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1. Introduction  

Heavy metal pollution basically results from natural sources like volcanic eruptions, 
weathering of rocks and anthropogenic sources like mining. These activities are significantly 
increased in the past few decades as a result of burning of fossil fuels, industrial activities, 
automotive emissions, use of metal-enriched materials, mining, farm manures, wastewater 
irrigation, sewage sludge, pesticide usage, industrial and domestic wastes and many other 
factors. Heavy metals may enter the food chain as a result of their uptake by edible plants, 
thus, the determination of heavy metals in environmental samples is very important. For 
screening and monitoring the impacts of heavy metals, higher plants which provide useful 
genetic system, have been used as a biomonitor/bioindicator of cytogenetic and mutagenic 
effects (Constantin & Owens, 1982; Grant, 1994, Kachenko et al. 2004; Alirzaveya et al. 2006).  

Plants are used as biomonitor / bioindicator of pollution and the major advantages of them are 
the following; they are eukaryotes and like animals, are able to process complex pollutant 
molecules (promutagen - mutagen), there is a positive correlation with mammalian cytogenetic 
assays for mutagenesis,  easy to grow, resistant to environmental stresses, do not contaminate 
easily, allow assays of a range of environmental conditions, also with cultured cells; used for 
outdoor monitoring (Sandermann, 1994). Hence, the usage of plants as bioindicator in 
ecotoxicology have been reported in several studies (Grant, 1994; Knasmuller et al., 1998). 

2. Effects of heavy metal on plants and defense mechanism  

Some metals e.g. Mn, Cu, Zn, Mo and Ni are essential for normal growth and development 
of plants at appropriate concentrations as cofactors and or required for structural and 
catalytic components of proteins and enzymes (Moustakas et al., 1994; Nedelkoska & Doran, 
2000). However, toxic levels of heavy metal ions induce several cellular stress responses and 
damages different cellular components such as membranes, proteins and DNA (Patra et al., 
1998; Waisberg et al., 2003; Jimi et al., 2004). When heavy metals accumulate in plant tissues, 
they alterate in various vital growth processes, such as mineral nutrition (Greger & 
Lindberg, 1987, Ouzounidou et al., 1992) transpiration (Poschenrieder et. al., 1989), 
photosynthesis (Lidon & Henriques, 1991, enzyme activities-related to metabolism 
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(Nussbaum et. al., 1988) and biosynthesis of chlorophyll (Lidon & Henriques,1991), nucleic 
acids (Shah & Dubey, 1995;  Doncheva et. al., 1996) and seed germination (Ouzounidou et. 
al., 1992).   

Lead (Pb) naturally occurs in uncontaminated soils are generally in the range of 20 to 50 mg 

kg-1 (Nriagu, 1978). In industrialized areas, Pb up to 1000 mg kg-1 or above has been 

recorded (Angelone & Bini, 1992). Although it is not an essential element for plants, it gets 

easily absorbed and accumulates in different parts of plants, causes anatomical changes by 

binding with essential enzymes and cellular components and inactivates them in primary 

leaves and decreases the number of epidermal cells/mm and growth parameters (Chaudhry 

& Qurat-ul-Ain, 2003). Toxicity of Pb in plants causes a number of toxicity symptoms as 

stunted growth, chlorosis, and blackening of root system and inhibits photosynthesis, upsets 

mineral nutrition and water balance, changes hormonal status and affects membrane 

structure and permeability (Sharma a& Dubey, 2005).  

Copper (Cu) known to be an essential micronutrient for plant nutrition is generally occurs in 

the range of 20-30 ppm in uncontaminated areas and sediments and less than 2 ppb in 

natural waters (Nriagu, 1979; Salomons & Forstner, 1984; Moore & Ramamoorthy, 1984; 

Baccini, 1985). Cu ions play a significant role in cell metabolism and also catalyse the redox 

reactions in which 02 is the electron acceptor, being reduced to H202 or H20 (Gupta, 1979). 

