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1. Introduction 

Neuroblastomas arise from precursors of sympathetic neurons due to defects in their 

normal development (Edsjo et al., 2007). Consequently, the tumors exhibit various 

degrees of neuronal differentiation manifested by expression of markers characteristic for 

sympathetic neurons and release of their physiological neurotransmitters (Bourdeaut et 

al., 2009). Since the levels of neuroblastoma cell differentiation determines clinical 

phenotype of the disease and its outcome, the factors regulating this process have been 

extensively studied and recently introduced to the clinic (Edsjo et al., 2007; Maris, 2010). 

Surprisingly, however, little attention has been paid to the role the sympathetic 

neurotransmitters excessively released from neuroblastoma cells play in this pathological 

condition. Despite their known role in the regulation of proliferation and survival of other 

cell types, in the neuroblastoma field those factors have been treated merely as markers of 

neuronal differentiation. Very often, even if studies on functional effects of 

neurotransmitters on neuroblastoma cells have been performed, these cells have been 

considered purely as a neuronal model (Laifenfeld et al., 2002; Lopes et al., 2010). 

Therefore, the results of such studies have been interpreted in the context of other 

neurological disorders, but not assessed in terms of their implications for neuroblastoma 

biology and therapy. Research conducted in our laboratory focuses on growth-promoting 

functions of one of such neurotransmitters, neuropeptide Y (NPY). We were able to show 

that this physiological peptide acts as a crucial mitogenic and angiogenic factor for 

neuroblastomas and significantly contributes to their progression (Kitlinska et al., 2005; 

Lu et al., 2010). However, the role of other sympathetic neurotransmitters in biology of 

these tumors remains understudied. This chapter summarizes our current knowledge on 

the role these molecules play in the regulation of neuroblastoma growth, and identifies 

problems which thus far have not been addressed.  

2. Sympathetic neuron differentiation 

The sympathetic nervous system consists of two major components - sympathetic neurons 
organized in ganglia and neuroendocrine chromaffin cells, which form the adrenal gland 
(Huber, 2006). Even though neuroblastomas often develop in adrenals, they are believed to 
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arise from precursors of sympathetic neurons, which are also present in immature adrenal 
glands (Edsjo et al., 2007; Hoehner et al., 1996). 
The sympathetic nervous system is the major derivative of the neural crest and develops in a 

process tightly controlled by local microenvironments encountered by neural crest cells 

during their migration within an embryo (Huber, 2006). The essential factors involved in 

this process are bone morphogenic proteins (BMPs) released from dorsal aorta, which 

initiate the differentiation of neural crest cells toward sympathoadrenal lineage (Huber, 

2006) (Fig. 1). The subsequent development of sympathoneural phenotype is triggered by 

induction of multiple transcription factors, such as Phox2B, MASH-1, GATA3, Hand2 and 

MYCN (Huber, 2006). During this process, immature sympathetic neurons acquire 

expression of TrkA receptor and become dependent on its ligand, nerve growth factor 

(NGF), for their survival (Glebova & Ginty, 2005). The mature sympathetic neurons attain 

the adrenergic phenotype associated with the ability to synthesize and release in a 

controllable manner their main neurotransmitter – norepinephrine (Huber, 2006). 

Consequently, the enzymes involved in the synthesis of this catecholamine, tyrosine 

hydroxylase (TH) and dopamine ┚-hydroxylase (DBH), are considered as the most 

characteristic sympathetic markers (Fig. 1, 2) (Glebova & Ginty, 2005; Huber, 2006). 

However, other neurotransmitters released from sympathetic neurons, such as NPY, are 

also frequently used for their identification (Bowden & Gibbins, 1992; Damon, 2008; 

Pahlman et al., 1991). 

 

 

Fig. 1. Sympathetic neuron differentation and neuroblastoma development.  

Even though development of the adrenergic phenotype is considered as the end stage of 
sympathetic neuron differentiation, in their small subset innervating sweat glands, 
periosteum and skeletal muscle vasculature, this process proceeds further and the neurons 
undergo a “cholinergic switch” (Glebova & Ginty, 2005). In this process, the adrenergic 
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neurons acquire additional cholinergic features, such as expression of the enzyme involved 
in acetylcholine synthesis, choline acetyltransferase (ChAT), and the ability to release this 
neurotransmitter (Fig. 1) (Glebova & Ginty, 2005). In this transient stage, the neurons have 
both adrenergic and cholinergic characteristics. Subsequently, however, their adrenergic 
properties are lost and the neurons become purely cholinergic (Glebova & Ginty, 2005). 
Interestingly, all these stages of sympathetic differentiation are reflected in various 
phenotypes of neuroblastomas (Bourdeaut et al., 2009).  

