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1. Introduction 

More than one microorganism causes periodontal disease, like many infectious diseases in 

humans. Because of the complexity of “polymicrobial infections”, their study requires a 

multidisciplinary approach, employing specific in vitro techniques, and various animal 

models (Bakaletz 2004). Inherently, no one approach or animal model can completely 

elucidate the mechanisms of periodontal disease. Notwithstanding these difficulties, animal 

models do provide critically important information regarding periodontal disease 

pathogenesis (Graves 2008). Another layer of complexity resides in the fact that different 

strains of bacteria, as in the case of P. gingivalis (Pg)-induced disease, cause different levels 

of disease in the same mouse strain (Baker and Roopenian 2002). Similarly, differences in 

disease susceptibility can result from the same bacterium strain, as in the case of 

Aggregatibacter actinomycetemcomitans (Aa) infected rodents (Fine et al. 2009). 

Furthermore, different strains of rodents exhibit different susceptibilities to challenge from 

the same strain of bacterium, such as Pg (Baker et al. 2000). This finding also holds true for 

Aa (Schreiner et al. 2011). These observations resemble findings in human disease, especially 

in the case of Aa-related disease where the JP2 strain of Aa appears to be more virulent than 

other Aa strains, and where individuals of African heritage appear to be more susceptible to 

Aa–induced periodontal disease than Caucasian individuals (Haubek et al. 2008). The 

similarities between rodent and human bacterial-induced periodontal diseases lend 

credence to the validity of the animal model designed to assess this disease (Fine 2009). 

The virulence factors elaborated by pathogenic microorganisms and the host immunologic 

responses to such factors play a major role in disease induction and progression. It has been 

established that Aa, a gram-negative facultative capnophilic rod, is the causative agent in 

localized juvenile periodontitis (LJP) (Zambon 1985). This agent is also a key pathogen for 

localized progressing and severe forms of adult periodontitis (Dzink et al. 1985; Zambon et 

al. 1988). Aa possesses several virulence factors, including endotoxin and leukotoxin (Fives-

Taylor et al. 1999). Aa secretes a protein toxin, Leukotoxin (LtxA), which helps the bacterium 

evade the host immune response during infection, by specifically targeting white blood cells 
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(WBCs) (Kachlany 2010). The ability of LtxA to bind WBCs from humans and Old World 

primates, by interacting with lymphocyte function antigen-1 (LFA-1) on susceptible cells, 

has opened a window of opportunity for the use of LtxA as a novel therapeutic agent in 

leukemia (Kachlany et al. 2010). Aa also produces cytolethal distending toxin (Cdt), which is 

a potent immunotoxin that induces G2 arrest in human lymphocytes (Shenker et al. 2007). 

The immunologic and systemic impact of these bacterial toxins in periodontal disease is yet 

to be clarified. 

The binding of Aa to buccal epithelial cells (BEC) was shown to be mediated by two Aa 

autotransporter adhesions (ApiA and Aae), which work, in concert to modulate Aa binding 

to BEC, specifically in humans and Old World Monkeys (Yue et al. 2007). The type and 

extent of the immunologic response mounted in response to oral pathogen will undoubtedly 

depend on the particular microbial pathogen(s), the virulence factors invoked and the 

genetic background of the host. The immunologic reactions mounted in response to oral 

pathogens have a potential to precipitate other unforeseen systemic diseases of grave 

importance. The connection between immunologic responses to oral pathogens and 

systemic diseases is mostly unexplored, at present. 

2. Immune responses to microbial pathogens 

Our understanding of periodontal pathogenesis has evolved over the years, and has 

transformed from periodontitis being considered an almost ubiquitous condition in which 

the role of plaque was thought to be the sole aetiologic factor to today where concepts of 

inflammation and individual susceptibility are considered (Preshaw and Taylor 2011). 

Neutrophils are a critical arm of the host defense in periodontitis, but bacterial evasion of 

neutrophil microbicidal machinery, together with delayed neutrophil apoptosis can 

transform neutrophil from defender to perpetrator (Nussbaum and Shapira 2011). In the 

recent Seventh European Workshop on Periodontology, aimed at understanding cellular 

and molecular mechanisms of host microbial interactions, a consensus was reached that 

“PMNs are important in the pathophysiology of periodontal disease but there is limited 

evidence on their much quoted destructive potential”. Cytokine networks are enormously 

complex and we are really at the beginning of understanding their role in the disease 

process (Kinane, Preshaw and Loos 2011). Thus, there is an emerging appreciation for the 

complex role played by the adaptive immune system in responses to periodontal pathogens. 

