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1. Introduction 

Neuroblastoma, a malignant embryonal tumor of the neural crest cells, is one of the most 

common solid extracranial tumors of early childhood (Brodeur et al., 2006). The prevalence 

of neuroblastoma in children is 7.5 cases /100, 000 infants (Brodeur et al., 2006; Gao et al, 

1997; Gurney et al., 1997; Spix et al., 2006). Furthermore, the annual incidence of this tumor 

is nearly 1.0/100,000 children under the age of 15 years (Ries et al., 2005). Neuroblastoma 

comprises about 8-10% of all childhood cancers and for approximately 15% of cancer deaths 

in children (Gao et al., 1997; Ries et al., 2005). Neuroblastoma can arise anywhere along the 

sympathetic nervous system. Fifty percent of the tumors originate in the adrenal medulla. 

Additional sites of origin include the nerve tissue in the chest, neck, pelvis or abdomen (Ries 

et al., 2005). Clinical presentation of neuroblastoma is highly variable and is dependent on 

the site of the primary tumor, as well as on the disease extent and on the absence or 

presence of paraneoplastic syndromes (Maris & Matthay, 1999; Park et al., 2008). The three 

main clinical scenarios are: localized, metastatic and 4S (S for special).  

In contrast to many other pediatric malignancies, progress in treatment of neuroblastoma 

(especially for advanced-stage tumors) has been relatively modest. Hence, at present, this 

tumor still poses a major challenge to the pediatric oncologist. Current treatment strategies 

include any or all of the following; watchfulwaiting, surgery, mild to aggressive 

chemotherapy, radiotherapy, and bone marrow transplants. Several new agents and 

combinations are in ongoing trials for relapsed neuroblastoma, including topoisomerase 1 

inhibitors, radionuclides, histone deacetylase and tyrosine kinase inhibitors, monoclonal 

antibodies directed to disialoganglioside, and angiogenesis inhibitors (Maris & Matthay, 

1999). As neuroblastoma is a disease that most often strikes young children, treating patients 

with aggressive therapy is a concern because of the potential for long-term health 

implications (from heart disease to second malignancies). Some children with 

neuroblastoma can be cured, and for these children, oncologists must try to give the 

minimum treatment possible while achieving cure. Although a fraction of the patients are 

cured with current treatments, approximately 40 per cent will die of this disease; for these 

patients improved treatment options are imperative (Matthay et al., 1999, 2009).  
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2. Virotherapy for cancer 

Poor response to conventional treatment is not only observed in neuroblastoma but also in 

many prevalent tumors. In fact, despite aggressive radio-and chemotherapy, the long-term 

survival from common cancers such as prostate, breast, colorectal and lung has barely 

budged since the 1970s (Leaf, 2004). Therefore new cancer treatments with novel 

mechanisms of action are needed.  

Such new treatments may be based on human non-pathogenic and pathogenic viruses (for 
review see Kirn et al., 2001; Parato et al., 2005; Vähä-Koskela et al., 2007). An oncolytic virus 
is a replicating agent that has either been naturally selected or engineered to single out and 
destroy tumor cells. For a long time, viruses have been under scrutiny for their potential 
antineoplastic effects (Sinkovics and Horvath, 1993). Historically, human trials were 
initiated with several potential oncolytic viruses during the 1950’ and 1960’s. Among the 
first viruses to be tested as oncolytic agents were rabies virus (DePace, 1912; Pack, 1950), 
several adenovirus serotypes (Huebner et al., 1956; Southam et al., 1952), mumps virus 
(Asada, 1974; Okuno et al., 1978), and West Nile virus (Southam & Moore, 1952). Moreover, 
19 different viruses were evaluated in patients suffering from various types of cancer 
(Newman & Southam, 1954; Wheelock & Dingle, 1964). In general, the outcome of these 
treatments were tantalizing, but ultimately disappointing and the approach was temporarily 
abandoned. The onset of the gene therapy era in 1990s reinvigorated the field of viral 
therapy for cancer (virotherapy). Many of the basic principles of virus-mediated oncolysis 
apply equally to gene therapy vectors and oncolytic viruses. The main advantage of 
replication-competent oncolytic viruses over non-replicanting viral gene therapy is the 
ability to propagate and spread from the site of inoculation throughout tumor mass and 
beyond. Following the successful attempt to engineer a Herpes virus simplex-1 (HSV-1) 
mutant that selectively destroyed brain tumor cells (Martuza et al., 1991), the field of 
virotherapy has expanded considerably. There are now more 90 different DNA and RNA 
virus variants that have been tested for anti-tumor efficacy in animals and humans (for 
comprehensive list of oncolytic viruses see Kirn et al., 2001; Parato et al., 2005; Vähä-Koskela 
et al., 2007). Furthermore, more than 20 different oncolytic viruses have entered clinical 
trials (for review see Kirn et al., 2001; Parato et al., 2005; Vähä-Koskela et al., 2007).  
Oncolytic viruses replicate preferentially in cancer cells because they are taking advantage 
of the same cellular defects that lead to tumor growth. Viruses that are not inherently 
selective for cancer cells can often be modified and engineered for tumor-selectivity. 
Generally, four main approaches have been described in the control of tumor progression 
through virotherapy: 1) the use of naturally occurring oncolytic viruses; e.g., Newcastle 
diseases virus (NDV) (Lorence et al., 1988); reovirus (Coffey et al., 1998), and vesicular 
stomatitis virus (VSV) (Stojdl et al., 2000); 2) engineered viruses with incorporate tissue-
specific promoters that limit to tumor cells the expression of genes necessary for replication, 
e.g., HSV (Miyatake et al., 1997) and adenovirus (Hallenbeck et al., 1999); 3) modification of 
the viral coat to target uptake specifically to tumor cells, e.g., measles (Hammond et al, 
2001); and 4) deletion of entire genes or functional gene regions that are necessary for 
efficient replication and/or toxicity but are nonessential in cancer cells, e.g., vaccinia virus 
(Mastrangelo et al., ) and adenovirus (Bischoff et al., 1996).  
Oncolytic viruses are multimodality therapeutics that can be exploited as a treatment platform 
for cancer. One advantage of virotherapy is its use in combination with conventional chemo-, 
radio-or immunotherapy (Aghi & Martuzza, 2005; Kottke et al., 2008; Kumar et al., 2008; 
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Nandi et al., 2008). Another advantage of oncolytic viruses is the capacity to trigger tumor 
destruction by different mechanisms including stimulation of innate and adaptive immunity 
that have the potential anticancer activity (Bell et al., 2003). Despite the impressive 
improvements made in the field of virotherapy, the use of oncolytic viruses still face important 
hurdles in cancer therapy. Some of these problems are incomplete transduction, poor systemic 
distribution, immune response, intratumoral spread, and safety. These issues have to be 
resolved before oncolytic viral products became approved therapeutics.  