3. Neuroblastoma as a disorder of neuronal differentiation 

Neuroblastoma is an extremely heterogeneous disease with phenotypes ranging from 

spontaneously regressing to highly metastatic, aggressive tumors (Janoueix-Lerosey et al., 

2010). This phenotypical diversity is attributed to the fact that neuroblastomas arise at 

different stages of sympathetic neuron development. Consequently, the diverse clinical 

features of the disease are strongly associated with different levels of neuronal 

differentiation observed within tumor tissue (Fig. 1) (Bourdeaut et al., 2009). The 

undifferentiated neuroblastomas, which represent the most aggressive tumors, lack 

morphological features of mature neurons and do not exhibit adrenergic properties, such as 

expression of enzymes involved in catecholamine synthesis – TH and DBH. Instead, they are 

characterized by high expression of genes normally active in sympathetic precursors, such 

as Phox2B (Bourdeaut et al., 2009). In contrast, poorly differentiated neuroblastomas 

preserve some neuronal morphology and in the vast majority are highly adrenergic, with 

elevated expression of TH, DBH and with catecholamine synthesis. In some, however, the 

adrenergic properties are accompanied by expression of cholinergic markers, which 

corresponds to the transient state of dual adrenergic and cholinergic properties observed in 

sympathetic neurons undergoing the “cholinergic switch” (Bourdeaut et al., 2009). In line 

with this, the differentiating tumors with the least malignant clinical features are 

characterized by down-regulation of adrenergic properties and enhanced cholinergic 

phenotype (Bourdeaut et al., 2009). 

Neuroblastoma tumorigenesis is associated with genetic aberrations targeting crucial factors 

involved in the regulation of normal sympathetic differentiation. The most aggressive 

neuroblastomas are often associated with amplification of MYCN, while the hereditary form 

of the disease is driven by mutations in the genes encoding transcription factor, Phox2B or 

the direct target of its transcriptional regulation, anaplastic lymphoma kinase (ALK) 

(Bachetti et al. 2010; Bourdeaut et al., 2005; Janoueix-Lerosey et al., ; Mosse et al., 2008). ALK 

mutations are also present in sporadic neuroblastomas (Chen et al., 2008; George et al., 

2008). Interestingly, despite the genetic nature of the disease, differentiating factors are 

able to inhibit growth of already existing neuroblastomas and induce their maturation 

even in the presence of oncogenic mutations (Edsjo et al., 2007). Such a differentiation is 

also believed to contribute to spontaneous regression observed in stage 4S 

neuroblastomas and incomplete penetrance of the familial disease. Thus, the deregulation 

of normal sympathetic differentiation is indispensible for neuroblastoma development 

and may be, at least partially, independent of genetic aberrations (Edsjo et al., 2007; 

Prasad et al., 2003).  

Neuroblastoma cell differentiation, manifested by morphological changes, up-regulation of 

neuronal markers and down-regulation of oncogenes, can be triggered in vitro by a variety 
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of factors (Fig. 1) (Edsjo et al., 2007). The most extensively studied is retinoic acid and its 

derivatives, which have been recently introduced to the clinic as a routine treatment 

following chemotherapy (Handler et al., 2000; Maris, 2010; Sidell, 1982). Similar effects, 

however, can also be achieved with other factors, such as NGF in neuroblastoma cells with 

induced TrkA receptor expression, nitric oxide and cyclic AMP (cAMP) -stimulating factors, 

such as prostaglandins and pituitary adenylate cyclase activating polypeptide (PACAP), as 

well as a stable analog of cAMP, dibutyryl cAMP (Kume et al., 2008; Matsushima & 

Bogenmann, 1990; Monaghan et al., 2008; Prasad et al., 2003; Revoltella & Butler, 1980; 

