arise in response to autobreak (e.g. Fig. 3A). These flooding events, usually defining 
parasequences in sequence stratigraphy, need not be due to eustatic fluctuation but rather may 
arise naturally either from deterministic autogenesis in response to steady subsidence (Rslr = 
const) or stochastic autogenesis (e.g. channel avulsion), or a combination of the two (Muto & 
Steel, 2001; Fig. 3C). 
The primary causes for this nonequilibrium response to steady sea level rise are (1) 
progressive expansion of the river delta both basinwards and laterally due to continuing 
sediment supply, but with increasing tendency for the sediment to deposit landward of the 
shoreline, and (2) continuing rise in relative sea level. Suppose that Rslr and QS are kept 
constant with time. Cumulative sea level elevation increases with time, whereas the 
aggradation rate of the delta averaged over the entire surface area progressively decreases 
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as t-n, where t denotes time and n can vary between 2 and 3. Because of this behavior, a 
prograding delta is intrinsically unable to sustain a constant response to steady sea level 
rise. For the depositional system to maintain its original progradation as a delta, it would be 
necessary for QS or Rslr to change in a specific manner with time. This, by definition, would 
lead to an allogenic nonequilibrium response. Any river delta subjected to steady sea level 
rise cannot therefore sustain a particular depositional style indefinitely, but will inevitably 
experience a nonequilibrium response. If sea level rise continues for a sufficiently long 
duration, the river shoreline may become nondeltaic, for example the upstream end of an 
estuary or drowned valley. The magnitude of Rslr relative to QS does play an important role, 
as these parameters can be used to characterize intrinsic length and time scales of the river 
delta such that the nonequilibrium response is delayed or hastened. Under conditions of the 
same constant sea level rise, a small depositional system fed with low QS will experience 
transgression and become an estuary in a shorter time, whereas a larger system fed with 
high QS will maintain a regressive delta behavior for a longer period of time before 
transgression and drowning (Parker et al., 2008b). Since both of the afore-mentioned 
systems can be coeval, there is thus little basis for correlating a particular deltaic 
stratigraphic pattern to a particular segment of a sinusoidal curve of sea level change. For 
example, the Sabine and Trinity Rivers became nondeltaic (estuarine) during the Postglacial 
sea-level rise, while less than 100 km to the west, the Colorado and Brazos Rivers deposited 
a succession of backstepping delta lobes during the same period (Anderson et al., 1996).  
The autogenic nonequilibrium response of a delta displays variation depending upon the 
initial downstream length of their feeder alluvial river(s) (as measured from e.g. a bedrock-
alluvial transition point). There exists a critical magnitude of alluvial length (Lcrt) for which, 
given Rslr, QS is precisely as large as required to maintain aggradation over the entire length 
of the existing alluvial reach of the river (Tomer et al., 2011). In case a pre-existing alluvial 
length exceeds Lcrt, the shoreline abruptly migrates landward at the onset of sea level rise as 
an estuary rather than a delta. This is because under such conditions QS is no longer 
sufficient to cover the entire length of the existing alluvial river, and thus no river sediment 
reaches the shoreline (i.e., substantially the same as autobreak). Such nondeltaic 
transgression is expected to proceed very rapidly initially, but subsequently decelerate as 
the alluvial length approaches Lcrt. Even though Rslr and QS are held constant, the shoreline 
inevitably follows a concave-upward trajectory as a manifestation of the nonequilibrium 
response. Fig. 5 shows shoreline trajectories estimated with the autoretreat-autobreak model 
(Muto, 2001) for five natural rivers (Fly, Mekong, Mississippi, Brahmaputra and Ebro) 
during Postglacial sea level rise, on the assumption that (1) prior to sea level rise, they had 
extended to the present shelf edge or thereabouts and built deltas there, (2) QS was constant 
but different for each river, (3) Rslr was significantly decreased, or became zero, around 8–6 
kaBP, and (4) the shoreline passed through reference points that are specified based on 
separate evidence from published literature. The simulation suggests that every one of the 
five alluvial systems became nondeltaic and transgressive as soon as the sea level began to 
rise. This is because each of the Glacial lowstand river systems built such an alluvial reach 
with length that far exceeded Lcrt, prior to sea level rise. In the case of the Fly River during 
Postglacial sea level rise, for example, Lcrt is estimated to have been 24 km. Nevertheless the 
river had extended over 900 km to the shelf edge before sea level started to rise. Evidence 
for intense transgression associated with this “overextension” can be found in the modern 
Fly system, which appears to be in a recovery process of deltaic sedimentation starting from 
when sea level rise decelerated (Parker et al., 2008b). Each modeled system possesses a 
unique shoreline trajectory despite similar relative sea-level histories. 
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Fig. 5. Shoreline trajectories estimated via numerical simulation based on the autoretreat-
autobreak geometrical model of Muto (2001). Relevant assumptions are as follows: (1) prior to 
sea level rise, the rivers had extended to present shelf edge positions or thereabouts and built 
deltas there, (2) QS was constant but unique to each river, (3) Rslr was also unique to each river, 
but significantly decelerated around 8-6 kaBP in each case, according to the characteristics of that 
case, and (4) the shoreline migrated via reference points that can be specified with separate 
evidence. The reference points and/or related data were adopted from information in Parker et 
al. (2008b) for the Fly River; Coleman et al. (1998), Harmar & Clifford (2007) for the Mississippi 
River; Tamura et al. (2009), Liu et al. (2009), Xue et al. (2010) for the Mekong River; Somoza et al. 
(1998), Rovira & Ibanez (2007) for the Ebro River; and Goodbred & Kuehl (2000), Goodbed et al. 
(2003), Mikhailov and Dotsenko (2006), Liu et al. (2009) for the Ganges-Brahmaputra River 
system. Note that the Lcrt and L0 values are not related to the scale at the distance from shelf edge. 