3. Oncolytic poliovirus for treatment of neuroblastoma: Preclinical studies 

Poliovirus (PV) has recently been added to the list of viruses that hold promise as possible 
agents in tumor therapy (Gromeier et al., 2000; Ochiai et al., 2004). A nonenveloped, plus-
stranded enterovirus of the Picornaviridae family, poliovirus replicates in the 
gastrointestinal tract causing little, if any, clinical symptoms. Rarely (at a rate of 10–2 to 10–3), 
the virus invades the central nervous system (CNS) where it targets predominantly motor 
neurons, thereby causing paralysis and even death (Mueller et al., 2005). Generally, 
poliovirus replicates efficiently in nearly all tumor cell lines tested, which has led to the 
suggestion that it may be suitable for the treatment of different cancers. However, the 
possibility that poliovirus can cause poliomyelitis calls for significant neuroattenuation to 
avoid collateral neurologic complications in cancer treatment. Therefore, the aim of our 
previous study was to develop highly attenuated polioviruses that may be suitable for the 
treatment of neuroblastoma in children (Toyoda et al., 2007). It was of concern, however, 
that the high coverage of antipolio vaccination in early childhood may interfere with the 
application of poliovirus in tumor therapy. Therefore, we also aimed to develop an 
immunocompetent animal model that would allow us to investigate the oncolytic capacity 
of neuroattenuated polioviruses for the treatment of neuroblastoma in the presence of high 
titers of poliovirus neutralizing antibodies (Toyoda et al., 2007). As shown by us and other 
investigators, pathogenesis of neurotropic viruses including poliovirus can be controlled by 
translation (Gromeier et al., 1996, 2000; Mohr, 2005). In poliovirus, an exchange of the 
internal ribosomal entry site (IRES) within the 5'-nontranslated region (NTR) with its 
counterpart from human rhinovirus type 2 (HRV2), another picornavirus, yielded viruses 
[called PV1(RIPO)] that are highly attenuated in mice transgenic for the human poliovirus 
receptor (PVR) CD155 (CD155 tg mice; Gromeier et al., 1996, 1999) yet replicate efficiently 
and lytically in cell lines derived from malignant glioma and breast cancer (Cello et al., 2008; 
Gromeier et al., 1996, 2000; Ochiai et al., 2004, 2006). However, PV1(RIPO) and PVS(RIPO), a 
derivative of PV1(RIPO) that is currently under investigation for the treatment of glioma, 
grow poorly in neuroblastoma cells (Cello et al., 2008; Gromeier et al., 1996, 2000;). This 
observation prompted us to search for other poliovirus derivatives with oncolytic properties 
against neuroblastoma. The whole genome synthesis of poliovirus (Cello et al., 2002) 
produced the surprising observation that a point mutation (A103G) in a "spacer region" 
between the cloverleaf and IRES in the 5'-NTR that was introduced as genetic marker 
attenuated poliovirus 10,000-fold (De Jesus et al., 2005). We found that the A103G variant of 
poliovirus replicates well in human neuroblastoma cell lines at 37°C (De Jesus et al., 2005). 
However, the attenuating mutation A103G in the spacer region was unstable on replication 
and direct revertant variants that had acquired the neurovirulent phenotype of wild-type 
(wt) poliovirus type 1 (Mahoney) [PV1(M)] (Fig. 1A ) were readily scored (De Jesus et al., 
2005). We reasoned that a stable attenuation phenotype could be generated if the spacer 
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region would be interrupted by an essential RNA replication element that the virus cannot 
afford to delete. Such an element is the cre, a stem-loop structure mapping to the coding 
region of viral protein 2CATPase (Fig. 1B; Paul, 2002). Cre is absolutely required for 
poliovirus genome synthesis (Paul, 2002). Based on this concept, we have developed a stable 
attenuated poliovirus, replicating in neuroblastoma cells, by introducing the cre element 
into the spacer region between the cloverleaf and IRES in the 5'-NTR (mono-crePV) at the 
104-nucleotide locus (Fig 1B) (Toyoda et al., 2007).  
 

