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1. Introduction  

Genes which protect cells from malignant transformation were referred to as tumor 

suppressor genes (TSGs). Since the first description of TSG, Rb (retinoblastoma susceptibility 

gene), a myriad of genes have been identified as TSGs. These TSGs play critical roles in cell 

cycle control, apoptosis, DNA damage detection and repair, adhesion, metastasis, 

senescence, and carcinogen detoxification. Loss function of TSGs may cause uncontrolled 

cell growth and cancer. TSGs may be inactivated by different mechanisms during 

carcinogenesis. In addition to genetic changes, epigenetic aberration plays an important role 

in inactivation of TSGs. Epigenetics is described as heritable changes in gene expression that 

do not involve a change in the DNA sequence (Berger et al., 2009). DNA methylation and 

histone modification are two predominant epigenetic changes. More recently, non-coding 

RNAs were regarded as new epigenetic regulation tools. The purpose of this chapter is to 

describe the effects of epigenetic modification on TSGs.  

2. Epigenetic changes during carcinogenesis  

Initially, cancer was thought to be driven by a series of genetic changes. Epigenetics is now 

recognized as more important player in the initiation and progression of cancers 

(Rodríguez-Paredes & Esteller, 2011). DNA methylation at the cytosine residue of the CpG 

dinucleotides is one of the best-studied epigenetic changes (Bird, 2002; M.M. Suzuki & Bird, 

2008). In normal cells, CpG loci are methylated scatteringly across the genome. By contrast, 

short CpG-rich DNA regions, called ‘CpG islands’, are normally unmethylated. These ‘CpG 

islands’ are preferentially located in the promoter region of about 60% of human genes. 

Global DNA hypomethylation was the first epigenetic alteration found in human cancer 

(Feinberg & Vogelstein, 1983). Hypomethylation may lead to deleterious consequences, 

including genome instability, activation of transposable elements, or loss of genomic 

imprinting (Esteller, 2008). However, promoter-specific hypermethylation was regarded as 

the major epigenetic change of cancer, which is associated with TSGs silencing (Herman & 

Baylin, 2003). 

Histone modification is another kind of epigenetic changes. Histones are subject to a wide 
range of post-transcriptional modifications in their N-terminal tails, including acetylation, 
methylation, phosphorylation, ubiquitination, SUMOylation and ADP-ribosylation 
(Kouzarides, 2007; Campos & Reinberg, 2009). It has been proposed that distinct histone 
modifications form different 'histone codes' (Strahl & Allis, 2000). Generally, histone 

www.intechopen.com



 
Tumor Suppressor Genes 

 

112 

acetylation is associated with transcriptional activation, while the role of histone 
methylation in gene expression relies on the specific residue and methylation state. One of 
the common hallmarks of human cancer is global loss of monoacetylation of lysine (K) 16 
and trimethylation of lysine 20 on histone H4 (H4K16ac and H4K20me3) along with 
hypomethylation in repetitive DNA sequences (Fraga et al., 2005). Conversely, loss of 
acetylation of H3K9 and H4K16 (H3K9ac and H4K16ac) as well as trimethylation of H3K4 
(H3K4me3) and gain of trimethylation of H3K27 (H3K27me3) and dimethylation of H3K9 
(H3K9me2) occur at the promoters of TSGs and contribute to tumorigenesis by silencing of 
these critical genes (Figure 1) (Esteller, 2007a). In brief, aberrant ‘epigenomes’ marked by 
global DNA hypomethylation, promoter-specific hypermethylation, and abnormal histone 
modifications are main epigenetic changes in cancer. Since silencing of TSGs caused by CpG 
island hypermethylation and repressive histone modification is the common epigenetic 
event in human cancers, the following discussion will focus on the epigenetic silencing of 
TSGs during tumorigenesis.  
 

 

Fig. 1. Mechanisms of TSGs silencing by epigenetic changes during carcinogenesis.  

