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1. Introduction 

Live cells show various dynamic characteristics, such as cell division or material production. 

When we consider that a cell is a chemical reactor that contains an enzyme in its structure, 

the rates of chemical reaction catalysed by them depend on the cell density. As the amount 

of enzyme within the cell differs according to the rate of expression of a specific gene, the 

rate of the reaction also depends on the condition of the cell. In short, chemical reactions 

caused by cells are nonlinearly related to the cell density; the reaction rate is not 

proportional to the cell density. This is one remarkable aspect of live cells. In the field of 

chemical analysis, bacterial cell behaviour is often used. For example, changes in respiration 

caused by chemical compounds that inhibit the respiratory chain (such as KCN) can be 

quantified, theoretically, by measuring the changes in the dissolved oxygen concentration.  

Biomaterial-based devices have been reported, such as biochips or biosensors. These are not 

truly “bio” because they use an enzyme or antibody outside of the cell. Microbial sensors 

(Melidis, P.; Georgiou, D.(2002).; Kang. KH.; Jang. JK.; Pham. TH.; Moon. H.; Chang. IS. & 

Kim, BH. (2003).; Moon, H.; Chang, IS.; Kang, KH.; Jang, JK. & Kim, BH. (2004). ; Chang, IS.; 

Moon, H.; Jang, JK. & Kim, BH. (2005).; Kogure, H.; Kawasaki, S.; Nakajima, K.; Sakai, N.; 

Futase, K.; Inatsu, Y.; Bari, ML.; Isshiki, K. & Kawamoto, S. (2005).; Vaiopoulou, E.; Melidis, 

P.; Kampragou, E. & Aivasidis, A. (2004).; Yano, Y.; Numata, M.; Hachiya, H.; Ito, S.; 

Masadome, T.; Ohkubo, S.; Asano, Y. & Imato, T. (2001).; Kim, M.; Hyun, MS.; Gadd, GM.; 

Kim, GT.; Lee, SJ. & Kim, HJ. (2009). Davila, D.; Esquivel, JP.; Sabate, N. & Mas, J. (2011).), 

known as the analysis of devices that use live microbial cells as molecular-recognition 

material, are the only exception. This sensor, however, is based on a shift from one 

equilibrium to another. For example, a respiration inhibition-based microbial sensor 

measures a certain toxic compound because the dissolved oxygen concentration near the 

cells increases when the toxic compound exists. The main reason for the use of 

microorganisms is that they are more cost-effective than purified enzymes or antibodies. 

The dynamics of the bacterial cells are not at all used. The nonlinearity of cell behaviour has 

recently been studied (Wu, BM.; Subbarao, KV. & Qin, QM. (2008).; Kenkre, V. M.; &, 

Kumar, N. (2008).; Dobrescu, R. & Purcarea, VI. (2011)). A suitable bacterium model is, 

therefore, needed to start a fundamental study on the nonlinearity of the cell. In our group 

studies, bioluminescence characteristics have been identified (Sasaki S., Mori Y., Ogawa M., 

Funatsuka S.,(2010)). Bioluminescent bacteria are those that emit light autonomously 

without the need of excitation light. The bioluminescence reaction is catalysed by bacterial 
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luciferase (Raushel, F. M. & T. O. Baldwin; (1989), Lee, J., Y. Y. Wang and B. G. Gibson; 

(1991), Hastings, J. W. (1996), Shirazy, N. H., B. Ranjbar, S. Hosseinkhani, K. Khalifeh, A. R. 

Madvar and H. Naderi-Manesh (2007)). The reaction requires a flavin mononucleotide 

(FMNH2), a long-chain aliphatic aldehyde, and O2 to produce light (Balny, C. and J. W. 

Hastings (1975), Kurfurst, M., S. Ghisla and J. W. Hastings (1983), Tu, S. C., B. Lei, M. Liu, C. 

K. Tang and C. Jeffers (2000)).  

FMNH2+RCOOH+O2--->FMN+RCOOH+H2O+hν 

This reaction is catalysed by bacterial luciferase (Karatani, H.; Izuta, T. & Hirayama, S. 

(2007)). This enzyme is synthesised by a process called quorum sensing, in which the 

synthesis occurs only after the cells recognise each other to be above a threshold in density. 

Two substrates, FMNH2 and RCHO (linear alkyl aldehyde), of the reaction are also 

synthesised in the cell. The substrate with the least amount is, therefore, the rate-

determining factor. The intensity of the bioluminescence has been reported primarily in 

connection with the oxygen concentration, but, theoretically, two other compounds might 

be candidates. Bacterial luminescence that has been used for environmental monitoring has 

been reviewed (Girott, S.; Ferri, E.N.; Fumo, M.G.; & Maiolini, E. (2008). Recently, an 

oscillation in luminescence from a well-stirred bacterial suspension was reported (Sato, Y. 

and S. Sasaki (2008)). Here, in this chapter, the relationship between the oxygen and 

oscillation mode was investigated. 

