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1. Introduction 

Head and neck squamous cell carcinoma (HNSCC) tumors function much like organs with 
support from multiple cell lineages. Tobacco and alcohol abuse are strongly correlated with 
the disease. Environmental carcinogen exposure introduces genetic alterations not only in 
the epithelial cells but also in the surrounding stroma contributing to tumor initiation and 
progression [1]. Factors and cells that do not support tumor growth are commonly 
downregulated or mitigated in the tumor microenvironment. Several classes of stromal cells 
that exist in close proximity with HNSCC tumors have been identified. These include 
fibroblasts, immune cells and cells involved in vascular growth. Each of these cell types are 
involved in molecular cross-talk with the tumor resulting in tumor progression (Figure 1). 
Here we highlight each of the major cell types present in the HNSCC tumor 
microenvironment. Well characterized molecular markers have been used to identify the 
specific stromal cellular components (Table 1). There continues to be a tremendous need for 
improved understanding of the role of each of these cell types in tumor growth, 
dissemination and resistance to therapies. Tumor-associated stroma can support tumor cell 
proliferation, angiogenesis and invasion making them potential therapeutic targets.  Since 
de novo acquisition of genetic mutations is not common in stromal cells they may be less 
prone to developing resistance to therapy via genomic instability. The synergistic 
relationship between stroma and tumor cells suggests that stroma targeted intervention may 
have a synergistic role in primary cancer therapy. However, fibrosis that follows surgery, 
chemotherapy and radiotherapy may trigger the release of stromal factors that support 
recurrence and metastasis. Thus stroma targeted therapies may emerge as important in 
adjuvant setting. 

2. Tumor associated fibroblasts 

Fibroblasts are important components of the mesenchymal stroma Though they appear 
morphologically similar, fibroblasts show large differences in their functions and patterns of 
gene expression depending on their anatomical site of origin. Under normal physiological 
conditions, fibroblasts help maintain the boundary between the epithelial cells and the 
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underlying tissue by functioning as a physical barrier. Fibroblasts play a major role in 
regulating and maintaining extracellular homeostasis. Tissue injury triggers fibroblast 
activation [2]. Activated fibroblasts are responsible for wound contraction, fibrosis, scaring 
and regulation of inflammatory reactions. Upon activation, fibroblasts transdifferentiate into 
motile cells with abundant endoplasmic reticulum, Golgi and ┙-SMA stress fibers [3]. These 
┙-SMA positive fibroblasts termed myofibroblasts synthesize extracellular matrix 
components, and several proteinases, growth factors and cytokines. Myofibroblasts have a 
morphology much like muscle cells with have highly contractile microfilaments. Tumors are 
frequently regarded as wounds that do not heal. HNSCC tumors are frequently associated 
with desmoplastic stromal myofibroblasts also known as tumor-associated fibroblasts 
(TAFs) or cancer associated fibroblasts. 

 

 
 

Fig. 1. Cross talk between HNSCC and stromal cellular components. Factors secreted by 
each cell type that influence target cells have been listed. Abbreviations include; VEGF-
Vascular endothelial growth factor, PDGF-Platelet derived growth factor, IL-Interleukin, 
HIF-Hypoxia Inducible Factor, TGF-Transforming Growth Factor, CSF-Colony Stimulating 
Factor, EGF-Epithelial growth factor, HGF- Hepatocyte growth factor, MMP-Matrix 
metalloprotease, FGF- Fibroblast growth factor CCL7- Chemokine Ligand 7(C-C motif). 
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Table 1. Molecular markers commonly used to identify cellular components of the stroma 