In normal cells, promoter region is unmethylated and possesses active histone modifications 
(e.g., H3K4me and acetylation of H3 and H4). Transcription of TSGs was activated. In cancer 
cells, the promoter region is densely methylated, active histone modifications were lost and 
inactive histone modifications were induced (e.g., hypoacetylation of histones H3 and H4, 
loss of H3K4me3, and gain of H3K9me and H3K27me3). MBDPs bind to methylated DNA. 
HDACs and HMTs were recruited. Transcription of TSGs was inactivated.  
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3. DNA methylation of TSGs  

3.1 DNA methyltransferase  

DNA methylation is catalyzed by DNA methyltransferases (DNMTs), which add methyl 

groups to the cytosine of CpG dinucleotides. Three main DNMTs have been identified. 

DNMT1 maintains the existing methylation patterns following DNA replication, whereas 

DNMT3A and DNMT3B are responsible for de novo methylation patterns (Bird, 2002; M.M. 

Suzuki & Bird, 2008). Overexpresion of DNMTs has been observed in cancers, which 

contributes to CpG island hypermethylation of TSGs and concomitant silencing of gene 

expression (Robert et al., 2002; Nosho et al., 2009). Although DNMTs have been classified as 

maintenance or de novo methyltransferases, all three DNMTs participate in both de novo and 

maintenance methylation, and cooperate to silence TSGs in human cancer (Rhee et al., 2000; 

G.D. Kim et al., 2002; Rhee et al., 2002). More recently, three independent groups revealed 

that somatic mutations in DNMT3A occur in acute myeloid leukemia (AML), and lead to 

some gene expression and methylation changes (Shah & Licht, 2011). The other DNMTs, 

including DNMT3L and DNMT2, were reported recently. DNMT3L appears to be required 

for the methylation of imprinted genes in germ cells, and interacts with DNMT3a and 3b in 

de novo methyltransferase activity (Chen et al., 2005). But the biological function of DNMT2 

remains unclear, its strong binding to DNA suggests that it may mark specific sequences in 

the genome (Dong et al., 2001).  

3.2 Hypermethylation of TSGs in cancer  

Promoter region hypermethylation is accepted as the mechanism of inactivation of TSGs in 

human cancers. The initial finding of CpG island hypermethylation of Rb in human cancer 

(Greger et al., 1989) was followed by the discovery of other TSGs undergoing methylation-

associated inactivation, such as VHL (von Hippel-Lindau tumor suppressor), p16INK4a 

(cyclin-dependent kinase inhibitor 2A [CDKN2A]), BRCA1 (breast-cancer susceptibility  

gene 1), and hMLH1 (mutL homolog-1) (Esteller, 2002, 2008). These methylated TSGs are 

distributed in all cellular pathways relevant to tumor development, such as cell cycle 

regulation, DNA repair, apoptosis, transcriptional regulation, carcinogen-metabolism and 

drug resistance, angiogenesis, metastasis and cell-adherence (Esteller, 2002, 2008). 

Hypermethylation of TSGs occurs at any time during carcinogenesis, especially in the early 

stages of the neoplastic process, which may facilitate cells to obtain further genetic lesions 

(Feinberg et al., 2006). One example is hypermethylation of DNA repair gene MGMT  

(O6-methylguanine-DNA methyltransferase) in the early phase of tumorigenesis, which 

results in the accumulation of genetic mutations that arise from the defects in DNA repair 

(Esteller et al., 2001a; Kuester et al., 2009). In addition, silencing of TSGs by promoter 

hypermethylation also let neoplastic cells addict to a particular oncogenic pathway, such as 

loss of SFRP (secreted frizzled-related proteins) expression in early stage of colon cancer 

activating the Wnt pathway (Baylin & Ohm, 2006). Furthermore, hypermethylation-induced 

silencing of transcription factors, such as GATA-4 and GATA-5 in colorectal and gastric 

cancers (Akiyama et al., 2003) as well as in esophageal cancer (Guo et al., 2006a), can also 

lead to inactivation of their downstream targets. Importantly, the increasing atypia observed 

at the histologic level is associated with the increasing number of methylated CpG islands at 

gene promoter regions. Our previous study suggested that the accumulation of DNA 

methylation was happened during esophagus carcinogenesis (Guo et al., 2006b).  
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The patterns of aberrant methylation of TSGs may represent different tumor types (Costello 

et al., 2000; Paz et al., 2003). Hypermethytion of GSTP1 (glutathione S-transferase-) was 

found in 80–90% of prostate cancers but hardly in other tumor types (Lee et al., 1994; Esteller 

et al., 1998; Cairns et al., 2001). Another finding indicated that CDX2 (caudal related 

homeobox gene) methylation is a feature of squamous esophageal cancer (Guo et al., 2007). 