However its deleterious effects usually arise toxic levels in mining areas (higher than 2000 

ppm) (Freedman & Hutchinson, 1980; Humphreys & Nicholls, 1984). Excesses of Cu ions in 

plant tissues may induce a wide range of biochemical effects and metabolic disturbances 

which are responsible for a strong inhibition of growth, sometimes accompanied by 

anomalous development (Sommer, 1931; Lipman & McKinney 1931) and block 

photosynthetic electron transport at the reducing site of photosystem I and at the oxidizing 

site of photosystem II (Arnon & Stout 1939).   

In natural soils cadmium (Cd) content is estimated to be about 0.06–0.50 mg/kg. Also, 
accession of Cd to environment and its several potentially toxic consequences in soil–plant–
animal–human system have increased due to industrial, agricultural and municipal 
activities (Baker et al., 1979; Qadir et al., 2000). Cd is easily translocated from plant roots to 
stems and leaves (Yang et al., 1998), and interfere with physiological processes, resulting in 
declined productivity (Florijn & Van Beusichem, 1993) and harness photosynthetic activity, 
chlorophyll content, plant growth and induce oxidative stress (Zhou & Huang, 2001; Yi and 
Ching, 2003; Zhou et al., 2003). Cd stress leads to protein degradation through amino acid 
metabolism resulting in decreased plant growth (Rai & Raizada, 1988) and inhibits the 
activity of enzymes such as nitrate reductase and nitrite reductase is reported by Boussama 
et al. (1999a, 1999b). Previous reports indicated that Cd can cause significant reduction in 
the germination rate in Triticum and Cucumis (Munzuroglu & Geckil, 2002) or inhibit 
germination and the growth of Arabidopsis embryos (Li et al., 2005).  

Zinc (Zn) is essential microelement that is indispensable for normal plant growth. The 

essentiality of Zn in low concentration for root and stem elongation was shown in previous 

researches (Mazé, 1915; Sommer & Lipman, 1926; Skoog, 1940). But at high concentrations, it 

is toxic for plants like cadmium, lead and copper. Zn toxicity occurs in plants by 

contaminated soils with mining and smelting activities (Chaney, 1993). Also genetic 

variations in sensitivity to Zn toxicity has been mapped in plants (Dong et al., 2006). 
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Plants could develop efficient and specific physio-biochemical mechanisms and overcome 
environmental stress (Sandalio et al., 2001). For instance, some of them store toxic metals in 
roots in order to prevent the dispersal of ions into the other parts of the plant (Fernandes & 
Henriques, 1991). Plants tolerate metallic stress  by developing the following defence 
mechanisms.  

 Excretion of complex compounds that reduce metal availability in the soil or in the 
water. 

 Metal exclusion through selective uptake of elements. 

 Metal retention in the roots, preventing its translocation to the shoot. 

 Metal immobilization in the cell wall. 

 Metal accumulation in vacuoles and inclusions. 

 Increased production of intracellular metal-binding compounds. 

 Development of metal-tolerant enzymes  

Heavy metal toxicity effects biological molecules, for example, when metals binds to S 

group, blocks the active site of enzyme, and may cause conformational changes in enzymes, 

disrupts the cellular homeostasis and cause oxidative damage by generating reactive oxygen 

species (ROS) such as singlet oxygen, hydrogen peroxide, hydroxyl radical which cause 

lipid peroxidation, membrane defects and unstability of enzymes in higher plants (Webber, 

1981; Freedman & Hutchinson, 1981; Aust et al., 1985).  Chloroplast, mitochondrial and 

plasma membrane are linked to electron transport and generate ROS as by products (Becana 

et al., 2000). Their presence causes oxidative damage to the biomolecules such as lipids, 

proteins and nucleic acids (Kanazawa et al., 2000). A variety of abiotic stresses including 

drought, salinity, extreme temperatures, high irradiance, UV light, nutrient deficiency, air 

pollutants, metallic stress etc. lead to formation of ROS and result directly or indirectly in 

molecular damage (Lin & Kao, 1999). The regulation of ROS is a crucial process to avoid 

unwanted cellular cytotoxicity and oxidative damage (Halliwell & Gutteridge, 1989). Effects 

and results of ROS (Reactive Oxygen Species) are shown in Figure 1. 