2.1 Humoral Immune responses to microbial pathogens 

In early studies, significantly elevated serum immunoglobulin G (IgG) antibody levels to B. 

gingivalis were seen in adult and advanced destructive periodontitis patients, suggestive of 

distinctive host-parasite interactions in this disease (Ebersole and Cappelli 1994; Ebersole et 

al. 1986). Analysis of the proportion of various cell types present in gingival biopsies 

retrieved from subjects with severe chronic periodontitis showed that the proportion of B 

cells was larger than that of T cells, plasma cells and neutrophils. Furthermore, about 60% of 

the B cells were of the autoreactive B-1a sub-population (CD19+CD5+) (Donati et al. 2009). 

The plasma cells that developed were shown to derive from both B-2 cells (conventional B 

cells) and B-1a cells. There is strong evidence that B cells serve as antigen presenting cells in 

periodontitis (Gemmell et al. 2002; Mahanonda et al. 2002). Indeed, upregulation of the co-

stimulatory molecule, CD86 (B7.2), and the dendritic cell marker, CD83, on B cells in 
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periodontal lesions, have been reported (Gemmell et al. 2002). Thus, it is likely that the B 

cells found in periodontal tissue might present bacterial antigens to host T cells, leading to 

the elaboration of a whole range of cytokines, the nature of which would depend on the 

type of bacteria, and the host. 

Altered CD4/CD8 T-cell ratios and autologous mixed-lymphocyte reaction in LJP, 
suggested a potential regulatory role of T cells in periodontitis. Using immunohistochemical 
and in situ hybridization techniques, a higher frequency of CD4+CD45RO+ cells expressing 
IL-4 has been seen in lesions from individuals with chronic periodontitis compared to 
normal tissue (Yamazaki et al. 1994). Comparing two different compartments (peripheral 
blood vs. periodontal tissue), it was noted that even though mRNA for IL-12 and IL-13 were 
similar between the two compartments, the level of IFN-┛ was higher in circulating cells 
than in gingival cells. Inversely, IL-10 expression was higher in the gingival cells (Yamazaki 
et al. 1997). Moreover, the frequency of IL-10 expressing CD14+ cells was higher in 
peripheral blood of chronic periodontitis, but not acute periodontitis patients, compared to 
healthy controls (Yamazaki et al. 1997).  
In periodontal disease, the development of gingivitis involves Th1 cells, while in 

periodontitis, there is a shift toward Th2 cells (reviewed in (Berglundh and Donati 2005)). 

Autoimmune reactions do occur in periodontitis lesions; however, the role of autoantibodies 

in the regulation of host response in periodontitis needs to be clarified (Berglundh and 

Donati 2005). In studies conducted with Aa-induced periodontal disease rat model, we 

observed an early increase in serum IgG2a antibody 2-4 weeks post inoculation. This was 

accompanied by a concomitant increase in LtxA-specific IgG production, suggesting that the 

immune response was mediated by Aa (Li et al. 2010). An increase in B and CD4 T cell 

numbers in draining cervical and submandibular lymph nodes accompanied this Aa-specific 

antibody production. CD8 T cell numbers were not examined in this study (Li et al. 2010). In 

agreement with this observation, there was an increase in the expression of CD70 (TNFSF7) in 

B cells harvested from draining lymph nodes in rats infected by Aa (Li et al. 2010). CD70 has 

been shown to be expressed on a subpopulation of germinal center B cells (Hintzen et al. 1994).  

2.2 Cytokines in periodontal disease 

Innate immunity is mediated by macrophages, dendritic cells (DCs), neutrophils, 

monocytes, epithelial cells and endothelial cells that recognize and temporarily respond to 

pathogen associated molecular patterns (PAMPS), like LPS on gram-negative bacteria. The 

adaptive immune system, on the other hand, uses specific antigen recognition structures on 

T and B cell. Such responses are specific and maintained by the generation of memory. 