 

Fig. 1. Schematic diagram of full-length poliovirus genomes. (A) Genomic structure of 
PV1(M). The 5’ end is terminated with the genome-linked protein VPg and the 3’ end with 
polyadenylic acid. The 5’NTR, harboring the cloverleaf and the IRES, is followed by the 
single open reading frame (open box) encoding the viral polyprotein, and the 3’NTR. The cis 
replication element (cre) is indicated as an open stem-loop in the poliovirus polyprotein 
below polypeptide 2C. The polyprotein contains (Nterminus to C-terminus) structural (P1) 
and non-structural (P2 and P3) proteins that are released from the polypeptide chain by 
proteolytic processing. (B) Structure of A133G mono cre PV genomic RNA. The naïve cre in 
2C was inactivated through three mutations G4462A C4465U A4472C of the poliovirus-cre 
loop. The cis replication element (cre) was inserted between cloverleaf and IRES. A point 
mutation was engineered at nt133 (A to G) of mono-cre PV. 

To induce neuroblastoma in our animal model we used a mouse neuroblastoma cell line 

stably expressing CD155  (Neuro-2aCD155). Neuro2aCD155 cell line was developed in our 

laboratory and is susceptible to poliovirus infection (Mueller & Wimmer, 2003). Using the 

nude mice model, we and others have shown previously that tumors of human origin can be 

successfully treated with neuroattenuated poliovirus strains, that is with PV(RIPO) 

derivatives (Groemeier et al., 2000), or with the Sabin vaccine strains (Toyoda et al., 2004). 

However, in the nude mice the lack of a possible immune response to the oncolytic agents 

mitigates the importance of the results. Therefore, we constructed fully immunocompetent 

mice (CD155 tg A/J mice) that express CD155 and accept Neuro-2aCD155 cells for the 
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formation of lethal neuroblastoma (Toyoda et al., 2007). Using this animal model, we 

demonstrated that Neuro-2aCD155 subcutaneous tumors of Neuro-2aCD155 cells were 

eliminated by intratumoral administrations of a variant of mono-crePV (A133Gmono-crePV) 

(Toyoda et al., 2007). Interestingly, we observed the complete regression of the established 

lethal subcutaneous Neuro-2aCD155 tumors without neurologic side effects despite the 

presence of high titers of anti-poliovirus antibodies (Toyoda et al., 2007). This result 

indicates that anti-polio response induced by immunization can exert protection against 

poliomyelitis without compromising the oncolytic capacity of poliovirus. Remarkably, the 

tumor-bearing mice, which were cured through treatment with A133Gmono-crePV, resisted 

attempts to reestablish neuroblastoma with Neuro-2aCD155 cells. We hypothesized that 

destruction of tumor cells by A133Gmono-crePV can increment the release of tumor antigens 

which may induce a more efficient antigen presentation and the development of a robust 

antitumor immunity (Toyoda et al., 2007).  

Based on these results, we proposed to characterize the antitumor immune response evoked 

by the treatment of subcutaneous neuroblastoma by A133Gmono-crePV. To evaluate the 

cellular anti-tumor immunity induced by oncolytic therapy with live attenuated poliovirus, 

we quantified the cytolytic anti-tumor activity of splenocytes collected from the 

neuroblastoma-implanted CD155 tg A/J mice cured by four intratumoral inoculations of 

A133Gmono-crePV. Mock-treated mice received equivalent intratumoral injections of PBS. 

These animals were killed after the tumor had reached a volume of ~500 mm3 and their 

splenocytes were used as a control in cytotoxic assays. The development of tumor specific 

cytotoxicity was assessed by standard lactate dehydrogenase-release assays (Decker & 

Lohmann-Matthes, 1988). Splenocytes isolated from mice cured from neuroblastoma 

exhibited significantly higher lytic activity against both target cells tested (Neuro-2aCD155 

and Neuro-2a) than did those from splenocytes derived from control mice (16.0% vs 1.5 %, 

P< 0.001). Thus, this result confirmed that treatment with a neuroattenuated oncolytic PV 

strain induces antitumor immunity against neuroblastoma (Toyoda et al., 2011).  