Tumor-type specific hypermethylation occurs not only in sporadic tumor but also in 

inherited cancer syndromes (Esteller et al., 2001b), where hypermethylation serves as the 

second hit in the Knudson's two-hit model for TSG inactivation (Grady et al., 2000). But 

some TSGs, such as BRCA2, hMSH2, hMSH3, hMSH6, p19INK4d, CHK1, CHK2, MTAP and 

NKX3.1, are rarely methylated in caner (Esteller, 2007b). The mechanism of tumor-type 

specific methylation remains unclear. Several hypotheses have been proposed to explain this 

phenomenon: (1) in certain tumor type hypermethylation might occur at particular genes 

which confer a selective clonal advantage; (2) there are common sequence motifs in the 

hypermethylated promoters of TSGs (Esteller, 2007b); (3) selective DNA methylation can be 

directed by other chromatin players, such as Polycomb proteins, pinpointing ‘methylable’ 

islands (Schlesinger et al., 2006; Esteller, 2007b).  

3.3 Mechanisms of TSGs silencing by DNA methylation  

It was proposed as one of the mechanisms that DNA methylation may directly block the 
specific binding sites of transcription factors (Comb & Goodman, 1990; Deng et al., 2001). 
Another more acceptable mechanism is that methyl-CpG-binding proteins (MBDPs) 
recognize m5CpG sequences and silence transcription. There are five well-known MBDPs 
which were regarded as important “translators” between DNA methylation and 
transcriptional silencing, including MeCP2, MBD1, MBD2, MBD3 and MBD4 (Lopez-Serra & 
Esteller, 2008). MBDPs bind to methylated DNA, and then histone modification enzymes 
were recruited to establish silenced chromatin model (Nan et al., 1998; Fuks et al., 2003).  

4. Regulation of TSGs by histone modifications  

Hypermethylation of TSGs in human cancer was extensively studied. But limited researches 

were performed on the regulation of gene expression by histone modifications. One of the 

main reasons is lacking rapid and comprehensive methods to analyze the histone 

modifications (Esteller, 2007a; Taby & Issa, 2010). Importantly, the effective histone 

modifications were discovered during the past decade, especially histone acetylation and 

methylation on TSGs regulation.  

4.1 Histone acetylation 

Histone acetylation occurs mainly at lysine residues of the H3 and H4, and makes RNA 
polymerase and transcription factors easier to access the promoter region. Therefore, in 
general, the acetylation of histone lysines is associated with euchromatin and transcriptional 
activation of gene expression, whereas the deacetylated residues are associated with 
heterochromatin and transcriptional gene silencing. Histone acetyltransferases (HATs) and 
deacetylases (HDACs) are, respectively, responsible for the addition and removal of acetyl 
groups from lysine residues. The precise balance between HATs and HDACs determines the 
status of histone acetylation (Ellis et al., 2009; Taby & Issa, 2010). In cancer cells, disruption 
of the balance between HATs and HDACs contributes to transcriptional inactivation of 
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TSGs. The typical example of gene silencing by this mechanism is the inactivation of cyclin-
dependent kinase inhibitor p21WAF1 by hypoacetylation in the absence of CpG-island 
hypermethylation (Richon et al., 2000). Interestingly, some TSGs with CpG island 
hypermethylation, can also be re-expressed through inhibition of SIRT1 (a class III HDAC), 
which increases H4K16 and H3K9 acetylation at promoters without affecting the 
hypermethylation status (Pruitt et al., 2006). Furthermore, in addition to regulation of TSGs 
at transcriptional level, HATs/HDACs influence the activity of TSGs by post-translational 
modifications (Glozak et al., 2005). For example, p53 is subjected to extensive acetylation 
mediated by HATs such as Tip60 (Sykes et al., 2006) and p300 (Gu & Roeder, 1997) and can 
be deacetylated by HDACs like SIRT1 (Yi & Luo, 2010). The aberrant histone acetylation of 
TSGs during carcinogenesis may result from the alteration in HATs/HDACs. Inactivation of 
HAT activity through gene mutation (e.g., missense mutations of p300) or viral oncoproteins 
(e.g., the inactivation of p300 by E1A and SV40) has been reported in both hematological 
and solid tumors, whereas misdirection of HAT activities as a result of chromosomal 
translocations (e.g., mixed lineage leukemia protein [MLL]-CBP [MLL-CBP]) has been 
implicated in the onset and progression of acute leukemia (Ellis et al., 2009). On the other 
hand, overexpression of HDACs in solid tumors (Song et al., 2005) and aberrant recruitment 
them to specific promoters through interaction with proto-oncogenes in leukemias (Ellis et 
al., 2009) have also been reported.  