Various cytokines generated by macrophages and DCs create a milieu, which determines 

the differentiation of particular effector T-cell subsets as well as the class and subclass of 

immunoglobulin (Ig) antibodies synthesized. Cytokines act in concert with other signalling 

pathways and, especially, cell-to-cell interactions via antigen presentation and co-

stimulatory molecules (Preshaw and Taylor 2011). 

The role of inflammatory cytokines, such as interleukin (IL)-1┚, tumor necrosis factor-┙, and 

IL-6, has been the most understood (reviewed in (Preshaw and Taylor 2011). Inhibition of 

IL-1 and tumor necrosis factor (TNF) resulted in amelioration of bone loss in experimental 

periodontitis (Assuma et al. 1998; Graves et al. 1998). In our studies on Aa-induced 

periodontal disease, the early induction of Aa-specific IgG and IgG2a antibodies in Aa-fed 

rats is of interest since mRNA for Th1 cytokines TNF and lymphotoxin beta (LT┚) (Abbas, 
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Murphy and Sher 1996) were upregulated early (2-4 weeks) in the inflammatory response, 

which could explain the significant switch in Aa-specific antibody production to IgG2a. This 

is consistent with the observation that Th1 cytokines drive isotype switching to IgG2a in 

inflammatory responses of atherosclerosis (Schulte, Sukhova and Libby 2008).  

2.2.1 Th1/Th2 paradigm 

Cytokines mediate and sustain the development and function of CD4+ Th cell subsets. In the 
original description of Th cell dichotomy, Th1 cells secrete interferon-┛ (IFN-┛), and 
promote cell-mediated immunity by activating macrophages, natural killer (NK) cells and 
cytotoxic CD8+ T-cells, whereas Th2 cells secrete IL-4, IL-5 and IL-13 and regulate humoral 
(antibody-mediated) immunity and mast cell activity (Mosmann and Coffman 1989). It was 
conjectured that the dynamic interaction between T-cell subsets might result in fluctuations 
in disease activity and that a Th1 response (providing protective cell-mediated immunity) 
underlies a “stable” periodontal lesion, and a Th2 response (leading to activation of B-cells) 
mediates a destructive lesion possibly through enhanced B-cell-derived IL-1┚ (Gemmell, 
Yamazaki and Seymour 2007; Seymour and Gemmell 2001). It is now becoming clearer that 
the Th1/Th2 model alone is inadequate to explain the role of T-cells in periodontal disease 
process (Gaffen and Hajishengallis 2008). 

2.2.2 Role of Th17 cells 

Th17 cells secrete the IL-17 cytokines (which have a number of pro-inflammatory activities 
in common with IL-1┚ and TNF┙) and IL-22, and are crucial for immunity against 
extracellular bacteria (Miossec, Korn and Kuchroo 2009). Th17 cells have been implicated in 
the pathogenesis of several autoimmune and inflammatory disorders, and in vitro 
polarization of human and mouse Th17 cells is under the influence of Notch1 (Keerthivasan 
et al. 2011). Studies have shown that IL-17A produced by Th17 cells stimulate the 
development of osteoclasts (osteoclastogenesis) in the presence of osteoblasts (Zhang et al. 
2011), and expression of IL-17 has been observed in gingiva from patients with periodontitis 
(Cardoso et al. 2009).  
In our studies on Aa-induced rat model for periodontal disease, we observed upregulation 
in IL-17 in CD4+ T cells (2.8 fold) and B cells (2 fold), in lymph nodes from Aa-infected rats, 
compared to control rats. This level of expression was below our stringent criterion of four-
fold differential gene expression in this study. However, this finding is in conformity with 
the observation that IL-17 might be involved in inflammatory response and bone resorption 
in periodontal disease animal models (Oseko et al. 2009) (Xiong, Wei and Peng 2009). It 
should, however, be noted that T cells exhibit “functional plasticity” that is influenced by 
the cytokine milieu (Bluestone et al. 2009). For instance, Th17 cells can differentiate into Th1 
cells, under the influence of IL-12 (Korn et al. 2009), and follicular T helper cells (Thf), 
present in the B cell follicles of lymph nodes, are dependent on IL-6 and IL-21 for their 
development, and are capable of secreting a cytokine profile corresponding to Th1, Th2 or 
Th17 cells (Korn et al. 2009). 