To scavenge ROS and avoid oxidative damage plants posses the antioxidative enzymes 
superoxide dismutase, peroxidase and catalase (Kanazawa et al., 2000). SOD plays a 
determinant role in protection against the toxic effects of oxidative stress by scavenging 
superoxide radicals and providing their conversion into oxygen and hydrogen peroxide 
(McCord & Fridovich, 1969). Four different classes of SOD have been distinguished 
depending on the metal at the active center, manganese (Mn), iron (Fe), copper (Cu) and 
zinc (Zn) (Miller & Sorkin, 1997). Previous studies with plants have demonstrated that, 
most of the SODs are intracellular enzymes.  A class of SODs consist with Cu (II) and Zn 
(II) at active site (Cu/Zn SOD), another Mn(III) at active site (MnSOD), and with Fe (III) 
or Ni (III) at the active site (FeSOD). Cu/Zn SODs are generally found in the cytosol of 
eukaryotic cells and chloroplasts; membrane associated MnSODs are found in 
mitochondria and also reported in chloroplasts and peroxisomes in some plants; the 
dimeric FeSODs which is lacking in animals have been reported in chloroplasts of some 
but not all, plants (Salin & Bridges 1980; Del Rio et al. 1983; Droillard &  Paulin 1990; Van 
Camp 1994; Fridovich, 1995).  

Peroxidases are heme-containing monomeric glycoproteins that utilize either H2O2 or O2 to 
oxidaze a wide variety of molecules (Yoshida, 2002). They are located in cytosol, vacuole, 
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cell wall as well as in extra cellular space and use guaiacol as electron donor, utilise H2O2 in 
the oxidation of various inorganic and organic substrates (Asada et al., 2006).  

Catalase is in age dependent manner and scavenge H2O2 generated during the 
photorespiration and β-oxidation of fatty acids (Lin & Kao, 2000) and  one of the crucial 
antioxidant enzyme that scavenge ROS generated under stress conditions in plants. It 
catalyzes the conversion of H2O2 to O2 and H2O, in this way prevents longer H2O2 action 
which may lead to cell disturbances and DNA damages. The antioxidative responses of 
catalase to heavy metal stress found predominantly in peroxisomes. Hence, researchers have 
been investigating antioxidant responses for different plant species contaminated with 
heavy metals. The inhibition of catalase activity is essential for avoidance of heavy metal 
stress-related damage (Willekens et. al., 1995).  

 
 
 
 

 
 
 

Fig. 1. Effects and results of ROS (Reactive Oxygen Species) (www.biozentrum.uni-    
frankfurt.de/Pharmakologie/index.html, 2008). 
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3. Detection of injury related to heavy metal accumulation in plants by 
molecular markers  

With the invention of polymerase chain reaction (PCR) technology (Mullis & Faloona, 

1987), PCR based molecular markers techniques were developed. Random amplified 

Polymorphic DNA (RAPD), one of the PCR based molecular marker techniques, is simple, 

rapid and low cost assay. The knowledge of genome is not required; in addition a single 

short random oligonucleotide primer is used. RAPD assay detects wide range of DNA 

damages (point mutations, inversions, deletions) and at the same time large number of 

samples can be studied. RAPD does not require radiolabelling for visualisation. In RAPD 

studies, similarities and diversities are described by appearance of new bands, 

disappearance of bands, and variation in band intensities. Despite its many advantages 

there are also some limitations. Generally it is claimed that RAPD profiles are not 

reproduciple but no evidence of such event is presented (Atienzar & Jha, 2006). After 

optimisation of RAPD, many studies have confirmed the reproducibility of the assay 

(Benter et. al., 1995; Atienzar et al., 2000).  

Ecotoxicological literature displayed that RAPD assay is a fundamental tool to evaluate the 

effects of toxicants on organisms under optimized conditions. For genetoxicity studies, 

RAPD can be used as a diagnostic marker. The presence, absence and intensity of bands are 

related to DNA damages, mutations by genotoxicants. RAPD assay was successfully used to 

monitorize DNA changes induced by heavy metals such as lead, cadmium, copper (Enan, 

2006; Liu et al., 2005; Körpe and Aras, 2011), UV and x-ray (Kuroda et al., 1999). DNA 

changes include damages and mutations that can be generated by toxicants directly and/or 

indirectly. According to RAPD profile, the genomic template stability (GTS, %) could be 

calculated as ‘100 – (100 (a/n))’ where ‘n’ is the number of bands in control RAPD profile 

and ‘a’ the average number of changes in sample profiles. DNA damages and mutations 

may alter a primer binding site and thus genomic template stability changes and 

polymorphism occurs within dose-dependent treatments and non-treatment organisms.  