Reynolds & Perez-Polo, 1981; Rodriguez-Martin et al., 2000) (Fig. 1). Depending on the type of 

differentiation factor and cell line used, such a morphological differentiation is associated with 

augmenting the adrenergic features of the cells manifested by increase in norepinephrine 

synthesis or, conversely, in down-regulation of adrenergic markers and enhancement of 

cholinergic properties (Handler et al., 2000; Kume et al., 2008; Pahlman et al., 1981). In some 

cases, stimulation of the mixed adrenergic and cholinergic phenotype has been observed 

(Monaghan et al., 2008). Thus, the differentiation factors shift the neuroblastoma cells toward 

more mature phenotype, with the cholinergic phenotype representing the most mature cells, 

mimicking the final stage of differentiation observed in sympathetic neurons and human 

neuroblastomas. In contrast, there are several factors, such as glucocorticoids and hypoxia, 

known to induce dedifferentiation of neuroblastoma cells associated with down-regulation of 

neuronal markers (Fig. 1) (Jogi et al., 2003; Yaniv et al., 2008).  

4. Catecholamines – the physiological neurotransmitters in pathological 
condition 

Due to their origin, sympathetic neurotransmitters are an integral part of neuroblastoma 

biology. The levels of catecholamines and/or their metabolites are elevated in over 90% of 

neuroblastoma patients and their plasma and urinary levels are utilized as a diagnostic tool 

(Monsaingeon et al., 2003) (Fig. 2). The pattern of catecholamine secretion reflects the level 

of neuroblastoma differentiation. The differentiating tumors release a relatively high 

amount of actual sympathetic neurotransmitters, norepinephrine and epinephrine 

(Zambrano & Reyes-Mugica, 2002). Paradoxically, however, systemic levels of these 

catecholamines are rarely elevated in neuroblastoma patients, while concentrations of their 

metabolites - free normetanephrine and vanillylmandelic acid - are significantly higher than 

normal (Davidson et al., 2011). This phenomenon is attributed to the fact that poorly 

differentiated neuroblastomas lack catecholamine storing mechanisms, which leads to an 

uncontrolled release of norepinephrine and its rapid metabolism (Itoh & Omori, 1973). 

In contrast, patients with undifferentiated neuroblastomas are characterized by relatively 

high levels of dopamine and its metabolite, homovanilic acid (Zambrano & Reyes-Mugica, 

2002). These dopaminergic features of aggressive tumors result from their immature 

adrenergic phenotype manifested by a decreased ability to convert dopamine to 

norepinephrine. Consequently, the high ratio of dopamine to norepinephrine and/or its 

metabolites has been postulated as an unfavorable prognostic factor (Strenger et al., 2007; 

Zambrano & Reyes-Mugica, 2002). Thus, measurement of multiple catecholamines and their 

metabolites appear to be necessary for proper diagnosis and stratification of neuroblastoma 

(Fig. 2) (Monsaingeon et al., 2003).  
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Fig. 2. Catecholamines and their metabolites in neuroblastoma 