Changes in the luminescence spectra are also reported. 

2. Experimentals 

Bioluminescent bacteria, Photobacterium kishitanii, collected from the skin of a cuttlefish and 

Todarodes pacificus (for sashimi), were purified and used. In a well-stirred solution, dissolved 

oxygen is in equilibrium with the atmospheric oxygen. This may not be the case with a 

bioluminescent bacterial suspension. As reported above, the luminescent reaction consumes 

oxygen to produce light. Simultaneously, production of the substrate FMNH2 requires 

energy that is produced by respiration. Karatani calculated the energy required to produce 

light and concluded that the bacterial bioluminescence is an extremely oxygen-consuming 

process. A bioluminescent bacterial suspension was, therefore, suspected to show a very low 

dissolved oxygen (DO) concentration. In this study, we began with the measurement of both 

DO and luminescent intensity through the period of oscillation.   

As the luminescent reaction occurs inside the cell, the luminescent intensity is affected by 

the [DO] inside the cell rather than that in the suspension. Because the dynamic 

measurement of [DO] within a bacterium is considered to be difficult, we focused on any 

change in cell density during the oscillation period. The colour of bacterial bioluminescence 

is determined by the fluorescent protein (LumP) (Sato Y, Shimizu S, Ohtaki A, Noguchi K, 

Miyatake H, Dohmae N, Sasaki S, Odaka M, Yohda M., Crystal structures of the lumazine 

protein from Photobacterium kishitanii in complexes with the authentic chromophore, 6,7-

dimethyl- 8-(1'-D-ribityl) lumazine, and its analogues, riboflavin and flavin mononucleotide, 

at high resolution., J Bacteriol. 2010 Jan;192(1):127-33.). We then, therefore, measured the 

spectral change in luminescence through the oscillation period. 
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2.1 Relationship between the bacterial bioluminescence and dissolved oxygen 
concentration in a bacterial suspension  

Photobacterium belongs to a family of Gram-negative, facultatively aerobic bacteria 
(Urbanczyk, H.; Ast, JC. & Dunlap, PV. (2011)). We started by measuring the oxygen effect 
on bioluminescence. The intensity of the bioluminescence was measured using a self-made 
luminescence detector (five commercially available solar cells were connected in series) or 
optical power meter (Model 3664, Hioki E.E. Co.). The output voltage generated by both 
devices was measured and recorded with an A/D converting logger (NR 250, Keyence Co.). 
An oscillation broth (Yeast extract 2.5 g L-1, Bacto peptone 5 g L-1, and NaCl 30 g L-1) or 
marine broth (DifcoTM marine broth 2216, Becton, Dickinson, and Company) was prepared 
and filtrated using a 0.22 µm filter (Nalgene disposable filter unit, Thermo Fisher Scientific, 
Inc.). A glass cell with an inner diameter of 31 mm was placed over a magnetic stirrer. The 
schematic illustration of the measurement system is shown in Fig. 1. All the equipment was 
placed in an incubator (VS401, Versos Co., Ltd.) adjusted at 17˚C with 10, 20, 30, and 50 mL 
of oscillation broth to determine the effects of the air-liquid interface area/volume. In 
addition, the dilution effect of the marine broth on the oscillation mode was investigated by 
diluting the broth 1.5 and 3 times. For the simultaneous measurement of luminescence and 
dissolved oxygen concentration, an optical fibre-based DO sensor (FOXY R, Ocean Optics, 
Inc.) was placed into the bacterial suspension (Fig. 2). 

 

An aluminium foil cap was placed loosely on the glass tube to prevent contamination during the 
measurement. 

Fig. 1. Schematic illustration of the bioluminescence intensity measurement. 
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An optical fibre sensor tip was placed vertically in the middle of the bacterial suspension. An 
aluminium foil cap was placed loosely on the glass tube to prevent contamination during the 
measurement. 

Fig. 2. Schematic illustration of the system for the simultaneous measurement of the 
luminescence intensity and dissolved oxygen concentration. 