The toxic effects of heavy metals on plants can be detected with various biomarkers. The use 

of both population and molecular marker is fundamental to determine clearly the effects of 

toxicants on organisms. Liu et al. (2005) used barley (Hordeum vulgare L.) seedlings as 

bioindicator of cadmium pollution, changes were observed by total soluble protein level, 

root growth as population markers and RAPD as molecular marker. In another study, rice 

(Oryza sativa L.) seedlings were exposed to Cd concentrations. To assess the effects of Cd on 

plants; growth parameters, levels of gluthatione and phytochelatins were measured and 

Amplified Fragment Length Polymorphism (AFLP) technique was used to determine the Cd 

induced genetic variation (Aina et al., 2007).  

AFLP is a method generated by restriction digestion of genomic DNA, ligation of adapters 

(recognition sequences to restricted DNA), pre amplification reactions, selective 

amplification, gel electrophoresis (polyacrylamide gel), followed by visualization through 

autoradiography or by fluorescence methods. In AFLP assay, the number of selective 

nucleotides in AFLP primers, motif of selective nucleotide and genome size (Agarwall et al., 

2008). AFLP assay does not require any prior knowledge of DNA sequence. AFLP assay is a 

successful tool for measuring genotoxic activity due to toxicants. In heavy metal polluted 
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and nonpolluted areas, Muller et al. (2004) described genetic variation of Suillus luteus 

population using AFLP In other study, Arabidopsis thaliana (L.) was used as bioindicators of 

two genotoxic substances (potassium dichromate and dihydrophenanthrene) (Labra et al., 

2003). To evaluate the effects of organic and inorganic genotoxic substances, germination 

test and AFLP analysis were used.   

Eggplant (Solanum melongena L.) seedlings as bioindicator of a range of copper 
concentrations were studied with population and molecular markers in our laboratory 
(Körpe and Aras, 2011). Treated and non-treated groups were analysed, changes in growth 
were detected with root lenght, dry weight, total soluble protein content and changes in 
DNA with RAPD assay. Root-biomass production was significantly decreased by increased 
Cu2+ concentrations (P < 0.05) after 21 days of exposure, compared with the control 
seedlings. The principal events observed following the exposure to Cu2+ were the loss of 
normal bands and appearance of new bands, compared with the normal control seedlings. 
We found that these changes were dose-dependent. The use of various biomarkers could 
help to detect the effects of toxicants at various levels of the organism’s health status (Liu et 
al., 2007). 

Cu2+ and Zn2+ participate in vital growth processes such as mineral nutrition, 

photosynthesis, mitochondrial respiration, cell wall metabolism and hormone signaling 

pathways (Nussbaum et al., 1988; Costa de et. al., 1994).  Soydam Aydın et. al., (2011a in 

process); compared the effects of Cu2+, Zn2+ and Cu2++Zn2+ treatments on root elongation, 

dry weight, total protein and changes in RAPD band profiles of cucumber (Cucumis sativus 

L.). As a result, cumulative and antagonistic effect were observed between Cu2+ and Zn2+ 

contamination in terms of population parameters and RAPD band profiles. It was shown 

that root lengths of cucumber were decreased with the increased concentration (p<0.01) of 

Cu2+, Zn2+ and Cu2++Zn2+ treatments after 21d of exposure. Authors suggested that DNA 

damages and mutations might alter primer binding sites and thus genomic template 

stability changes due to metal exposure are shown in Table 1. GTS values belong to Cu 

contaminations were approximately conserved at 40-45 % levels. Generally, lower GTS 

values were observed at the lower concentrations of metals.    Effects of combined solutions 

were higher than the effects Cu2+ alone on GTS values (Table 1). An extreme adverse affect 

was observed at all concentrations of Zn2+ treatments which the effects of Zn+2 treatment on 

DNA remained to be identified.    