4.2 Histone methylation  

Similar to histone acetylation, histone methylation is dynamically regulated by the opposing 

activities of histone methyltransferases (HMTs) and histone demethylases (HDMTs), such as 

KDM1/LSD1 and the Jumonji domain-containing protein (JMJD) family. Methylation takes 

place on both lysine and arginine residues, and has different degrees, known as mono-, di-, 

and tri-methylation. In most instances, methylation at H3K9, H3K27 and H3K20 is 

associated with transcriptional repression, whereas methylation of H3K4, H3K36 and 

H3K79 is associated with transcriptional activation (Ellis et al., 2009; Taby & Issa, 2010). The 

shifting of balance between HMTs and HDMTs in cancer also causes the silencing of TSGs. 

For instance, the H3K27me3-specific HMT EZH2 (enhancer of zeste homolog 2), catalytic 

subunit of PRC2 (Polycomb-repressive complex 2), is overexpressed in a broad range of 

hematopoietic and solid tumors, including prostate, breast, colon, skin and lung cancer 

(Tsang & Cheng, 2011). Mechanistically, the overabundance of EZH2 in cancer leads to 

transcriptional silencing of TSGs, such as RUNX3 and DAB2IP through trimethylation of 

H3H27 (Fujii et al., 2008; Min et al., 2010). Conversely, the H3K27me3 repressive mark is 

demethylated by UTX/JMJD3 proteins, which belongs to JMJD family (Agger et al., 2007). 

Loss-of-function mutations of UTX in human cancers suggest UTX as a tumor suppressor 

gene (Van Haaften et al., 2009). This mutation could increase H3K27me3 level, and inactive 

Rb (Herz et al., 2010; J.K. Wang et al., 2010). The altered expression profiles of other histone 

methylation-modifying enzymes or abnormal targeting of these enzymes also contribute to 

inactivation of TSGs, such as downregulation of BRCA1 in breast cancer cells caused by 

overexpression of PLU-1 (a member of JMJD family responsible for demethylation of H3K4) 

(Yamane et al., 2007). Finally, it is worth to be mentioned that the histone methylation-

modifying enzymes also directly target non-histone proteins (Lan & Shi, 2009). Similar to the 

case of acetylation, p53 activity can be regulated by methylation or demethylation through 

HMTs or HDMTs (Huang et al., 2007, 2010).  
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5. Regulation of TSGs by interplay between DNA methylation and histone 
modifications 

In addition to the independent effect, DNA methylation and histone modifications may 

interact with each other to reorganize chromatin structure and gene expression (Cedar & 

Bergman, 2009; Murr, 2010). Promoter region hypermethylation of TSGs is associated with 

histone modifications in cancer cells (e.g., hypoacetylation of histone H3 and H4, loss of 

H3K4me3, and gain of H3K9me and H3K27me3) (Esteller, 2008) (Figure 1). These 

connections might be carried out by the direct interaction of DNA methylation machinery 

and histone modification enzymes (Cedar & Bergman, 2009). However, the question of 

which epigenetic change is the initial event still remains controversial. Emerging evidence 

indicates that histone modifications may induce DNA methylation. For example, H3K9me2 

may be necessary for DNA methylation in some TSGs, such as p16INK4a (Bachman et al., 

2003). In this model, H3K9me2 can serve as a binding site for heterochromatin protein 1 

(HP1), and thus generating a local heterochromatin by interacting with DNMTs and HDACs 

(Smallwood et al., 2007). On the other hand, DNA methylation machinery may recruit 

histone modification enzymes as well. The dynamic epigenetic silencing of GSTP1 in 

prostate cancers is one of the good examples. It was reported that CpG island methylation of 

GSTP1 played a critical role in deacetylation of H3K9 and concomitant methylation of H3K9 

(Stirzaker et al., 2004). The link of DNA methylation and histone modifications might be 

mediated by MBDPs, which could recruit the HDACs and HMTs to the promoter 

methylated target genes (Nan et al., 1998; Fuks et al., 2003; Stirzaker et al., 2004). 