5. Aggradation, degradation and grade during falling sea level 

Aggradation and degradation of river deltas with falling sea level is another fundamental 
issue comparable to the question of regression and transgression with rising sea level. It is 
well documented that both aggradation and degradation of river deltas can take place 
during sea-level fall (Schumm, 1993; Blum & Törnqvist, 2000; Van Heijst & Postma, 2001; 
Browne & Naish, 2003; Strong & Paola, 2008). However, the rationale for this apparent 
complexity of behavior remains partially obscure. Recent physical experiments (Muto & 
Steel, 2004; Swenson & Muto, 2007; Petter & Muto, 2008) suggest that nonequilibrium 
response can account for some of this behavior in a straightforward way. 
An understanding of the stratigraphic response of river deltas to falling sea level requires 
a clarification of the concept of grade, the state of a river at which neither net deposition 
nor net erosion take place in spite of continuing sediment supply. Grade therefore 
precisely defines the critical condition discriminating between aggradational and 
degradational river systems. This concept, originally advocated by G. K. Gilbert in the late 
19th century, is often presented as the consequence of long-term equilibrium response of a 
river system subject to stationary sea level. Common beliefs based on equilibrium 
response (Thorne & Swift, 1991; Holbrook et al., 2006) are that (1) alluvial rivers in deltaic 
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settings aggrade in response to sea-level rise and degrade in response to sea-level fall, (2) 
as long as sea level remains stationary, the rivers eventually become graded, and thus (3) 
grade represents the equilibrium configuration of an alluvial river under conditions of 
stationary sea level.  
Such conceptual models of graded rivers downplay the fate of the sediment bypassed 
through the “graded” reach, and in particular, how its sequestration in the deltaic 
environment affects the dynamics of the attached river system. However, if sea level 
remains stationary, rivers continue to aggrade in response to delta progradation, and 
consequently never attain grade. Model experiments to examine the dynamics of the 
downstream and upstream boundaries of alluvial rivers building deltas have shown that 
alluvial grade is physically possible only under rather specific conditions pertaining solely 
to sea-level fall (Jordan & Flemings, 1991; Nummedal et al., 1993; Leeder & Stewart, 1996; 
Muto & Swenson, 2005). Alluvial grade arises in two distinct ways depending on 
geomorphic conditions and characteristics of sea-level fall, for which alluvial slope Sa and 
basin slope Sb are particularly influential (Figs. 6, 7). Where Sa < Sb, alluvial grade is attained 
and sustained by allogenic nonequilibrium response through a particular style of 
decelerating sea-level fall (Muto & Swenson, 2005). If sea level instead falls at a constant rate 
in this geomorphic setting, the river aggrades at an early stage but later degrades by 
autogenic nonequilibrium response (Swenson & Muto, 2007). Where Sa = Sb, alluvial grade is 
attained by equilibrium response at any constant rate of sea level fall (Muto & Swenson, 
2006). Where Sa > Sb, grade is never attained, and the alluvial system simply continues to 
aggrade during sea level fall and the alluvial river finally detaches from the receding 
shoreline, so that the depositional system becomes nondeltaic via autogenic nonequilibrium 
response (Petter & Muto, 2008). Thus, aggradational river deltas tend to undergo autogenic 
nonequilibrium response to constant sea-level fall whereby they eventually become 
nondeltaic (Sa > Sb) or degradational (Sa < Sb). Thus, rivers building deltas, in general, cannot 
maintain a particular growth style for prolonged periods of time, during either sea-level rise 
or fall, and the manner in which sediment is distributed across a basin depends heavily 
upon the geomorphic conditions of the alluvial river and basin (Figs. 6, 7). 