Tomato (Lycopersicon esculentum L.) seeds germinated in various concentrations of Pb(NO3)2 

solution were used for measuring population parameters such as dry weight, total soluble 

protein content, radicula length and ultimately in IRs and also determining genotoxic effect 

of lead reflecting as appearance or disappearance of bands in RAPD profiles in our 

laboratory. Inhibition or activation of radicula elongation was considered to be the first 

evident effect of metal toxicity in the tested plants. The data obtained from RAPD band 

profiles and GTS revealed consistent results with the population parameters especially total 

soluble protein content. There was a positive correlation between GTS values and root 

growth results (dry weight, radicula length) at 40 ppm Pb+2 contaminated samples. On the 

other hand, 40 ppm was considered as the point of maximum appearance and 

disappearance of new bands in RAPD assay (Table 2).  
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Because of high reactivity of Cd+2, it can directly influence growth, senescence and energy 
synthesis processes (Tiquia et. al., 1996; Turner et.al., 2002). Cadmium (Cd+2) is a multitarget 
toxicant for most organisms studied, and it is a well established human carcinogen. DNA 
damage induced by Cd+2 contamination has been shown by changes in RAPD profile 
(disappearance of bands and appearance of new PCR products occured in the profiles) 
compared with root elongation, dry weight, total protein amount (Soydam Aydın et. al., 
2011b in press). Changes in the soluble protein content of root tips in okra seedlings 
exhibited a significant decrease with the increased concentration of Cd+2 contamination. 
Most of the new band appearances and disappearances in RAPD assay were shown in 30 
ppm contamination which maximum inhibition of total protein contenthas also occured. 
This research concluded that Cd has a genotoxic effect which may induce DNA mutation or 
structural changes and RAPD is a suitable molecular marker for screening DNA damage 
induced by non-lethal levels of Cd solutions. Effect of different heavy metal concentrations 
on RAPD profiles reflect as changes in GTS (%). According to comparison of GTS % between 
plant and heavy metal, the most stabile genomic template was determined in tomato 
seedlings exposed to 80 ppm and 240 ppm Pb+2 concentrations. The most significant 
reduction was seen at 640 ppm Zn2+ solution and a direct proportion was found in this metal 
concentration with GTS values, root length and dry weight in cucumber seedlings.  It was 
remarkable that different concentrations of Zn2+ significantly decreased average GTS (%) 
values in cucumber, while GTS values of Pb exposed tomato seedlings were average at 85,55 
%. We determined heavy metal toxicity on higher plants and on the basis of GTS % 
inhibition and they showed the following order: Zn > Cu >Cd Pb > (Figure 2.). 

 
 
 
 

Heavy metal 
Concentration 

Averange 
% GTS values 
of Cu exposed 

eggplant 

Averange 
% GTS values 
of Pb exposed 

tomato 

Average 
%GTS 

values of Cd 
exposed 

okra 

Average 
%GTS values 

of Cu2+ 

exposed 
cucumber 

Average 
%GTS values 

of Zn2+ 
exposed 

cucumber 

Average 
%GTS values 
of combined 
solution of  
Cu2+ Zn2+ 
exposed 

cucumber 
 

Control 100 100 100 100 100 100 

30 ppm 90 - 59.0 - - - 

40 ppm - 78,14 - 40,85 2,56 15,98 

60 ppm 77,5 - 76,4 - - - 

80 ppm - 90,62 - 41,54 7,62 15,98 

120 ppm 53,75 81,81 72.5 - - - 

160 ppm - 87,10 - 45,76 7,62 30,69 

240 ppm 46,25 90,08 - 45,90 4,44 42,05 

320 ppm - - - 51,27 1,58 35,02 

640 ppm - - - 29,40 1,95 38,69 

 
 
(-) Not recorded 

Table 1. Effect of different heavy metals concentration on GTS of plant. 
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Fig. 2. % change in GTS values in comparison to control. 