TAFs constitute a major cellular component of the tumor associated stroma and are 
characterized by increased proliferation and aberrant expression of extracellular matrix 
components. They have been reported to change the phenotype of normal keratinocytes to 
that resembling squamous cell carcinoma [4]. In other tumor types including prostate, TAFs 
are reported to play a role in tumor initiation [5-7]. In addition, they play a role in tumor 
progression as evidenced by a correlation with tumor stage, metastasis and poor prognosis 
[8]. Although epithelial tumors undergo epithelial-to-mesenchymal transition to acquire a 
fibroblast-like morphology, they express epithelial cytokeratin markers that are otherwise 
not expressed on fibroblasts. Epithelial cells with mesenchymal characteristics are not 
included in these discussions. Several markers have been used to identify TAFs including ┙-
smooth muscle actin, vimentin and fibroblast activating protein [3, 9]. However, these 
markers show only partially overlapping expression and no single marker consistently 
labels TAFs. TAFs in the tumor microenvironment are primed to facilitate HNSCC tumor 
invasion [8]. They are important modulators of tumor growth, invasion and metastasis 
producing extracellular matrix and angiogenic factors [10-12]. TAFs may be derived not only 
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from the fibroblasts in the locoregional vicinity of the tumor but also from circulating 
mesenchymal stem cells [13, 14]. TAFs are detected in both primary and metastatic HNSCC 
[15]. There are at least 4 possible explanations for the origin of the TAFs at metastatic sites; 1) 
they are derived from the stoma surrounding the metastatic site, 2) they co-metastasize along 
with the metastatic tumor cells from the primary tumor site or 3) they arrive at the metastatic 
site prior to the arrival of the tumor cells creating a metastatic niche permissible to the tumor 
growth or 4) they are derived from circulating mesenchymal stem cells. HNSCC stroma are 
either rich in TAFs dispersed throughout the tumor or have low levels of TAFs that are located 
at the periphery of HNSCC tumors or tumor islands [15]. TAFs are also commonly associated 
with the invasive margin of the tumor [10]. There is strong evidence to suggest that TAFs use 
protease and mechanical remodeling of the extracellular matrix to lay tracks along which 
HNSCC tumor cells invade [16]. They also influence the response of the tumors to 
conventional therapy [17]. Understanding the tumor microenvironment and the molecular 
mechanisms responsible for the highly invasive and metastatic nature of HNSCC tumors is 
vital in developing effective strategies to manage this disease. 

TAFs differ in their phenotype, gene expression patterns and functionality from normal oral 
fibroblasts and normal-dermal fibroblasts derived from non-cancer patients [3, 4]. They are not 
contact inhibited and have a higher rate of proliferation than normal oral fibroblasts [3]. 
Somatic mutations such as in the PTEN and TP53 tumor suppressor genes have been reported 
in TAFs derived from breast carcinoma [18]. There is extensive evidence to demonstrate that 
cross-talk between TAFs and HNSCC cells results in fibroblast activation and tumor 
promotion. Release of interleukin-1┙ from HNSCC cell lines was reported to induce 
chemokine receptor ligand CCL7 from TAFs. CCL7 binds to its receptors on HNSCC cells 
promoting cancer cell migration [19]. Other cytokines released by HNSCC cells under the 
influence of fibroblasts include interleukin-1┚, -6, TNF-┙ and TGF-┚ [20, 21]. Several factors 
secreted by TAFs facilitate HNSCC invasion including MT1-matrix metalloprotease, [22]. 
Several aspects of the biology of TAFs suggest that targeting these cells may offer therapeutic 
benefits. Specific targeting of TAFs with CD8+ T-cells resulted in reduced growth and 
metastasis of colon and breast tumors [23]. Targeting galectin-1 expressed in TAFs reduced the 
secretion of monocyte chemotactic protein-1 mitigating HNSCC migration and metastasis [24]. 
Several studies have demonstrated that TAFs express the hepatocyte growth factor which 
promotes the expression of angiogenic factors in HNSCC cells via the oncogenic c-Met 
receptor and its downstream effectors PI3 kinase and MEK [12, 25, 26].  

3. Tumor associated macrophages 

Monocytes are recruited by cytokine and chemokine gradients into tissues where further 
differentiation to macrophages is regulated by environmental signals. In neoplasms tumor 
associated macrophages (TAMs) represent a major component of the infiltrating leukocytes. 
The presence of TAMs can be beneficial for the growth of the tumor and sometimes they can 
cause the death of the tumor cells. For example it has been shown that the amount of TAMs 
in tumors can be associated with increased neoangiogensis and worsened survival rates. 
TAMs also have potential for cytotoxicity towards tumor cells and some reports state an 
improvement in prognosis in relation to high number of TAMs in tumors. TAMs release 
various cytokines that cause further influx of monocytes in circulation into tumors. The 
cytokines released by the TAMs also play an important role in angiogenesis, 
lymphangiogenesis, invasion and metastasis. TAMs modulate the host immune response 
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against the tumor cell mass by releasing cytokines, chemokines, and enzymes that influence 
the function of antigen presenting cells and host lymphocytes.  

In normal homeostasis, macrophages play an important role in immune surveillance and 
wound healing engulfing debris and dying cells.  In addition they provide factors necessary 
for tissue matrix remodeling [27]. Depending on signals in the local microenvironment, 
macrophages mature into 3 distinct functional phenotypes namely classically, type I and type 
II activated. Macrophages induced by microbial products are classified as classically activated. 
Type 1 macrophages are antigen presenting cells capable of producing factors including 
cytokines, TNF┙, reactive oxygen that trigger microbial and tumor cell kill [28]. In contrast, 
type II macrophages are anti-inflammatory, scavenge cell debris and promote angiogenesis, 
tissue remodeling and repair [29]. Macrophages develop into type 1 or type 2 phenotypes 
reversibly in response to changes in the microenvironment [30]. Tumor associated 
macrophages (TAMs) are typically type II cells reported to promote growth of various tumors 
including breast, prostate and lung [31]. CD68 stained TAMs are present at higher levels in 
HNSCC and modulate angiogenesis during tumor progression [32, 33]. Primary HNSCC 
tumor with high TAM infiltration is a strong predictor of lymph node metastasis, extracellular 
capsular spread and advanced HNSCC stage [34]. Further, expression of macrophage 
inflammatory protein-3┙ was shown to promote oral SCC migration and invasion [35]. Thus, 
sufficient evidence exists to indicate that TAMs may be important therapeutic targets.  