To determine which cell subpopulations are responsible for the cell-mediated antitumor 

immune responses, splenocytes from the cured mice were depleted in vitro of NK, CD4+ or 

CD8+ cells respectively, prior to cytotoxic assay. As shown in Fig. 2, incubation of 

splenocytes with neutralizing antibody NK1.1 or anti-CD4 had little or no effect on their 

ability to kill Neuro-2aCD155 cells. In contrast, depletion of CD8+ cells abrogated the cytolytic 

activity of splenocytes from cured mice by about 70% compared to non-depleted 

splenocytes (Fig. 2). These data indicate that cytotoxic CD8+ T cells are the principal 

mediators of antineuroblastoma immunity elicited by A133Gmono-crePV virotherapy 

(Toyoda et al., 2011)  
Any firm conclusion about the capacity of A133Gmono-crePV induced antitumor immunity 
requires direct demonstration of that ability. We thus adoptively transferred the splenocytes 
harvested from mice cured of neuroblastoma by four A133Gmono-crePV inoculations into 
mice that had developed subcutaneous Neuro-2aCD155 tumor. Splenocytes from naïve mice 
served as a negative control. Splenocytes from cured or naïve mice were adoptively 
transferred by tail vein injection (2x107 splenocytes in 100 µl of PBS) to neuroblastoma 
implanted mice when their subcutaneous tumor volumes were ~ 170mm3. After the 
splenocyte transfer, tumor sizes were measured and tumor volumes calculated every day. 
Our results showed that adoptive transfer of splenocytes from A133GmonocrePV-treated 
mice produced a significant inhibition of tumor growth by comparison with the negative 

www.intechopen.com



 
Neuroblastoma – Present and Future 

 

354 

control (average tumor volume: 583 mm3 vs. 2183 mm3, p< 0.01 at day 10 post splenocytes 
transfer) (Toyoda et al., 2011). This result confirms that oncolytic therapy for neuroblastoma 
with attenuated poliovirus induces tumor-specific immune response.  
 

 

Fig. 2. Characterization of effector cytotoxic cells. Mice were sacrificed 2 months after tumor 
rechallenge. Splenocytes purified from the mice were incubated with neutralizing antibody 
against CD4, CD8, NK or PBS (as control) and then tested for cytotoxicity against Neuro-
2aCD155 cells. 

In line with our findings, previous investigations in mice and humans have also shown that 

treatment with oncolytic viruses can result in the enhancement of antitumor immune 

response (Diaz et al., 2007; Greiner et al., 2006; Moehler et al., 2005; Liu et al., 2007a, 2007b; 

Qiao et al., 2008; Toda et al., 1999).  

Tumor destruction by an oncolytic virus can release a wide range of tumor specific antigens 

that will be taken up by infiltrating antigen-presenting cells for cross-presentation to T cells 

for priming of antigen-specific immune response (O’Shea, 2005). Moreover, different stimuli 

can promote an immunogenic cell death of tumor cells. Immunogenic cell death implies that 

dying tumor cells release several cellular signals that will facilitate immune recognition and 

elimination of tumor cells (Obeid et al., 2007a, 2007b). Noteworthy, it has been speculated 

that virus infection of tumor cells may induce an immunogenic cell death (Blachere et al., 

2005). Based on these premises, we reasoned that immunization with in vitro PV-infected 

neuroblastoma cells should be able to prime an effective immune response against tumor 

cells and subsequently hinder neuroblastoma growth. To this end, 3 freeze-thaw cycles 

followed by 10 strokes of dounce homogenizer were performed for preparation of 

noninfected and PV-infected Neuro-2aCD155 lysates. The poliovirus titer in the PV-infected 

Neuro-2aCD155 lysate was 5x 108 pfu/ml. For the tumor rejection assays, polio Neuro-2aCD155 

immunized CD155 tgA/J mice were injected intraperitoneally with PV-infected lysate, or 
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noninfected Neuro-2aCD155 lysate, or a mixture of noninfected Neuro-2aCD155 lysate plus 

poliovirus (poliovirus titer in the mixture was 5x 108 pfu/ml) or PBS thrice at 1-week 

interval. All mice were injected intravenously with 2 x 106 Neuro-2aCD155 cells 21 days 

after last vaccination. Survival of the mice was monitored.  

Examination of dead mice showed multiple liver and perirenal tumors. Analysis of Kaplan-

Meier curves using the log-rank test showed no difference in the survival kinetics among 

mice immunized with PBS, noninfected Neuro2aCD155 lysate and the mixture of 

noninfected Neuro-2aCD155 lysate and poliovirus (p> 0.05, Fig 3). All mice from these 

groups died before 90 days of tumor challenge. In contrast, 70% of mice immunized with 

PV-infected Neuro-2aCD155 lysate, survived beyond 100 days after tumor challenge. 