4. Detection of injury related with heavy metal accumulation in plants by real-
time PCR 

Before using real- time PCR to detect heavy metal injury in plants, the first question is what 
is the real time PCR? Some believe the growth of the amplification curves have to be able to 
watch during PCR on a computer monitor in order to be truly ‘real-time’. This of course is 
not the case but is not the only reason for using real-time PCR. It has many advantages 
when compared with conventional PCR system. While conventional PCR systems have 
many disadvantages as labor intense, hazardous materials (e.g., 32P), low resolution & 
sensitivity, low dynamic range, poor discrimination among homologous genes or transcript 
sizes, results not expressed as numbers, not very quantitative, real-time PCR solve all these 
problems (Dorak, 2006). A PCR reaction has three phases, exponential phase, linear phase 
and plateau phase as conventional PCR and during the exponential phase PCR product will 
ideally double during each cycle if efficiency is perfect, i.e. 100% ( Joshua et al., 2006).  

The major disadvantages of real-time PCR are that it requires expensive equipment and 
reagents. In addition, due to its extremely high sensitivity, hard experimental design and an 
in-depth understanding of normalization techniques are imperative for accurate conclusions 
(Marisa et al., 2005). Data should be normalized absolutely or relatively. Absolute 
quantification employs an internal or external calibration curve to derive the input template 
copy number.The standard or calibration curve which we generated with  Light Cycler 480 
real-time PCR instrument is shown in Figure 3. Absolute quantification is important in case 
that the exact transcript copy number needs to be determined, while, relative quantification 
is sufficient for most physiological and pathological studies. Relative quantification relies on 
the comparison between expression of a target gene versus a reference gene and the 
expression of same gene in target sample versus reference samples (Pfaffl, 2001). 

Attia et. al., 2009 used quantitaive real- time PCR to determine the regulation of superoxide 
dismutase gene expression under light conditions interacts with salt stress in Arabidopsis 
thaliana plants (Col, Columbia, and N1438). Plants were grown for 15 d under two light 
regimes provides different growth rates. The medium contained 0–85 mM NaCl. Shoot 
biomass and ion accumulation were measured. Superoxide dismutase (SOD) activity was 
assayed on gels, and the expressions of SOD genes were studied using real-time PCR.  
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(A) 

 
(B) 

Fig. 3. Real-time PCR. (A) The PCR amplification curve charts the accumulation of 
fluorescent emission at each reaction cycles of standart curve.(B) is the output of a serial 
dilution experiment from an Light Cycler 480 real-time PCR instrument (Efficiency: 1.937 
Error: 0.00769 Slope: -3.483 YIntercept: 43.43) 
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Research hypothesizing that oxidative stress occurred when light energy input exceeded 
energy utilization when salt inhibited growth, and that oxidative stress induced 
overexpression of some SOD genes.  

The molecular responses of hydroponically cultivated tomato plants to As(V) or Cr(VI) were 
assessed by transcript accumulation analysis of genes coding for products potentially 
involved in heavy metal tolerance. A quantitative real-time PCR experiment was performed 
to determine the effects of As(V) or Cr(VI) at concentrations ranging from 80 to 640 mM on 
protein genes Hsp90-1, MT2- and GR1-like using RNA isolated from 24h treated tomato 
roots or shoots. As(V) increased MT2- and GR1-like transcripts in treated tomato roots but 
Cr(VI) treatment slightly affected the transcript levels (Goupila et. al., 2009). 

A quantitative real-time PCR assay was used to determine transgene copy number in some 
plants and one of the most sensitive and reliably quantitative methods for gene expression 
analysis (Chiang et al., 1996; Ingham et al., 2001; Callaway et al., 2002; Song et al., 2002). 
Many researchers declare that, there is also need to know that what extent heavy metals can 
induce changes in major lipid components of the cell membranes. Most of these reports have 
been focused mainly on lipid peroxidation which induce production of ROS and represent 
the first targets for metal toxicity in plants (Somashekaraiah et. al., 1992; De Vos et al., 1993, 
Meharg, 1993).  