6. Timescales 

Most present-day large deltas have existed through the past 50–60 Ma. However, during this 
time they have continually evolved and changed at much shorter time scales (i.e. the 
autogenic focus of the present argument). Whereas stochastic autogenic responses in river-
delta systems (not discussed in this work) are commonplace at very short timescales (0.1-1 
ka), deterministic autogenic responses require a longer time and minimum basin length. 
Deterministic autogenic responses involving cross-shelf regression and wholesale retreat of 
deltaic complexes have been shown to operate at shelf-transit time scales of 50-200 ka 
(Burgess & Hovius, 1998; Muto & Steel, 2002b; Carvajal & Steel, 2006; Steel et al., 2008). 
Quaternary eustatic sea-level curves show 10–20 m amplitude changes at ka-cyclicity over 
interglacial-to-glacial eustatic fall intervals of 10–100 ka duration (e.g. Stages 4–2; 
Lambeck et al., 2002), though Holocene sea-level rise was relatively steady over a period 
as long as 15 ka. Past greenhouse climate conditions would likely have yielded more 
prolonged periods of sea-level stability. Short allogenic cycles do not give river deltas 
sufficient time to adjust to the changes in boundary conditions, and therefore cannot be 
expected to significantly change the autogenic response of a system. Likewise, low-
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magnitude allogenic forcing may not alter the boundary conditions sufficiently to deter 
autogenic response. The following questions therefore remain outstanding: 1) do allogenic 
boundary conditions remain stable for long enough periods to allow deterministic 
autogenic responses to run their course; and 2) what are the threshold amplitudes and 
frequencies of perturbations in allogenic boundary conditions of river deltas that are 
sufficient to interrupt these responses? These questions have implications for paleo-
environmental interpretation of the stratigraphic record as well as for predicting the long-
term fate of modern river deltas under the effect of climatic change and human impact 
(Ericson et al., 2006; Kim et al., 2009; Syvitski et al., 2009).  

 

 

Fig. 6. Autostratigraphic view of alluvial aggradation and degradation during sea level fall. 
Alluvial grade is physically possible but can be attained and sustained only during sea level 
fall unless the river delta has a fixed downstream boundary. Patterns of sea level fall that 
allow the attainment of grade depend on geomorphic conditions of the deltaic system 
(alluvial slope Sa and basin slope Sb, particularly). Where Sa < Sb, alluvial grade can be 
attained and sustained only with sea level fall of a particular decelerative pattern. If sea level 
drops at a constant rate in this geomorphic condition, the feeder alluvial system aggrades in 
the early stage, but with enough time inevitably becomes degradational. Where Sa = Sb, a 
river delta steadily progrades and sustains grade autogenically only during constant sea 
level fall. Where Sa > Sb, the feeder alluvial system never attains grade, but instead continues 
to aggrade, so evolving from a deltaic system to a nondeltaic system as long as sea level 
continues to fall.  
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Fig. 7. Experimental illustration of the three types of autogenic nonequilibrium response to 
constant sea level fall depending upon geomorphic conditions. The upper and lower images 
represent states 1 and 2, respectively, of the same geomorphic conditions in Fig. 6. Note that 
different river/basement slope relationships can give rise to different patterns of response of 
the systems to constant sea-level fall. Photos adopted from Muto & Steel (2004) and Petter & 
Muto (2008).  