Furthermore, statistical analyses showed that immunization with PV-infected Neuro-

2aCD155 lysate was superior to each immunization with other lysate or PBS (p< 0.01, Fig 3).  

 

 

Fig. 3. Survival of mice inoculated withNeuro-2aCD155. Before challenge, mice were 
vaccinated with different lysates or PBS. Mice were observed every day and survival was 
plotted using a Kaplan-Meier survival curve. 

We ruled out the possibility that protection effect seen in mice immunized with PV-infected 

Neuro-2aCD155 lysate is due to a cytolitic effect by an ongoing poliovirus infection after 

lysate injection. Our assertion is based in the following facts: i) no poliovirus were isolated 

from the lung, liver, spleen, brain and spinal cord of mice at the time of tumor challenge, i.e., 

21 days after vaccination with homogenates prepared from PV1(M)-infected Neuro-

2aCD155 cells or noninfectedNeuro-2aCD155 admixed with poliovirus, ii) No protection 

was induced by noninfected Neuro-2aCD155 admixed with poliovirus, and iii) all mice are 

vaccinated with different lysates or previously immunized against poliovirus. Altogether, 
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our results clearly suggest that in vitro infection of neuroblastoma cells turn these cells into 

a potent tumor immunogen.  

It has long been assumed that most therapeutic agents kill tumor cells through apoptosis. 

Notably, apoptosis has been considered to be a non-immunogenic or even a tolerogenic cell 

death mechanism as opposed to necrosis (an immunogenic cell death). However, depending 

on the cell death inducer, tumor cells can become highly immunogenic and induce a potent 

antitumor response in vivo (Zitvogel et al., 2006). Furthermore, there is now persuasive 

evidence that cell death can trigger an immune response only if the dying cells emit ‘eat-

me’, ‘danger’ and ‘killing’ signals that mediate their efficient phagocytosis by dendritic cells 

(DC’s) and the maturation of DCs (Blachere et al., 2005; Casares et al., 2005; Kepp et al., 2009; 

Melcher et al., 1998; Sauter et al., 2000).  

DCs are the most important professional antigen-presenting cells and play a central role in 

initiating innate and adaptive immune response against tumor associate antigens (TAA). 

Antigen presentation by immature DCs (iDCs), associated with a lack of costimulation, 

induces tolerance. A number of molecules released from dying cells have been identified to 

elicit immune signaling during immunogenic cell death.  

These include, among others, high mobility group box 1 (HMGB1, also known as 

amphoterin), purine metabolites (uric acid), calreticulin (CRT), and heat shock proteins 

(HSP) (Freedman et al., 1988; Obeid et al., 2007a; Shi et al., 2003; Udono & Srivastava, 1994). 

Induction of HSP is one of the earliest indications of cellular stress following infection with 

both RNA and DNA viruses (Asea, 2007; Liu et al., 2008). HSPs have been found to play key 

roles in the stimulation of the immune system when located on the plasma membrane or in 

the extracellular space (Udono & Srivastava, 1994). These proteins can promote tumor 

antigen cross-priming by binding to DC (Schild et al., 1999; Srivastava et al., 1998). 

Moreover, HSP 70 and 90 expressions act as “eat me” signals and enhance phagocytosis and 

maturation of DC (Binder & Srivastava, 2004; Lehner et al., 2004). CRT, another ‘eat me’ 

signal, is located in the lumen of the endoplasmic reticulum (ER) (Obeid et al., 2007a). Upon 

stress, CRT is translocated and exposed on the outer leaflet of cells during the early phase of 

cell death (Obeid et al., 2007a, 2007b). The exposure of CRT dictates the immunogenicity of 

tumor cells death because exposed CRT help the engulfment of dying tumor cells by DC 

(Obeid et al., 2007a). Investigators have previously identified uric acid as a novel 

endogenous danger signal capable of alerting the immune system (Shi et al., 2003). Injury 

cells rapidly degrade their DNA and RNA and release uric acid that activates DCs. Another 

signal molecule is HMGB1, which is loosely bound to chromatin and is referred to as 

‘danger signal’ or alarmin (27). Dying cells release this molecule massively in the 

extracellular environment (Scaffidi et al., 2002). Extracellular HGMB1 induces functional 

maturation of DCs and acts as immune adjuvant for soluble and particulate antigens 