Furthermore, DNMTs themselves are associated with histone modification enzymes, such as 

HDACs (Fuks et al., 2000), and G9a (Estève et al., 2006).  

6. Regulation of epigenetic modification machinery by TSGs  

The roles of epigenetic modifications in regulation of TSGs expression are widely 

accepted. As transcription factors, some TSGs may be involved in regulation of the 

epigenetic modification machinery. p53, one of the most well-documented TSGs, has been 

reported to regulate histone modification. HATs, such as p300/CBP and TRRAP, are 

recruited to target gene depended on binding of p53 to promoter, and thus induces gene 

expression (Barlev et al., 2001; Vrba et al., 2008). At the same time, p53 may cause 

repression of a subset target genes, such as MAP4, AFP and Nanog through recruiting 

SIN3A-HDAC (Murphy et al., 1999; Lin et al., 2004; Nguyen et al., 2005). More recently, 

Zeng et al showed that p53 recruit both HDAC and PcG to ARF locus to repress its 

expression by a negative feedback manner during normal cell growth (Zeng et al., 2011). 

Similar example was reported in RB protein. RB-mediated transcriptional repression was 

induced through the association with a variety of chromatin modification and remodeling 

enzymes, including DNMTs, HDACs, HMTs (Luo et al., 1998; Robertson et al., 2000; 

Kotake et al., 2007) and Brg1/Brm (Dunaief et al., 1994; Strober et al., 1996). The other 

examples, such as maspin was also known to direct epigenetic regulation. Maspin was 

regarded as an endogenous inhibitor of HDAC1 (Li et al., 2006). It is noticeable that the 

interaction of TSGs and histone modification enzymes may produce different outcomes. 

TSGs and histone modification enzymes may regulate each other, which may be 

determined upon different cellar states. 
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7. Non-coding RNAs enter epigenetic world  

Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for proteins. 
Based on size, they are divided into different classes: long ncRNAs (lncRNAs), Piwi-
interacting RNAs (piRNAs), small interfering RNAs (siRNAs), microRNAs (miRNAs), etc 
(Brosnan & Voinnet, 2009). NcRNAs can regulate gene expression through a diversity of 
mechanisms. Recently, a handful of studies have implicated ncRNAs in a variety of disease 
states, especially in cancer. Many ncRNAs, such as miRNAs and lncRNAs could play the 
similar roles as TSGs, and also function as oncogens that in turn regulate the expressions of 
TSGs in transcriptional and post-transcriptional level.  

7.1 Interplay between MiRNAs and epigenetic machinery  

MiRNAs are small ncRNAs with 19~22nt, which regulate gene expression via translational 
inhibition or mRNA degradation in a sequence-specific manner. MiRNAs could function as 
TSGs or oncogenes in cancer. In the last few years, increasing evidence has indicated that a 
substantial number of miRNA genes with tumor suppression functions are associated with 
CpG islands and silenced by epigenetic alterations in cancers. Indeed, miR-127 was found to 
be embedded in a CpG island region and epigenetically silenced by both promoter 
hypermethylation and histone modifications in cancer cells, and could be reactivated 
following treatment with combination of DNA demethylating agent and HDAC inhibitor 
(Saito et al., 2006). miR-9-1 was also found to be hypermethylated and consequently down-
regulated in breast cancer (Lehmann et al., 2008) as well as the hypermethylation of clustered 
miR-34b and miR-34c in colon cancer (Toyota et al., 2008). Intriguingly, miRNAs are not only 
epigenetically regulated but also act as chromatin modifiers to regulate the gene expression 
(Valeri et al., 2009). Fabbri et al reported the first evidence that miR-29s (miR-29a, -29b, -29c) 
directly target DNMT3a and DNMT3b (Fabbri et al., 2007). After miR-29s treatment, the 
epigenetically silenced TSGs like p15INK4b and ESR1 were re-expressed comparably to use of 
DNMT inhibitors (Fabbri et al., 2007; Garzon et al., 2009). Similarly, HMTs are also targets of 
miRNAs. Studies have shown that miR-101 exerts its tumor suppressive properties by 
targeting the EZH2 (Varambally et al., 2008; Friedman et al., 2009).  