7. How can autogenic and allogenic response be distinguished in the 
stratigraphic record? 

Long-term stratigraphy encapsulates the composite signal of both autogenic and allogenic 
responses. However, the intrinsic nature of autogenic responses makes them a constant 
and predictable signal in the stratigraphic record, and therefore, allogenic responses 
should be interpreted only after the autogenic framework has been established. How 
should this be done? 
The dependence of nonequilibrium response upon the shape of the basin and depositional 
surface is such that it can be easily simulated using geometric models (Paola, 2000; Muto et 
al., 2007; Petter et al., 2011). This requires input concerning basement and fluviodeltaic 
gradients, as well as rates of sea-level change and sediment supply. Comparison of the 
modeled shoreline trajectory with observed trajectories allows the identification of 
deviations from autogenic nonequilibrium response (Muto & Steel, 2002a; Petter et al., 2010; 
Wolinsky et al., 2011). Trajectories resulting from this response are recognized as smooth, 
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concave-up or concave-down curves indicative of decelerating progradation as the system 
expands through time. At each point of deviation from the predicted trajectory, a general 
allogenic response is interpreted, and the geometric model can be reset to new boundary 
conditions at this point. Successive breaks in boundary conditions due to paleo-
environmental changes are thus reconstructed by repeated application of this procedure. 
The parameters required for modeling are readily interpreted from regional geologic 
datasets (Petter et al., 2011).  

8. River deltas and their stratigraphy 

River deltas constitute the single most important agent delivering clastic sediment from land 
to sea. They drive the sedimentary growth of continental margins and fill basins of various 
types. The recognition of nonequilibrium responses in the development of coastal 
stratigraphy has given rise to a new framework of genetic stratigraphy, autostratigraphy 
(Muto et al., 2007), that encompasses both equilibrium and nonequilibrium responses, and 
takes full account of both steady and unsteady external forcing. Autostratigraphic responses 
in river deltas tend to prevent any prolonged continuity of particular growth styles, whether 
during rising or falling sea level forcing. It has also become increasingly clear that 
nonequilibrium response plays a key role in the variety of observed shoreline stacking 
patterns (Kim et al., 2006). Consequently, changes in Rslr or QS condition need not be 
interpreted based on the presence of certain stacking patterns, and said stacking patterns do 
not necessarily predict subsequent stacking patterns (e.g. Neal & Abreu, 2009) since they are 
not manifestations of allogenic response. The stratigraphic record of river deltas therefore 
reflects the extent to which nonequilibrium behavior proceeds between periodic changes in 
boundary conditions caused by external forcing (i.e. tectonic, climatic, or eustatic events). 
Stratigraphic interpretation of coastal plain and shallow-marine strata should be conducted 
with an acute awareness of the intrinsic intermittent character of river-delta growth style.  

9. Conclusion 

Recent developments in experimental stratigraphy and geomorphology have cast doubt on 
a long-standing principal theorem in geology, i.e. that given steady external forcing by 
constant sediment supply and constant relative sea level change, a river delta grows to 
achieve an equilibrium configuration and produces a particular sediment-stacking pattern. 
A new, alternative view that is provided by autostratigraphy tells that (1) even with steady 
forcing, river deltas generally fail to sustain a constant and uniform stratigraphic pattern of 
deposition due to their inherent deterministic autogenesis, and (2) unsteady forcing can 
result in uniform stratigraphic configuration. Exploring such nonequilibrium response is 
essential if we are to elucidate the complex stratigraphy that river deltas produce at different 
time scales. This ongoing change in how we view river deltas and their stratal products 
brings a whole new understanding of the origin of regression and transgression and of 
aggradation and degradation in deltaic settings. 
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