(Dumitriu et al., 2005; Rovere-Querini et al., 2004).  
Until now, most of the identified inducers of immunogenic cell death of tumors cells are 
chemotherapheutics (Ulrich et al., 2008). The potent antitumor response elicited by 
virotherapy, observed by us and other investigators, clearly suggests that viruses are in vivo 
inducers of immunogenic death of tumor cells. Moreover, our finding that inoculation of 
PV-infected neuroblastoma lysate protects against live tumor challenge indicates that 
poliovirus is also an in vitro inducer of immunogenic death. Interestingly, necrosis by 
freeze-thawing is also considered as an immunological cell death (Ulrich et al., 2008). 
However, we observed that immunization with freeze-thawed noninfected neuroblastoma 
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lysate, as opposed to the PV-infected lysate, did not protect against live tumor challenge. 
This result underscores the capacity of poliovirus to trigger the release of danger signals 
from tumor cells, which in turn it could induce an antitumor response. 
Significantly, cells infected with encephalomyocarditis virus, a picornavirus as polio, have 
been shown to be effective at presenting nonviral antigens for cross-priming of DCs in vivo 
(Schulz et al., 2005). Viral lysates (called oncolysate) have been used in the past to vaccinate 
human against cancer (Sinkovics & Horvth, 2006). Those few trials have shown some 
degrees of success, but results have been ambiguous (Cassel & Murray, 1992; Freedman et 
al., 1988; Murray et al., 1977).  
Remarkably, treatment with viral oncolysates showed better overall survival than radio-and 
chemo-therapy, probably because of the harmful effects of conventional therapies has on the 
immune system (White et al., 2002). On the other hand, using live viruses in humans for the 
treatment of cancer comes with some drawbacks. Inoculation of a virus, mainly a high dose, 
could elicit an unwanted inflammatory reaction, or cause an opportunistic infection or an 
unexpected complication (Bell et al., 2003; Kirn et al., 2001). Furthermore, the majority of 
human population is immune to several of the potential therapy viruses (Bell et al., 2003). 
Therefore, innate and pre-existing immunity may inactive the oncolytic virus which limits 
its use in systemic virotherapy (Ikeda et al., 1999; Kirn et al., 2001). Tumor vaccine therapy 
using virus lysate may overcome some of these hurdles. Viral oncolysate can be prepared 
with nonpathogenic virus without losing its tumor immunogenicity. Hypothetically, 
inactivation of the live virus present in the viral oncolysate should not affect the antitumor 
response induced by viral oncolysate. Finally, immunotherapy with viral oncolysate can be 
more effective than tumor virotherapy in controlling minimal residual and metastatic 
diseases states, thereby preventing or prolonging the time of recurrence.  

4. Hypothesis and future studies 

We hypothesize that in vitro poliovirus infection of neuroblastoma cells induces an 
immunogenic tumor cell death through a massive upregulation of endogenus alarm signals. 
We entertain the idea that the main alarm signals induced by poliovirus infection of tumor 
cells are CRT, HSP 70 and 90, uric acid and HMGB1, which in turn mediate DC activation. 
Therefore, we also hypothesize that PV-infected neuroblastoma lysate induces an effective DC 
maturation and tumor antigen cross-presentation. Finally, we postulate that immunization 
with PV-infected neuroblastoma lysate generates a systemic and potent anti tumor response 
that will eradicate established tumors and will confer a long-lasting tumor immunity.  
Overall, there is enough information to expect that the immunization with polio lysate 

might represent a new treatment for neuroblastoma. However, the antitumor response 

induced by polio oncolysate remains largely uncharacterized. Therefore, a detailed 

knowledge of the immune response and therapeutic protection elicited by polio-infected 

neuroblastoma lysates is needed. Specifically, future studies should aim to determine:  

- Aim I. If poliovirus infection of neuroblastoma cells induces upregulation, translocation 
and release of endogenous danger signals.  

- Aim II. If polio-infected neuroblastoma lysates can induce DC maturation and 
presentation of tumor-derived antigens 

- Aim III. Whether immunization with polio-infected neuroblastoma lysates can induce a 
systemic immune response capable of eradicating established cancer and stimulating a 
long-lasting anti-tumor immunity 
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Aim I  

Rationale 
Tumors evoke mechanism to induce immune tolerance. In this context, tumor cells are 

nonimmunogenic and their death will not stimulate an antitumor response. On the other 

hand, tumor cells can be stressed by multiple stimuli and may promote membrane 

expression or release of endogenous danger signals. The upregulation of these signals will 

turn nonimmunogenic tumor cells into immunogenic tumor cells, and facilitate immune 

recognition and final elimination of the stressed tumor cells. It has been shown that 

chemotherapeutic agents activates pro-apoptotic promoter BAX, which in turn induce 

translocation and exposure of two potent danger signals, CRT and HMGB1 (Kepp et al., 

2009; Krynetskaia et al., 2008). Interestingly, poliovirus infection activates BAX in 

neuroblastoma cells (Autret et al., 2007). It is tempting to speculate that different inducers of 

immunogenic cell death activate common pathways to upregulate, translocate and release 

endogenous warning molecules. Thus, we postulate that poliovirus infection of 

neuroblastoma cells induce the upregulation and translocation of CRT, uric acid, HSP 70 

and 90, and HMGB1. We also hypothesize that signal-inducing capacity of poliovirus 

depends on virus strain and infectious dose.  