4. Tumor infiltrating lymphocytes 

Pathologic examination of HNSCC demonstrates infiltration of cytotoxic T cell that are 
functionally inactive. Patients with stage 2 and stage 3 carcinoma of the glottis, tongue and 
hypo pharynx had significantly increased number of T lymphocytes compared to patients 
with stage 4 disease [36]. Further, increased T lymphocyte numbers at the margins of 
HNSCC tumors are associated with favorable prognosis. The T lymphocytes produce 
lymphokines and play an important role in the proliferation of cytotoxic effector cells, 
thereby play an important role in the local immune response in squamous cell carcinomas of 
head and neck. 

T lymphocytes are the gatekeepers of autoimmune regulation. Failure of T lymphocytes to 
recognize and eradicate malignant cells contributes to tumor development [37, 38]. Tumors 
with a high infiltrate of lymphocytes are associated with improved prognosis [39-41]. HNSCC 
tumors are influenced by several classes of T lymphocytes including T helper cells, CD3, 4 or -
8 positive T cells, natural killer cells, regulatory T cells and myeloid progenitor cells [42-45]. 
Depending up on the subtype of T cells infiltrating the tumor, the tumor experiences growth 
promotion or regression [46]. In Table 2 we list the tumor facilitating and tumor-promoting T 
cells. Myeloid-derived suppressor cells (MDSC) are reported to display antitumor effects or 
tumor promoting effects depending on the factors secreted in the tumor microenvironment 
[47]. In addition to modulating immune cells in its vicinity, HNSCC tumors actively recruit 
and trigger the production of tumor growth promoting interleukin-6 from CD34+ myeloid 
progenitor cells [48].  CD34+ progenitor cells differentiate into a variety of cell lineages 
including endothelial cells involved in angiogenesis [49]. Th17-T helper cells are characterized 
by the high levels of secreted pro-inflammatory cytokine interleukin-17. HNSCC tumor and 
draining lymph nodes are reported to be infiltrated with Th17 cells that are recruited by the 
tumor cells [45]. Interestingly, Th17 cells reduce HNSCC proliferation while increasing 
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angiogenesis.  Natural killer cells on the other hand, are capable of profound antitumor effects. 
A deficiency in invariant CD1d-restricted natural killer cells was reported to predict a poor 
clinical outcome in HNSCC patients [42]. Dendritic cells and T regulatory (Treg) cells also play 
a role in HNSCC tumor suppression [43, 50]. Under normal physiological conditions these 
cells are responsible for antigen presenting and for discriminating between self and non-self-
antigens, respectively. HNSCC use multiple mechanisms to evade immune surveillance 
including downmodulation of immunologic molecules, prevention of immune cell activation, 
inactivation or by triggering functional deficiencies in immune cells [51-54]. Immune evasion 
occurs not only in the primary HNSCC tumor but also during the process of metastasis 
allowing dissemination to regional lymph nodes and distant sites [55]. Reconstitution of 
immune cells with anti-tumor capabilities may be a feasible adjuvant immunotherapeutic 
strategy for HNSCC. Not all immune cells with anti-tumor activities are suppressed in 
HNSCC. Although the mechanisms remain unknown, in human-papillomavirus associated 
oropharyngeal carcinoma, large numbers of CD3 positive tumor-infiltrating lymphocytes 
correlate with higher overall survival and a decreased incidence of metastasis [44].  

 