2.2.3 Role of regulatory (Treg) cells 

It has been established that naturally arising Foxp3+CD4+CD25+ (Treg) cells play a central 

role in the maintenance of immunological tolerance (Sakaguchi 2005). Treg cells secrete 

transforming growth factor-┚ (TGF-┚) and IL-10 which are critical in regulating other T-cell 
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subsets and maintaining tolerance against self-antigens, thereby preventing autoimmunity 

(Josefowicz and Rudensky 2009). Gingival mononuclear cells from mice infected with Pg 

were found to exhibit increased levels of Treg cells 30 days post infection, suggesting that 

there are potential roles for Treg cells during the chronic stage of periodontitis in the 

regulation of gingival inflammation and alveolar bone loss (Kobayashi et al. 2011). 

FoxP3+CD8+ T cells, with suppressive function have recently been identified in simian 

immunodeficiency virus infected rhesus macaques, and in HIV-1 infected humans. 

Expansion of CD8+ Tregs correlated directly with acute phase viremia and inversely with 

the magnitude of antiviral T cell response (Nigam et al. 2010). Using transgenic OT-I mice, 

the administration of ovalbumin (OVA) enabled osteoclasts to cross-present OVA to Ag-

specific CD8+ T cells to induce their proliferation, and secretion of of IL-2, IL-6, and IFN-┛. 

CD8+ T cells activated by osteoclasts expressed FoxP3, CTLA4 and RANKL. Those CD8+ T 

cells were found to be anergic and suppressed dendritic cell priming of naive responder 

CD8+ T cells (Kiesel, Buchwald and Aurora 2009). The role of this novel group of CD8+ Treg 

cells in periodontal disease requires further examination. 

2.2.4 Novel cytokine roles in periodontal disease 

In our studies on Aa-induced periodontal disease rat model, we observed upregulation in 
mRNA for a number of cytokines, not normally ascribed to periodontal disease. IL-16 was 
upregulated in CD4 T cells in the early phase of the response (Li et al. 2010). IL-16 has been 
shown to be involved in the selective migration of CD4 T cells, and participates in 
inflammatory diseases (Akiyama et al. 2009). It was detected in gingival crevicular fluid 
(Sakai et al. 2006). IL-19, a novel cytokine of the IL-10 family, was also upregulated in CD4 T 
cells in response to Aa. IL-19 produced by synovial cell in Rheumatoid arthritis (RA) 
patients promotes joint inflammation (Sakurai et al. 2008). IL-21, which has recently been 
shown to induce receptor activator of nuclear factor kappaB ligand (RANKL) and was 
implicated in arthritis (Jang et al. 2009), was upregulated in B cells responding to Aa. There 
was also an induction of IL-24 by 12 weeks in CD4 T cells responding to Aa. Studies 
conducted on RA showed an increase in IL-24 in the synovium of RA patients, and this 
cytokine was implicated in recruitment of neutrophil granulocytes (Kragstrup et al. 2008). B-
cell-activating-factor (BAFF, or TNFSF13B) and a proliferation-inducing ligand (APRIL), 
members of the TNF family, were upregulated in B cells and CD4 T cells, respectively, in 
response to Aa infection. Both of these factors were found to be upregulated in children with 
atopic dermatitis (Jee et al. 2009), and thus would represent factors that characterize Aa-
induced periodontal disease.  
IL-23, a proinflammatory cytokine composed of IL-23p19 and IL-12/23p40 subunits, is 

known to promote the differentiation of Th17 cells. Studies showed that IL-23 and IL-12 

were expressed at significantly higher levels in periodontal lesions than in control sites, 

suggesting that IL-23-induced Th17 pathway is stimulated in inflammatory periodontal 

lesions (Ohyama et al. 2009). IL-33 is a new member of the IL-1 family, which plays a role in 

inflammatory response. Injection of TNF transgenic mice, overexpressing human TNF, with 

IL-33 or IL-33R agonistic antibody inhibited the development of spontaneous joint 

inflammation and cartilage destruction. Furthermore, in vitro, IL-33 directly inhibits mouse 

and human M-CSF/receptor activator for NF-k┚ ligand-driven osteoclast differentiation, 

suggesting an important role for IL-33 as a bone-protecting cytokine with potential for 

treating bone resorption (Zaiss et al. 2011).  
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2.2.5 Role of RANKL and related molecules 