Approach.  
Neuroblastoma cells will be infected with different poliovirus strains at different multiplicity 
of infection (MOI). At different time points after infection, the presence of CRT, uric acid, HSP 
70 and 90, and HMGB1 in virus-infected cells and/or their supernatants will be determined. It 
also important to determine apoptosis/death of infected cells by Annexin V/PI test.  
Expected results and alternatives.  
Based in our previous results (see above in point 3), we think that poliovirus is a potent 

inducer of immunogenic cell death. Therefore, it is expected that infection of neuroblastoma 

cells will lead to surface exposure of CRTL, translocation of HMGB1 from nucleus to 

cytoplasm of infected cells followed by release into cell culture medium. We also anticipate 

a rapid increase in the expression of inducible HSP70 and HSP 90 and in the concentration 

of uric acid within cells and in supernatant of polio-infected cells.  

With this approach, we should be able to determine the kinetic of different danger signal 

expressions induced by poliovirus before overt CPE is developed. We should also be 

capable of correlating the kinetic of danger signals and apoptotic or necrotic profile of the 

virus-infected tumor cells. Finally, we speculate that there are differences between different 

poliovirus strains in their capacity to induce upregulation of danger signals, and with our 

experimental approach we should be able to determine these differences. It is possible that 

the endogenous danger signals that we are going to analyze are poorly or not at all induced 

by poliovirus. In this case, we will look for other potential immunogenic determinants of 

dying tumor cells such as NKG2D ligands, RNA, HSP27, DNA, PTX3, IL-1. Alternatively, 

proteomic analyses can be done to identify new putative “alarming” signals induced by 

poliovirus infection.  

The way in which exogenous insults kill a tumor cell is likely to be a key determinant of the 

interaction of dying cells with the immune system and whether this interaction will lead to an 

immune response. Here we will define if poliovirus infection of neuroblastoma cells induces 

an immunogenic cell death through upregulation and translocation of endogenous danger 

signals. cell death through upregulation and translocation of endogenous danger signals.  
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Aim II 

Rationale  

In response to various cell death associated stimuli, Dcs have been shown to play a central 

role in the recognition of apoptotic cell death and in the initiation of an immune response,. 

Only when danger signals are correctly emitted by dying cells, in response to a stimulus, 

and perceived by DC, an immune response is elicited.  

On the other hand, pathogen induced cell death can be immunogenic and hence stimulate 

an immune response against antigens that derive from dying cells and are presented by 

dendritic cells (DCs). Here we postulate that poliovirus infection of neuroblastoma cells 

induces an immunogenic death of these tumor cells. Therefore, lysate from these cells 

contain several immunogenic (danger) signals and tumor associated antigens that will 

induce DC maturation and tumor antigen-presentation.  

Approach  

Initially, mouse DC will be treated with polio oncolysates to determine whether these 

oncolysate could stimulate DC maturation. To assess DC activation by different viral 

lysates, phenotypic DC maturation and production of cytokines will be measured. To 

address whether the DC response to viral lysate could impact on downstream pathways 

of anti-tumor immune response, we will test stimulation of splenocytes from 

neuroblastoma-challenged mice via presentation by viral lysate-actived DC. As markers 

of splenocytes activation, IL 2, 4, 10 and IFN- release and cytotoxic activity will be 

determined.  

Expected results and alternatives. As mentioned in Aim 1, poliovirus infection of 

neuroblastoma cells provokes an immunogenic cell death. Therefore, we expect that the 

interaction between polio-infected neuroblastoma lysate and iDCs will result in DC 

maturation, allowing the DCs to activate relevant cell mediated immunity against tumor 

cells. Our experimental approach will allow us to determine the ability of viral oncolysate 

pulsed DC to present tumor and viral antigens to primed T cells. Moreover, we expect that 

oncolysate-pulsed DCs will be able to prime naïve splenocytes against tumor antigens. In 

line with our theory, we speculate that wild type poliovirus is a stronger inducer of 

immunogenic cell death than the other strains used in this study. Thus, PV1(M)-oncolysate 

will induce a stronger activation of DC than those stimulated by the polio replicon or the 

neuroattenuated polio oncolysate. However, we think that DCs will mature and acquire the 

ability of presenting tumor antigens upon stimulation with polio replicon oncolysate or the 

neuroattenuated polio oncolysate.  

It might be possible that the activation signals provided by oncolysate induce a poor 

maturation of DCs. To solve this problem, we can concentrate the oncolysates and test their 

capacity to induce DC maturation. Alternatively, we can mix oncolysate with small amounts 

of LPS (10-50 pg) to boost DC maturation. It is expected that polio oncolysate has a high 

concentration of poliovirus proteins. Therefore, DCs may preferentially present poliovirus 

antigens. In this case, oncolysate-pulsed DC will induce a poor antitumor response. We 

propose to increase the amount of tumor antigens presented to DCs. For this purpose, we 

will use cell membrane isolated from neuroblastoma cells as source of tumor antigens. After 

concentration, cell membranes will be mixed with oncolysate and the mixture will be used 