Table 2. Tumor infiltrating lymphocytes that influence HNSCC tumors 

5. Endothelial cells 

Endothelial cells when stimulated by the growth factors form blood vessels that facilitate 
tumor growth and dissemination [56, 57]. HNSCC cells directly bind to endothelial cells 
through adhesion molecules including intercellular cell adhesion molecule-1, CD44, 
lymphocyte function-associated antigen-3, integrin chains ┙6┚1 and sialyl Lewis (x) [58]. 
Direct binding of HNSCC to endothelial cells is a prerequisite for penetration of and 
metastasis through the vasculature. In addition, direct interaction between HNSCC and 
endothelial cells trigger Notch-1 signaling in endothelial cells promoting capillary tubule 
formation [59]. Angiogenesis and neo-vascularization are complex processes involving 
cross-talk between multiple cell lineages in the vicinity [60]. HNSCC tumors and stromal 
cells secrete cytokines and growth factors including vascular endothelial growth factor 
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(VEGF), platelet-derived growth factor and interleukin-8 inducing angiogenesis [61].  VEGF 
plays an important role in endothelial cell survival [62, 63]. On binding to its receptor 
VEGFR2, VEGF induces expression of Bcl-2 and autocrine signaling through chemokines 
CXCL1 and CXCL8 facilitating proliferation of endothelial cells and sprouting of 
microvessels [64]. Global gene expression profiling revealed that HNSCC tumors induce 
angiogenesis by either expressing high levels of VEGF/fibroblast growth factor (FGF-2) and 
low levels of interleukin-8/CXCL8 or low levels of VEGF/FGF2 and high levels of interleukin-
8/CXCL8 [65]. Tumor hypoxia also plays an important role in the release of angiogenic 
growth factors. Under hypoxic conditions stabilization of the hypoxia inducible factor 1┙ (HIF-
1┙) in tumor cells allows transcription of genes involved in angiogenesis and other critical 
aspects of tumor maintenance [66, 67]. Semaphorin 4D strongly induced by HIF-1┙, binds to 
plexin B1 on endothelial cells inducing migration [68]. In addition to the formation of new 
blood vessels, endothelial cells are also involved in a cross talk with squamous cell carcinoma 
cells resulting in a significant increase in tumor cell survival and migration [69]. Specifically, 
soluble factors secreted by endothelial cells including interleukin-8, interleukin-6, and 
epidermal growth factor induce phosphorylation of signal transducers and activators of 
transcription-3, extracellular-regulated kinase and Akt in HNSCC. Thus molecular targeting of 
endothelial cells may have tremendous therapeutic potential for HNSCC. 

6. Lymphatic cells, pericytes, mast cells and other cells in the tumor 
microenvironment 

In addition to blood vessels, HNSCC are typically infiltrated by lymphatic vessels a process 
known as lymphangiogenesis. Lymph vessels are typically distributed throughout the tumor 
as well as in the peritumoral regions [70-72]. Metastasis to regional lymph nodes commonly 
occurs in HNSCC and correlates with poor prognosis [73, 74]. Due to the paucity of lymphatic 
endothelial cell line models, most of the data generated pertaining to lymphangiogenesis are 
based on immunohistochemical analysis of xenograft or patient tissues. HNSCC tumors 
secrete VEGF-C, a member of the VEGF family, which plays an important role in tumor 
lymphangiogenesis [75]. Increased tumor lymphatic vessel density correlates with metastasis 
to lymph nodes in HNSCC [76, 77]. HNSCC tumors expressing high levels of HIF-1┙ and 
VEGF-C had high lymphatic vessel density and increased metastasis [78].  

Pericytes are contractile stromal cells closely associated with vascular endothelial cells that 
stabilize the capillary walls [79-81]. In the absence of pericytes, blood vessels are unstable and 
undergo regression. [82]. Pericytes influence the proliferation, migration and maturation of 
endothelial cells [83]. In tumors, pericytes are loosely associated with endothelial cells 
resulting in increased capillary leakiness [84]. Very few studies have focused on pericytes in 
HNSCC. Majority of reports use markers such as ┙-smooth muscle actin to stain pericytes 
associated with endothelial cells via immunohistochemical analyses [85, 86].  

Mast cells are white blood cells that directly associate with endothelial cells stimulating 
vascular tube formation [87]. As HNSCC progresses, there is an increase in mast cell 
numbers that correlated with angiogenesis suggesting a role in angiogenesis [88].  

The oral cavity and associated areas of the head and neck region are exposed to several 
microorganisms. Metaproteomic analyses of human salivary microbiota revealed a large 
number of oral bacteria that are metabolically active and actively engaged in protein 
synthesis [89]. The role of the human oral microbiome in tumor pathogenesis remains 

www.intechopen.com



 
Squamous Cell Carcinoma 

 

170 

largely unknown. It is well known that bacteria associated with periodontitis a condition 
caused by chronic inflammation of the gums, poses an independent risk factor for HNSCC 
[90]. Human papilloma virus (HPV) infection is a major risk factor for oropharyngeal 
squamous cell carcinoma [91, 92]. A recent study demonstrated that stromal cells expressing 
high levels of carbonic anhydrase IX (a sensitive marker for hypoxia) significantly correlated 
with reduced survival in HPV-negative HNSCC patients [93].  

Tumor associated stroma are complex and influence tumor growth in a coordinated manner. 
Further studies on their contribution to tumor recurrence and new primaries are needed. 
The identification of promising targets for stroma-directed therapy will pave the way for 
enhanced anti-tumor effects and improved HNSCC patient survival.  
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