7.2 LncRNA: A new player in epigenetics  
LncRNAs are emerging as new players in human cancers with potential roles in both 
oncogenic and tumor suppressive pathways, and the most fascinating thing is that they 
could play crucial roles in epigenetic modifications. Notably, evidence has suggested that 
lncRNAs can mediate epigenetic changes by recruiting chromatin remodeling complexes to 
specific genomic loci (Mercer et al., 2009). For example, ANRIL, a antisense to the 
INK4n/ARF/INK4a promoter, interacts with PRC1 component CBX7 to repress the 
transcription of INK4n/ARF/INK4a locus (Yap et al., 2010). On the other hand, lncRNAs 
could function as TSGs and modulate the epigenetic machinery by interaction with other 
proteins. In response to DNA damage, ncRNAs transcribed from the 5′ regulatory region of 
CCND1, binds to and activate TLS, which inhibits CBP/p300 histone acetyltransferase 
activities leading to repression of CCND1 transcription (X. Wang et al., 2008).  

8. Screening candidate TSGs by epigenetic strategies  

TSGs are generally silenced by CpG island hypermethylation and repressive histone 
modifications. So, epigenetic signatures may be applied to screen tumor suppressor. It is 
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important to isolate epigenetically silenced genes in cancer. To this end, many procedures 
were reported. For example, by comparation of genes expression level before and after 5-
aza-2’-deoxycytidine (5-aza-CdR) treatment, Suzuki et al isolated hypermethylation silenced 
genes SFRPs in colonic cancer cell lines and further analyzed their tumor suppressor 
function (H. Suzuki et al., 2002). Similarly, Gery et al employed microarray analysis to 
identify genes reactivated in lung cancer after combined treatment with 5-aza-CdR and 
SAHA. In this screen, Per1 was identified as a candidate tumor suppressor in lung cancer, 
and DNA hypermethylation and histone H3 acetylation are potential mechanisms for 
silencing Per1 (Gery et al., 2007). For the promoter CpG island hypermathylation detection, 
anti-mC immunological techniques, HPLC-TLC, HPCE, ERMA, bisulphite sequencing, MSP, 
MSP-ISH and DNA methylation mircroarray were employed (Laird, 2003). ChIP, ChIP 
coupled with microarray hybridization (ChIP-chip), ChIP coupled with next-generation 
DNA sequencing (ChIP-seq), mass spectrometry (Rasoulpour et al., 2011) were used to 
determine the regional or global repressive histone modifications (deacetylation of specific 
H3 and H4 lysine or methylation of H4K9/27 even the combination). 

9. Clinical application  

Understanding of how epigenetic alterations contribute to TSGs regulation would facilitate 
its transformation and clinical application. Based on the characters of stability, variability 
and reversibility, epigenetic modifications have potentials as both cancer biomarkers for 
detection, prognosis, and therapy prediction, and drug targets for cancer therapy (Mulero-
Navarro & Esteller, 2008).  

9.1 Epigenetic biomarkers  

As described previously, each tumor type may be represented by a different methylation 
pattern. Promoter region Hypermethylation usually occurred in the early stage of 
carcinogenesis. Therefore it is possible to detect early lesions by examination of TSGs 
methylation. Previous study has shown that HIN-1 (high in normal-1) methylation is an 
early event of human esophageal cancer (Guo et al., 2008). TSGs methylation can also be the 
predictors of tumor prognosis. For example, methylation of the promoter region of p16INK4a, 
CDH13 (H-cadherin gene), RASSF1A (Ras association domain family 1 gene) and APC 
(adenomatous polyposis coli gene) in patients with stage I NSCLC treated with surgery is 
associated with increased risk of early recurrence (Brock et al., 2008). In addition, DNA 
methylation may serve as chemotherapy predictor. The representative methylation markers to 
predict drug-responsiveness are MGMT (Esteller et al., 2000), hMLH1 (Plumb et al., 2000), 
WRN (the Werner syndrome–associated gene) (Agrelo et al., 2006), IGFBP-3 (insulin-like 
growth factor–binding protein-3) (Ibanez et al., 2010), or BRCA1 (Veeck et al., 2010) (Table 1).  