RANKL plays a role in T cell-mediated bone resorption. Interference with RANKL by 

systemic administration of osteoprotegerin (OPG), the decoy receptor for (and inhibitor 

of) RANKL, was found to result in abrogation of periodontal bone resorption in a rat 

model (Taubman et al. 2005). Studies in humans have demonstrated that RANKL levels in 

gingival crevicular fluid (GCF) were low in health or gingivitis, but increased in 

periodontitis. On the other hand, OPG levels were higher in health than periodontitis, or 

gingivitis groups (Bostanci et al. 2007). Thus, GCF RANKL and OPG levels were 

oppositely regulated in periodontitis, but not gingivitis, resulting in an enhanced 

RANKL/OPG ratio. In our studies with Aa-induced periodontal disease rat model, while 

the bone resorption protein RANKL (TNFSF11) was induced in CD4 T cells from Aa-fed 

rats, its soluble decoy receptor OPG (TNFSF11b) was also induced in the CD4 T cells (Li et 

al. 2010). Developments in the field of osteoimmunology, which examine the crosstalk of 

immune cells and bone, have uncovered a novel role for the RANKL-RANK-OPG system 

in other processes such as in controlling autoimmunity or immune responses in the skin 

(Leibbrandt and Penninger 2010). Despite the sustained upregulation of OPG, bone 

resorption still occurred. The critical balance between osteoblast-mediated bone formation 

and osteoclast-mediated bone resorption has been described as “coupling” of bone 

formation to bone resorption (Parfitt 1982).  

2.2.6 Role of BMPs and GDFs in periodontal disease 

Bone morphogenic proteins (BMPs) and growth differentiation factors (GDFs) are members 

of the transforming growth factor-┚ (TGF- ┚) superfamily. They play important roles during 

development and organogenesis in delivering positional information in both vertebrates 

and invertebrates, and are involved in the development of hard as well as soft tissue 

(Herpin, Lelong and Favrel 2004). 

BMPs can also act locally on target tissues to affect proliferation and survival (Rosen 2006). 

BMP2, even though dispensable for bone formation, is a necessary component of the 

signaling cascade that governs fracture repair (Tsuji et al. 2006). In our studies, BMP2 was 
induced in B cells early (week 4) of an inflammatory process, at the same time that RANKL 

was induced in CD4 T cells (Li et al. 2010). This suggests that bone repair mechanisms were 
induced early, well ahead of impending bone resorption. However, by 12 weeks of infection 

by Aa, BMP2 was shut down, as bone resorption proceeded. BMP3 was also upregulated at 
week 4 in B cells responding to Aa. BMP3 has been shown to be a negative regulator in the 

skeleton, as mice lacking BMP3 have increased bone mass. Transgenic mice over-expressing 
BMP3 had altered endochondral bone formation resulting in spontaneous rib fractures 

(Gamer et al. 2009). On the other hand, it has been suggested that BMP2 and BMP3 might be 
co-regulated. BMP-2 was found to enhance BMP-3 and -4 mRNA expressions in primary 

cultures of fetal rat calvarial osteoblasts. The enhancement of BMP-3 and -4 mRNA 
expressions by BMP-2 was associated with an increased expression of bone cell 

differentiation marker genes (Chen et al. 1997). It is of interest that BMP2 and BMP3 were 
upregulated in B cells at the same time (4 weeks post infection), and were shut down at 12 

weeks, at which time bone resorption was evident.  
In our studies with Aa- rat model for periodontal disease, we found that B cells responding 
to Aa upregulated BMP10 at all time points (Li et al. 2010). BMP10 has been shown to 
regulate myocardial hypertrophic growth (Chen et al. 2006), and may function as a tumor 
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suppressor and apoptosis regulator for prostate cancer (Ye, Kynaston and Jiang 2009). To 
our knowledge, our work is the first report on the production of BMP10 by B cells 
responding to infection. The expression pattern of BMP10 in our studies, suggests that it 
might be involved in inflammation, as well as in bone resorption. Furthermore, the 
involvement of BMP10 in cardiac hypertrophy and cancer, suggests that it might represent 
one of the possible “missing links” between periodontal disease and other systemic diseases 
like heart disease and cancer. Evidence for this is provided in the modeled biological 
interaction pathway depicted in Fig 1. 
 