Cd and Pb stress are shown to distrupt the cellular homeostasis and cause oxidative damage 
to plants due to increased level of reactive oxygen species (ROS) which cause lipid 
peroxidation, membrane defects and unstability of enzymes in higher plants. Based on the 
knowledge of ROS a study was conducted  to determine the effects of lead (Pb) and 
cadmium (Cd) elements on lipid peroxidation, catalase enzyme activity and gene expression 
profile in tomato  (Lycopersicum esculentum L.). 25 days-old plants grown in controlled media 
were used for stress treatments. For application of heavy metal stress Pb and Cd were added 
to the hydroponic solution for 24h at a concentration from 0 (control), 80, 160, 320, 640 and 
1280 mM of Pb or Cd.  

Estimation of lipid peroxidation analysis based malondialdehyde (MDA) which is a 
marker of oxidative lipid injury which changes in response to environmental factors lead 
to stress in plants (Hodges et.al., 1999) and the most significant increase in the MDA 
content were seen in the samples exposed to 320 µM concentration of Pb contamination, 
while the lowest degree of MDA content was determined at the samples exposed to 1280 
µM concentration of Pb. Assay of catalase activity was performed  by the method of Aebi 
et. al., (1988) based on 240 nm absorbance and quantitative real-time PCR was performed 
with Light Cycler ® 480 System (Roche), thermal cycler. Primers and probes sequences 
(presented in Table 2) of target gene catalase (CAT) and actin (ACT) used for 
normalization were designated on sequences of tomato genes available in the databank 
(http://www.ncbi.nlm. nih.gov/).  

CAT gene expressions showed a complex pattern under heavy metal contamination and 
enzyme activity results were strongly up-regulated with this pattern at the same 
concentration (p<0.05). Our results confirm that heavy metal contaminations are related to 
impairment of ETS (Electron transport system) of membranes that caused an increase of 
forms of reactive oxygen species (ROS) includes O2-, H2O2, OH- and HO2-. Many genes play 
a crucial role for responding heavy metal stresses at transcriptional level and CAT is one of 
these genes that encode catalase enzyme. In this case, CAT as an antioxidant defense system 
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CAT2 F CTTTCCTCTTCgACgATATTggTA   
CAT2 S   TATTCCCCAAgATTACAggCAT 
CAT2 A CCgACTCggATTgCCTT   
CAT2 R gTgATTTgCTCCTCCgACTC 
CAT2 FL CAACAgggCTggAAAATCAACTTATgT-FL   
CAT2 LC 640 AAgTTCCACTggAAgCCCACATgT p 
ACT F CATTgTCCACAgAAAgTgCTTCTA 
ACT S  TCTgTTTCCCggTTTTgCTATTAT 
ACT A AACCACATTAAATggAAACATgAgAT 
ACT R  TgCATCAggCACCTCTCAAg 
Actin FL ATTCATAgCCCCCACCACCAAAC-FL       
Actin LC 640 TCTCCATCCCATCAAAAAAACAAATTgACT p    

Table 2. Primer and Probe Sequences of CAT (catalase) and ACT (actin). 

component, which can protect plants from cellular injury by removing excessively produced 
H2O2, is activated (Qilin et al., 2009). 

5. Conclusion 

The results of these studies have shown the advantages of using plants as bioindicator of 
heavy metal toxicity.  Plants could develop different defense mechanisms against heavy 
metal stress such as storing toxic metals in roots in order to prevent the dispersal of ions into 
the other parts of the plant (Fernandes & Henriques, 1991). Also, alteration in total soluble 
protein content is one of the important effect which promote senescence or reduce protein 
synthesis by preventing the protein content of plants (Gupta, 1986). To measure of some 
parameters at the population level can facilitate the interpretation of the data at the 
molecular level. Though the plant genome is very stable, its DNA might be damaged due to 
the exposure to stress factors and it can be shown as differences in band profiles of 
molecular markers. Plants exposed to heavy metal stress also show rapid and temporary 
drops in growth rate and activate antioxidant defense system by producing ROS which alter 
MDA content and gene expression and enzyme activity patterns of CAT. We also suggest 
that; molecular markers such as RAPD, AFLP combined with population biomarker and 
quantitative real-time PCR technique can be used for determining the effects of heavy metal 
toxicity in plants and real –time PCR is the most reliable technique to determine the 
responses given by the plant against heavy metal toxicity at gene expression level.  
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