4.1 Functions of norepinephrine and epinephrine 

Aside from releasing catecholamines, neuroblastoma cells also express their receptors – 
most often ┙2-adrenergic receptors (AR), but in some cell lines additionally ┚2-AR (Bawa-
Khalfe et al., 2007; Parsley et al., 1999). Consequently, norepinephrine has been found to 
exert significant effects on neuroblastoma cell physiology. Treatment with exogenous 
norepinephrine inhibited neuroblastoma cell proliferation, while promoting their survival 
and inducing morphological differentiation manifested by neurite outgrowth comparable to 
this observed upon retinoic acid stimulation (Fig. 3) (Laifenfeld et al., 2002; Yaniv et al., 
2008). These changes were accompanied by the decrease in expression of a marker of 
pluripotency, Oct4 and up-regulation of neuronal markers, such as growth-associated 
protein 43 (GAP-43). The norepinephrine-induced neuronal differentiation of 
neuroblastoma cells was mediated by ┙2-AR and p44/42 mitogen-activated protein kinase 
(MAPK) pathway (Yaniv et al., 2008; Yaniv et al., 2010). However, in the studies described 
above, neuroblastoma cells have been used solely as models of neuronal cells and the data 
interpreted in the context of neuronal plasticity. Thus, the role of endogenous 
norepinephrine in regulation of neuroblastoma cell proliferation and differentiation, as well 
its effect on neuroblastoma tumor growth have never been explored.  
As sympathetic neurotransmitters, norepinephrine and epinephrine are highly released 
during stress. Therefore, their stimulatory effect on the growth of various tumor types has 
been proposed as a mechanism of stress-induced augmentation of cancer progression. 
Further studies revealed that these catecholamines act mainly by increasing tumor 
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vascularization. This effect is driven by ┚-ARs present on cancer cells, the stimulation of 
which results in an increased release of angiogenic factors – vascular endothelial growth 
factor (VEGF) and interleukins 6 and 8 (IL-6 and IL-8) ( Fig. 3) (Nilsson et al., 2007; Thaker et 
al., 2006; Wong et al., 2007; Yang et al., 2009; Yang et al., 2006; Yang & Chou, 2004). 
Adrenergic stimulation has also been shown to increase the secretion of metalloproteases, 
MMP-2 and MMP-9, which further augments angiogenic and metastatic processes (Yang et 
al., 2006). In addition to those indirect activities, catecholamines can also exert direct effects 
on endothelial cells through ┙-ARs (Fig. 3). Phenylepinephrine, a non-vasoconstrictive ┙-AR 
agonist, has been shown to induce endothelial cell proliferation and migration, as well as 
promote capillary formation. These effects were potentiated by hypoxia (Vinci et al., 2007), 
which is also a known stimulator of norepinephrine release from the sympathetic nerves 
(Borovsky et al., 1998). Thus, the direct angiogenic effect of norepinhephrine can be 
particularly pronounced in hypoxic areas of tumors. However, as mentioned before, all of 
the above studies on the angiogenic effects of norepinephrine and epinephrine have been 
performed on tumors developing in adults, in the context of the stress response. The role of 
their angiogenic effects in the growth of catecholamine-rich neuroblastomas has never been 
directly tested. 
 

 

Fig. 3. Potential effects of norepinephrine and epinephrine on neuroblastoma growth and 
progression 

4.2 Dopamine 

Another catecholamine which is highly released from neuroblastomas is dopamine. Under 
physiological conditions, this catecholamine serves mainly as a brain neurotransmitter. 
However, it can also be released form peripheral sympathetic neurons and chromaffin cells, 
despite the fact that in these cells most of it is converted to norepinephrine or epinephrine 
(Fig. 2) (Goldstein, 2003). A similar phenomenon is observed with neuroblastomas, 
particularly the undifferentiated tumors that are characterized by an “immature adrenergic 
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system” and low levels of enzymes converting dopamine to norepinephrine (Zambrano & 
Reyes-Mugica, 2002). As in case of other catecholamines, the role of the endogenous 
dopamine in the regulation of neuroblastoma growth has not been explored. However, the 
studies designed to test the potential role of dopamine in the development of 
neurodegenerative diseases have shown that this catecholamine, if given at high 

concentrations (100-500M), becomes toxic for neuroblastoma cells (Fig. 4). This effect is 
driven by intracellular dopamine, the oxidation of which creates reactive oxygen species 
(ROS) and triggers apoptosis and autophagy (Bisaglia et al., 2010; Gimenez-Xavier et al., 
2009; Junn & Mouradian, 2001). Whether or not endogenous dopamine is present in 
neuroblastoma cells at these toxic concentrations and, if not, what are its effects at the levels 
present locally in the tumor tissue remains to be elucidated. 
As previously shown for other catecholamines, dopamine is also involved in the regulation 
of tumor angiogenesis. However, in contrast to norepinephrine and epinephrine, dopamine 
decreases vascularization in a variety of tumor types and animal models (Fig. 4) (Asada et 
al., 2008; Chakroborty et al., 2004; Sarkar et al., 2008). The mechanism underlying this effect 
involves blocking VEGF-induced proliferation and migration of mature endothelial cells 
and their progenitors (Chakroborty et al., 2008). This effect is mediated by endothelial D2 
receptors, which upon dopamine stimulation enhance endocytosis of VEGF receptor 2 
(VEGF-R2) and decrease its membrane expression. This, in turn, interferes with VEGF 
signaling by reducing VEGF-induced phosphorylation of VEGF-R2 and preventing the 
activation of downstream kinases – focal adhesion kinase (FAK) and p42/44 MAPK (Basu et 
al., 2001; Sarkar et al., 2004). 
 