2.2 Simultaneous measurement of the luminescence and cell density during 
oscillation 

Continuous measurement of the optical density (OD) of the bacterial suspension was 
performed using an OD meter (ODBox-A, TAITEC Co.). A 500 mL Erlenmeyer flask with 
100 mL of bacterial suspension was set over a rotary shaker (NR-2, TAITEC Co.), and, on the 
surface of the flask, five solar cells connected in a series were attached (Fig. 3). The 
generated voltage was measured and recorded by the same logger as reported in 2.1. All the 
equipment was placed in a self-made dark box, and measurements were performed at room 
temperature ranging from 20 to 23˚C.  
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A 500 mL Erlenmeyer flask with 100 mL oscillation broth was shaken at 100 rpm. Solar cells were 
attached on the flask surface. All the optical setup was enclosed in a self-made dark box. 

Fig. 3. Experimental setup for the simultaneous measurement of the luminescence and cell 
density. 

2.3 Spectral change in the bacterial bioluminescence during oscillation 

Two optical filters that transmit wavelengths of 479 and 521 nm (Optical Coatings Japan) 
were placed to cover the sensor windows of the optical power meter (Fig. 3). 
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Two sensors with filters were placed at the same height so that the stirrer bar did not affect the 
measurement. All the optical setup, including the magnetic stirrer, was enclosed in the incubator.  

Fig. 4. System setup for the measurement of spectral change. 

3. Results and discussion 

The effects of the suspension volume on the oscillation mode are shown in Fig. 5. 
Remarkable oscillatory waves were observed in the case of 10, 20, and 30 mL but not in the 
case of 50 mL. It was noteworthy that, even with the largest volume, the 50 mL suspension 
showed the smallest luminescent intensity. This might be due to the shortage of the oxygen 
supply, as the fixed liquid-air interface area could allow a fixed amount of oxygen diffusion 
into the suspension. In the case of 50 mL, the distributed oxygen to each cell should be 
smaller than in the case of other volumes. As the case of 30 mL showed the most distinct 
oscillation, this volume was chosen for further experiments. 
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P. kishitanii was inoculated into oscillation broth with each volume in a 22 mm diameter glass tube. The 
suspension was stirred using a magnetic stirrer. The temperature was maintained at 17˚C.  

Fig. 5. Suspension volume effect on the oscillation in bacterial bioluminescence. 

First, oscillation in bioluminescence was observed only in the case with the oscillation broth 

(Sato, Y. & S. Sasaki (2008)). We were interested in the use of the common marine broth and 

tried to determine the broth dilution effect on the mode of oscillation (whether or not it 

oscillated) because, in our previous report, the oscillation was thought to be the result of a 

lack of nutrients. Therefore, even with the marine broth, the oscillation was observed (Fig. 

6). In cases of no dilution, clearer peaks were observed than in the cases with dilution. In 

addition, the luminescence measurement was performed with a cap on the glass tube. This 

case also showed, though with a different mode, an oscillatory behaviour. Through 

measurement with two different broths, the effect of oxygen supply into the suspension on 

the mode change of oscillation was strongly indicated. 
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The measurement conditions were the same as those reported in Fig. 5.  

Fig. 6. Broth-dilution effect on the oscillation in bacterial bioluminescence.  

Encouraged by the above results, we tried to see the stirring effect on the bioluminescence 
over a shorter period because, during measurements lasting more than a day (1,440 min), 
the cell density effect on the luminescence could not be ignored. We, therefore, used brightly 
glowing suspensions (5 – 19 hours after inoculation / 108-109 cells mL-1) and investigated the 
effect of stirring on the luminescence intensity. First, the dark suspension was stirred until 
the luminescence reached a stable intensity. The result is shown in Fig. 7 (a). The 
luminescence intensity was gradually increased. This might be due to the increase in the 
fluorescence activity of LumP. In other bioluminescent bacteria, V. fischeri Y1, a fluorescent 
protein changes the fluorescent activity in its redox states; i.e., when reduced, the 
fluorescence is lost, and, when oxidised, the original fluorescence is retrieved (Karatani, H.; 
Izuta, T.; & Hirayama, S. (2007)). LumP in P. kishitanii might have similar characteristics. 
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(a) 

 
 

(b) 

www.intechopen.com



 
Bioluminescence – Recent Advances in Oceanic Measurements and Laboratory Applications 176 

 
 

 
 

(c) 

 
In (a), the stirrer was switched on at 200, 400, 600, 800, 1,000, and 1,200 min and off at 300, 500, 700, 900, 
and 1,100 min. In (b), the stirrer was switched on at 60 s and off at 180 s. The measurements in both (a) 
and (b) were performed at 17˚C. Photographs in (c) were taken at a 5 s interval.  
Luminescence from the suspension after the stirrer was switched on was measured for two minutes 
(Fig. 7 (b)). A local maximal luminescence was observed right after the stirring (ca. 60 s), and then, a 
gradual increase was observed. This characteristic might be related to the LumP fluorescence ability, 
but the photographs of the luminescence showed no significant colour change (Fig. 7 (c)). 