to pulse DCs.  
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Aim III  

Rationale 
Unfortunately, the prognosis for many children diagnosed with neuroblastoma is poor 
despite aggressive surgical resection and simultaneous radiochemotherapy regimens. 
Moreover, the frequency of relapse and the subsequent failure of further treatment have 
created the need to develop non-toxic and more effective treatments. Immunotherapy has 
the theoretical appeal that tumor-reactive lymphocyte may seek and eliminate tumor cells 
with greater accuracy than conventional therapy. A limiting impediment to successful 
immunotherapeutic treatment is the stimulation of adequate tumor antigen-specific effector 
cells. To attain this, tumor-associated antigens should be processed by antigen presenting 
cells (APCs), and presented to T cells along with enough costimulatory signals to avoid 
tolerance. Our previous results showed that polio oncolysate is able to prime an anti-
neuroblastoma response. This result indicate that viral oncolysate contain tumor associated 
antigens and immunoadjuvant molecules which activate the immune system to elicit a 
prophylatic tumor response. Based on this finding, we propose to continue our studies and 
determine if immunization with polio-infected neuroblastoma oncolysate could evoke a 
tumor-specific immunity capable of eradicating established neuroblastoma as well as 
maintaining immunological memory. On the other hand, viral oncolysate contain infectious 
virus. Therefore, inoculation of viral oncolysate may cause severe complications. To 
circumvent this problem, we also propose to obtain viral oncolysate from neuroblastoma 
cells infected with polio replicon. These RNA-based vectors are generated by providing the 
capsid proteins in trans, they can undergo only a single round of replication in the infected 
cell and they are genetically incapable of producing infectious virus.  
Therefore, we will also determine the capacity of noninfectious poliovirus replicon-infected 

lysate to induce a therapeutic effect against established tumor.  

Approach.  
We will establish hepatic and subcutaneous Neuro-2aCD155 tumors in polio-immunized 

CD155 tg A/J. Ten days after tumor cell inoculation, animals will be vaccinated 

intraperitonally (i.p) or intramuscuraly (i.m) with neuroblastoma lysates prepared from 

tumor cells infected with wild type PV1 (M), neuroattenuated A133GmonocrePV or 

propagation-defective poliovirus (poliovirus replicon). Control mice will be inoculated with 

noninfected neuroblastoma lysates or PBS. To determine long-lasting anti tumor immunity 

evoked by oncolysate vaccination, mice previously cured with any experimental treatment 

described above or 6 months after immunization with different lysates will be challenged 

i.v. or s.c with neuroblastoma cells. Protection response to each experimental therapy will be 

measured by survival rates and tumor growth. Splenocytes and sera from each experimental 

group will be obtained to test tumor-and virus specific immunity. 

Expected results and alternatives. First, we expect to obtain a comprehensive 
characterization of tumor-specific and virus-specific induced by in vivo vaccination with 
poliovirus oncolysate. We think that in vivo administration of polio oncolysates will 
mediate a strong therapeutic benefit and eliminate or slow significantly tumor growth, 
preferentially on established liver metastases. Based on our previous results, we anticipate 
that in vivo vaccination with polio oncolysate will induce a robust memory response. Since 
tumor immunogenicity of polio oncolysates might be different depending on poliovirus 
strain used for their preparation, we expect to see differences in the therapeutic effect 
induced by each of the oncolysate tested. There is concern that immunity induced by 
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repetitive inoculation of viral oncolysate will be biased towards a viral immune response. 
Our experimental approach will allow us to determine the tumor-specific and virus-specific 
and therapeutic effect induce by in vivo immunization with oncolysate. Correlation of these 
data should identify whether the biased response affects the effectiveness of 
immunotherapeutic treatment. 
It is possible, although unlikely, that in vivo vaccination with oncolysate will induce a poor 
anti-tumor response. If we detect that the reason of this poor anti-tumor response is due to 
oncolysate vaccination bias the immune response to virus, we will increase the tumor 
antigens in the oncolysate as described in Aim 2. Another possibility for a poor antit-tumor 
response is a low adjuvanticity of viral oncolysate in vivo. In this case, we propose to mix 
viral oncolysate with CpG oligodeoxynucleotides. CpG has been successful used as an 
adjuvant in other mouse models of immunotherapy for treatment of several tumors. 
Alternatively, we may improve the immune response against the tumor by combining 
frequency, timing, dose and route of administration of viral oncolysate. 

5. Conclusion 

In the current state of the art, it is likely that virotherapy using attenuated poliovirus will be 
capable of eradicating neuroblastoma when used in combination with other therapies. 
Moreover, immunotherapy with PV oncolysate alone or in combination with virotherapy 
can be effective in controlling minimal residual and metastatic diseases states, thereby 
preventing recurrence or prolonging the time of recurrence in patient suffering from 
neuroblastoma. Therefore, we think that our data and the directions of future studies 
presented here will lead to practical applications of attenuated poliovirus and polio 
oncolysate for the treatment of neuroblastoma 
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