 

Fig. 4. Potential functions of dopamine in neuroblastoma.  

In contrast to D2 receptor-mediated anti-angiogenic effects, stimulation of D1 dopamine 
receptors has been shown to increase endothelial cell proliferation and angiogenesis 
(Lindgren et al., 2009). This effect, however, has been shown mainly for brain microvascular 
endothelial cells stimulated by selective D1 receptor agonists (Bacic et al., 1991; Lindgren et 
al., 2009; Lu et al., 2008). On the contrary, in cancer models, the inhibitory effect of D2 
receptor-preferring dopamine prevails, reducing tumor vascularization and growth (Asada 
et al., 2008; Chakroborty et al., 2004; Sarkar et al., 2008). The specific effects of endogenous 
dopamine on neuroblastoma vascularization, as well as their biological and clinical 
relevance, have yet to be determined.  
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5. Neuropeptide Y – neuronal marker or growth factor? 

Neuropetide Y (NPY) is a 36-amino acid peptide, which is normally co-released with 

norepinephrine from mature sympathetic nerves. Consequently, as shown for 

catecholamines, the elevated plasma levels of NPY have been reported in neuroblastoma 

patients (Grouzmann et al., 1989). However, early attempts to use it as a general diagnostic 

marker failed due to high variability of the peptide’s concentrations. More detailed analyses 

revealed that release of NPY is elevated in stage 3/4 and stage 4s neuroblastomas, but not in 

stage 1/2 (Dotsch et al., 1998; Kogner et al., 1994). Also, among patients with advanced 

disease, the NPY levels were diverse, with many cases comparable to healthy controls. 

However, the increased plasma concentrations of NPY in patients from this group strongly 

correlated with poor clinical outcome of the disease (death and relapse) and MYCN 

amplification (Dotsch et al., 1998; Kogner et al., 1994). Interestingly, in advanced 

neuroblastomas, the elevated levels of NPY in a patient’s plasma did not correlate with its 

high mRNA levels in the tumor tissue (Cohen et al., 1990; Dotsch et al., 1998). Similarly, 

based on the data from the Oncogenomics data base, high mRNA levels of NPY in tumor 

tissues correlated with better survival (Wei et al., 2004). This observation is in agreement 

with NPY being a sympathetic marker up-regulated by numerous differentiation factors 

(Bowden & Gibbins, 1992; Damon, 2008; Edsjo et al., 2007; Pahlman et al., 1991). The 

discrepancies between NPY mRNA levels and its release can be explained by a defect in 

neurotransmitter storage mechanisms observed in neuroblastoma (Itoh & Omori, 1973). It is 

plausible that despite high expression of NPY in differentiating tumors, the release of the 

peptide is tightly controlled and needs certain stimulation to occur, as observed in mature 

sympathetic neurons. In contrast, undifferentiated tumors synthesize less NPY, but release it 

in an uncontrolled manner, which leads to elevated systemic levels of the peptide in 

neuroblastoma patients, as well as further depletion of the peptide in neuroblastoma tissue. 

Such an uncontrolled secretion has been already described for catecholamines (Davidson et 

al., 2011; Itoh & Omori, 1973). 

The clinical reports associating elevated plasma NPY levels with poor prognosis of 

neuroblastoma suggested that the peptide can be a growth factor for these tumors. Indeed, 

neuroblastoma cells express not only NPY, but also its G protein-coupled receptors – mainly 

Y2 receptors (Y2Rs), with low levels of Y5R co-expression in some cell lines (Kitlinska et al., 

2005; Korner et al., 2004). We have shown that this autocrine loop stimulates neuroblastoma 

cell proliferation via p44/42 MAPK pathway (Fig. 5) (Kitlinska et al., 2005). More 

importantly, blocking the NPY/Y2R mitogenic signaling reduces basal levels of p44/42 

MAPK activity in neuroblastoma cells and significantly inhibits their proliferation (Lu et al., 

2010). This effect is associated with an increase in neuroblastoma cell apoptosis mediated by 

the Bim pathway, known to be activated upon growth factor withdrawal (Lu et al., 2010). 