 

Fig. 1. Proposed biological interaction network of differentially expressed genes from B and 

CD4 T cells of Aa-fed rats at 12 weeks post infection by Aa, and their relationship to disease. 

Genes upregulated by at least four-fold (i.e. Log2 fold greater than 2) in B and CD4 T cells 

derived from cervical and submandibular lymph nodes of Aa-fed rats, in comparison to B 

and CD4 T cells from control rats, were imported into Pathway Studio (Ariadne Genomics, 

Inc., Rockville, MD, USA) (Yuryev et al. 2006) for analyses. The picture shows interactions 

between upregulated genes in the expression data (shown as green highlights) and their 

interactions with related genes and diseases. The biological relationships revealed by the 

network are depicted in the pallets at the right of the figure. The relevance of the expression 

data to various diseases, as determined by the mining of the published Resnet 7 database in 

Pathway Studio, is indicated in the network. Reprinted with permission from Li Y et al. 

Molecular Oral Microbiology 2010; 25:275-292. 
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Growth differentiation factor 11 (GDF11) or BMP11, plays an important role in 

establishing embryonic axial skeletal patterns (McPherron, Lawler and Lee 1999). 

Transfection of GFF11 gene was found to stimulate a large amount of reparative dentin 

formation in amputated dental pulp of canine teeth in vivo (Nakashima et al. 2003). In our 

studies with Aa-induced periodontal disease rat model, GDF11 was upregulated at 12 

weeks post infection, in both B and CD4 T cells, at the time of bone resorption. This 

suggests that GDF11 may have a novel role in bone resorption. The fact that GDF11 

activation has been observed in cancer (Yokoe et al. 2007), may also provide another 

possible link between periodontal disease and cancer. 

Growth differentiation factor 15 (GDF15), was upregulated in both B and CD4 T cells of Aa-

infected rats at 12 week, coinciding with the time of bone resorption. However, there are 

conflicting reports on the role of GDF15 in bone resorption and other systemic diseases. 

Studies have shown that pure GDF15 and the GDF15-containing growth medium of 

1,25(OH)2-vitamin D3-treated prostate adenocarcinoma LNCaP cells suppress osteoclast 

differentiation (Vanhara et al. 2009). In addition, elevation in GDF15 has been associated 

with cardiovascular disease (Kempf and Wollert 2009), and colorectal cancer metastasis (Xue 

et al.). Thus, GDF15 may also contribute another possible link between periodontal disease 

and systemic diseases. 

3. Conclusions 

The nature of the adaptive response to oral microbial insult is vastly dependent on the 

nature of the microbe, the host (including genetic background), as well as the milieu of 

prevailing cytokines and chemokines. The Aa-induced rat model and Pg-induced mouse 

model for periodontal disease have provided extensive knowledge about role of several 

previously uncharacterized genes in periodontal disease, however, much more work needs 

to be done. Therefore, examination of B and CD4 T cells from lymph nodes draining the oral 

cavity of Aa-fed rats showed that inflammatory processes are initially activated early (2-4 

weeks) post infection. This, ultimately, leads to activation of bone resorption pathways that 

end in overt bone resorption by 12 weeks post infection. Apart from induction of known 

inflammatory cytokines (such as TNF┙, IL-1┚, and LT┚), other cytokines and TGF-┚ 

superfamily member genes, not previously associated with bone resorption, were found to 

be upregulated in B and/or CD4 T cells. Some of these genes have known effects on 

systemic diseases such as heart disease, cancer, autoimmune disease, and diabetes. The role 

of CD8 T cells in adaptive immune responses to periodontal pathogens is not yet clarified. 

This evidence suggests a subtle link between periodontal disease and other systemic 

diseases. In conclusion, animal studies have played an important role in unraveling key 

elements of our understanding of microbial pathogenesis in many human diseases (Shea et 

al. 2010). The availability of new and more complete data from mouse and rat genome 

studies coupled with the access to powerful tools that can uncover microbial and host 

expression can provide novel ways to examine periodontal disease pathogenesis. 

Application of these tools can allow for comparisons to common pathways with respect to 

other infectious diseases. This chapter has presented some data derived from the application 

of one of these new immune response pathway tools to microbial-induced periodontal 

disease in a rat model.  
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