Fig. 7. Time course of the luminescence from the dark suspension after repeated stirring (a), 
a typical luminescence curve showing two peaks of intensity (b), and interval photographs 
of luminescence from the suspension in experiment (b) (c). 

The effect of stirring on the bright (originally well-stirred) suspension luminescence resulted 

in different outcomes (Fig. 8). The luminescence increased after switch-off and decreased 

after switch-on. This tendency is the opposite of the results in Fig. 7 (a). The reason for the 

decreasing tendency of luminescence under the stirred condition is difficult to explain as 

long as we regard the suspension to be homogeneous. As is reported later, the condition of 

the cells in the suspension seemed to be inhomogeneous.  

The suspension DO characteristic during the oscillation is shown in Fig. 9. As is evident 

from the figure, the DO during the oscillation was approximately zero. This result was 

considered to be reasonable, since the origin of bioluminescence was an oxygen-quenching 

mechanism. One evolutionary purpose of bioluminescence is oxygen quenching (Rees, J.F 

(1998), Timmins, GS. (2001), Szpilewska, H., Czyz, A. & Wegrzyn, G. (2003)). In a well-

stirred condition, oxygen in the atmosphere diffused into the suspension, but most of it was 

assumed to be consumed by both the luminescence reaction and respiration. Vibrio fisheri 

was reported to perform anaerobic respiration using a certain gene regulator (Septer, AN.; 

Bose, JL.; Dunn, AK. & Stabb, EV. (2010).). No such report was available for the 

Photobacterium species. As a result, there was no significant relationship between the 

suspension DO and oscillatory waves. From this result, we recognised the importance of 

considering the DO within rather than outside the cell. 
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The stirrer was switched off at 0, 20, 40, 60, 80, and 100 s and on at 10, 30, 50, 70, 90, and 110 s. The 
measurement was performed at 17˚C.   

Fig. 8. Effect of stirring on the bright suspension. 

 

 

Data was recorded every ten minutes. 

Fig. 9. Time courses of dissolved oxygen and luminescence. 
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The cell density was expressed by the optical density (OD) in the measurement. OD was 
measured as the decrease in near-infrared light measured at the sensor (Fig. 3). This OD 
probe light did not affect the bioluminescence measurement using solar cells. Four results of 
the simultaneous measurement of DO and luminescence are shown in Fig. 10 (a) – (d). We 
searched for the common characteristics between the DO and luminescent curves in the four 
cases and found that, after the luminescence peak, a plateau in the DO curve appeared. This 
might be due to the decrease in DO inside the cell after the luminescence that inhibited the 
respiration. Lack of oxygen might have suppressed the energy production by the 
respiration.  

 
(a) (b) 

 
(c) (d) 

A 100 mL oscillation broth in a 500 mL Erlenmeyer flask was used for each measurement. 
Measurements were performed at room temperature (20-23ºC). 

Fig. 10. Time courses of the luminescence and optical density in four experiments under the 
same condition. 
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The oscillation mode observed under the same suspension condition differed, as shown in 
the figures. These differences should be kept in mind for the following experiments. As 
reported above, the luminescence from LumP (peak wavelength: ca. 475 nm) was the main 
part of the observed light. The ratio of the luminescence at throughout the oscillation was 
estimated by the use of optical filters. The results are shown in Fig. 11 (a). A blue light with a 
spectral peak at 479 nm appeared ca. 1 h after a green light (521 nm) and quenched 4 h 
before that. This result indicated the change in the fluorescence ability at the beginning and 
at the end of the oscillation. When the luminescence intensity at 521 nm was plotted against 
that at 479 nm, the two showed a linear relationship (Fig. 11 (b)). This indicated that the 
LumP fluorescence ability was stable during the oscillation period. 

For the first time, we found an oscillation in bioluminescence intensity. The next step would 
be to identify the initial reason for the oscillation. Since a definitive answer is not yet 
available, we propose the hypothesis explained below. Bacterial luminescence spectral 
change has been reported (Eckstein, JW.; Cho, KW.; Colepicolo, P.; Ghisla, S.; Hastings, JW. 
& Wilson, T. (1990).; Karatani, H.; Matsumoto, S.; Miyata, K.; Yoshizawa, S.; Suhama, Y. & 
Hirayama, S. (2006).; Karatani, H.; Yoshizawa, S. & Hirayama, S. (2004).). Under the DO-rich 
condition, the LumP fluorescence capacity is high, and a blue light is evident, whereas, 
under a DO-poor condition, luciferin-luciferase luminescence (with a peak wavelength of 
540 nm) occupies the main part, and a green light is evident. When the luminescence spectra 
measured with and without stirring were compared, a slight difference in the peak 
wavelength was observed (Fig. 12). This result agreed with the above-mentioned report. 