9.2 Epigenetic agents  

Unlike genetic mutations, epigenetic silenced TSGs can be awakened by drugs. Many 
epigenetic drugs have been discovered to rescue the functions of TSGs by reversing aberrant 
epigenetic changes. US Food and Drug Administration (FDA) have approved four 
epigenetic drugs for cancer therapy. Two DNMT inhibitors, 5-aza-CR (vidaza) and 5-aza-
CdR (decitabine), were used in the treatment of myelodysplastic syndromes and leukemia, 
while two HDAC inhibitors, vorinostat (suberoylanilide hydroxamic acid [SAHA]) and 
romidepsin (FK-228), were applied in cutaneous T cell lymphoma (Rodríguez-Paredes & 
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Esteller, 2011). These drugs can be administrated in combination or independent manner. 
Despite promising results, epigenetic related therapy still remains challenge. Similar with 
epigenetic changes in TSGs, ncRNAs pattern in cancer may serve as diagnosis, prognosis 
and chemosensitivity marker and therapeutic target.  
 

Hypermethylated 
TSGs 

Gene Function 
Representative 
Cancer Type 

Ref. 
Potential Clinical 

Application 

GSTP1 
Conjugation to 

glutathione
Prostate cancer 

(Lee et al., 
1994)

Detection 

GATA-4/-5 
Transcription 

factor 
esophageal 

cancer 
(Guo et al., 

2006a) 

APC Wnt signaling 
Colorectal 

cancer; breast 
cancer 

(Mulero-
Navarro & 

Esteller, 
2008) 

CDX2 
Homeobox

transcription 
factor 

Squamous 
esophageal 

cancer 

(Guo et al., 
2007) 

p16INK4a 
Cyclin-

dependent 
kinase inhibitor

Colorectal 
cancer 

(Esteller et 
al., 2001c) 

Prognosis 

SFRP1 
Antagonists of 
Wnt signaling 

Breast cancer 
(Veeck et 
al., 2006) 

DAPK Pro-apoptotic NSCLC 
(Tang et al., 

2000) 

EMP3 
myelin-related 

gene
glioma and 

neuroblastoma
(Alaminos 
et al., 2005)

CDH1 
E cadherin, cell 

adhesion 
NSCLC 

(D. S. Kim 
et al., 2007) 

CDH13 
H cadherin, cell 

adhesion 
NSCLC 

(D. S. Kim 
et al., 2007) 

MGMT 
DNA repair of 

06–alkyl-
guanine 

gliomas 
(Esteller et 
al., 2000) 

Chemosensitivity 

hMLH1 
DNA mismatch 

repair 
Ovarian and 
colon cancer 

(Plumb et 
al., 2000) 

BRCA1 
DNA repair, 
transcription

Breast cancers 
(Veeck et 
al., 2010)

WRN DNA repair 
Colorectal 

cancer 
(Agrelo et 
al., 2006) 

IGFBP-3 
Growth-factor-
binding protein 

NSCLC 
(Ibanez et 
al., 2010 

CDH1 (E cadherin), EMP3 (epithelial membrane protein 3), DAPK (death-associated protein kinase). 

Table 1. Representative epigenetic markers in cancer. 
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10. Conclusion 

Aberrant epigenetic changes play important roles in human carcinogenesis. Major 

epigenetic changes include DNA methylation, aberrant histone modification and alterations 

of noncoding RNA patterns. The expression of TSGs was regulated by epigenetic 

modification. Epigenetic silencing of TSGs by promoter region hypermethylation in 

combination with repressive histone modifications was recognized as a common feature of 

various human cancers. Undoubtedly, understanding of the inactivation of TSGs is of 

fundamental importance in exploration of the pathogenesis and progression of cancer, and 

thus facilitating to yield attractive cancer biomarkers and therapeutic targets. The pivotal 

roles of ncRNAs in the development of cancer have refreshed the complicated epigenetic 

network, which provides a possibility on developing ncRNAs mediated diagnostics, 

prognostics and therapeutics. It is possible, in the near future, to find novel cancer-specific 

biomarkers and gene-specific drugs with low cytotoxicity.  
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