Altogether, these observations suggest that the NPY/Y2R autocrine loop is essential to 

maintain neuroblastoma in their proliferative state 

Aside from being a mitogenic factor for neuroblastomas, NPY is also known to stimulate 

angiogenesis via its direct proliferative and pro-migratory effect on endothelial cells (Lee et 

al., 2003b; Movafagh et al., 2006; Zukowska-Grojec et al., 1998). Strikingly, the angiogenic 

effect of NPY is also mediated by Y2Rs, which are expressed in activated endothelial cells 

(Lee et al., 2003a; Movafagh et al., 2006). Therefore, in vivo, NPY stimulates neuroblastoma 
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tumor growth via two independent mechanisms – a direct proliferative effect on 

nuroblastoma cells and indirectly, via increasing tumor vascularization (Fig. 5). Since both 

of these actions are mediated by Y2Rs, blocking Y2Rs in neuroblastoma xenografts leads to 

substantial inhibition in tumor growth associated with reduced proliferation levels, 

increased apoptosis, decreased tumor vascularization and marked focal fibrosis (Lu et al., 

2010). Thus, the above data gathered in our laboratory indicate that NPY and its Y2Rs are 

promising new targets in neuroblastoma therapy. However, further studies are required to 

increase the efficiency of Y2R blockage, as well as to elucidate the role of NPY in other 

processes involved in regulation of tumor progression, such as chemoresistance and 

metastases.  

 

 

Fig. 5. Growth-promoting actions of NPY in neuroblastoma 

6. Acetylcholine – the end stage of neuroblastoma differentiation 

As described above, the most differentiated neuroblastomas exhibit cholinergic properties 

manifested by the expression of the proteins involved in synthesis and release of 

acetylcholine (Bourdeaut et al., 2009). Similar cholinergic features are acquired by 

neuroblastoma cells differentiated with retinoic acid (Handler et al., 2000). Neuroblastoma 

cells have also been shown to express functional muscarinic receptors of acetylcholine (M1-

M5) (Baumgartner et al., 1993). Stimulation of serum-starved neuroblastoma cells with a 

non-specific muscarinic agonist, carbochol, resulted in an increase in their survival. This 

effect was mediated by M3 muscarinic receptors and the p44/42 MAPK pathway (Fig. 6) 

(Greenwood & Dragunow, 2010). The pro-survival activity of muscarinic receptors can be 

further augmented by their ligand-dependent cross-talk with VEGFR2, which augments 

PI3K/Akt/mTOR pathway activation (Fig. 6) (Edelstein et al., 2011). Again, whether or not 

endogenous acetylcholine also serves as a survival factor for differentiating neuroblastomas 

and the role of other muscarinic receptors present in neuroblastoma cells, remains to be 

elucidated.  
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Fig. 6. Potential effects of cholinergic stimulation on neuroblastoma growth 

7. Conclusions 

Neuroblastomas, along with pheochromocytomas, sympathetic nervous system-derived 
tumors of adulthood, are extremely rich in sympathetic neurotransmitters (Bourdeaut et al., 
2009; Cohen et al., 1990; Dotsch et al., 1998; Grouzmann et al., 1989). They are also known to 
express their receptors, which creates functional autocrine loops (Baumgartner et al., 1993; 
Bawa-Khalfe et al., 2007; Kitlinska et al., 2005; Parsley et al., 1999). Sympathetic 
neurotransmitters, in turn, are known to be potent regulators of many processes involved in 
the regulation of tumor growth, such as cell proliferation, survival, migration and 
angiogenesis (Greenwood & Dragunow, 2010; Kitlinska et al., 2005; Laifenfeld et al., 2002; Lee 
et al., 2003b; Tilan & Kitlinska, 2010; Yaniv et al., 2008). Their involvement in the pathogenesis 
of neurological disorders and stress-induced exacerbation of various diseases has been well 
characterized (Thaker & Sood, 2008). Surprisingly, however, despite highly elevated levels of 
these neurotransmitters in sympathetic tumors, their functions in these malignancies have 
been underappreciated. Our recent studies on NPY and its growth-promoting effects brought 
the first definitive data proving the crucial role of endogenous sympathetic neurotransmitters 
in neuroblastoma biology and their potential value as targets in its therapy (Lu et al., 2010). 
Nevertheless, many seemingly obvious connections, such as the potential role of angiogenic 
activity of norepinephrine in neuroblastoma progression, have not been made.  
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