 
 
 

 
 

 
(a) 
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(b) 
 
 
 

An approximation line between the two luminescences is illustrated. The coefficient of determination 
(R2) was calculated to be 0.9564. 

Fig. 11. Bioluminescence oscillation observed in two colours (a) and relationship between 
blue (479 nm) and green (521 nm) colours (b). 
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The blue curve indicates the spectrum of luminescence at 479 nm, and the brown curve indicates that at 
521 nm.  

Fig. 12. Bioluminescence spectra with and without stirring (normalized). 

During cell cultivation, the variety of cell phases was assumed to increase with cell growth 
even when the inoculated cells had the same, synchronised cell phases. In the glowing 
suspension, the cell condition was assumed to be inhomogeneous. A photograph of the 
bioluminescent suspension after the stirrer was switched off is shown in Fig. 13. A slowly 
precipitating block of cells was glowing as brightly as the air-liquid interface part. At that 
moment, the DO in the middle of the suspension was zero. Unlike others, this block of cells 
emitted light even under the [DO]=0 condition.  
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The image was photographed using a digital still camera (GR Digital 3, Ricoh Company, Ltd.) with 
exposure time of 1/20 s, ISO 1600, f/1.9. The raw image was modified to enhance the contrast using 
image software (ImageJ).  

Fig. 13. Image of brightly glowing cell block precipitating in the suspension. 

The results in Fig. 10 indicated the possibility that the luminescence affected the cell growth; 

i.e., an increase in luminescence caused oxygen deficiency and inhibited the respiration 

needed for cell growth. Cell growth was assumed to be expressed by the time derivative of 

the optical density. We, therefore, plotted the time courses of relative luminescence and the 

time derivative of OD in the same time scale (Fig. 14 (a)). The result shown in Fig. 10 (c) was 

used because it showed five obvious peaks in the relative luminescence curve. As is clear in 

Fig. 14 (a), the peaks and valleys in the luminescence curve coincided with those in the time 

derivative of the optical density. We then plotted the derivative against the relative 

luminescence (Fig. 14 (b)). The obtained curve showed that the two parameters were in the 

relationship with a negative Pearson product-moment correlation coefficient.  
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(a) 

 
(b) 

In (a), the relative bright cell density was calculated as 0.05* (relative luminescence), whereas the 
relative dark cell density was calculated as {OD-0.05*(relative luminescence)}. In (b), data at 2650 - 2850 
min were chosen.    

Fig. 14. Time courses of bright and dark cells (a) and relative dark cell density plotted 
against the relative bright cell density (b). 
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The type of model that could describe such oscillatory behaviour should be identified. One 

of the best-known models is the one proposed by Alfred Lotka and, later, by Vito Volterra 

(Mounier, J.; Monnet, C.; Vallaeys, T.; Arditi, R.; Sarthou, AS.; Helias, A. & Irlinger, F. 

(2008).; Varon, M. & Zeigler, BP. (1978).; Tsuchiya, HM.; Drake, JF.; Jost, JL. & Fredrickson, 

AG. (1972).) This model is often used to characterise predator-prey interactions. If we were 

to adjust the bacterial bioluminescence in the model, the following might be examples: 

 

2

2

broth bright cell bright cell

bright cell darkcell darkcell

darkcell deadcell

 
 


 (1) 

In these reactions, we regarded that 

1.  one bright cell divides into two bright cells with the supply of infinite broth; 
2.  one bright cell becomes a dark cell as a result of interaction with a dark cell (both cells 

consume oxygen as a result of respiration and become dark ones); 
3.  a dark cell becomes a dead cell. 

If we write  

 A: broth, X: bright cell, Y: dark cell, P: dead cell, then the above equations can be written as 

 

1

2

2

2

d

k

k

k

A X X

X Y Y

Y P

 

 



 (2) 

We consider A, the broth, to be infinite and not to decrease through the oscillation reaction 

(however, in an experiment, it does). As X and Y are the function of the time t, we can write 

two equations, such as, 

 
1 2

2

[ ][ ] [ ][ ]

[ ][ ] [ ]d

dX
k A X k X Y

dt
dY

k X Y k Y
dt

 

 
 (3) 

These are the typical equations that appear in the model. We have a numerical solution of 

the two equations, i.e., the time course of X and Y through the simulation using a common 

spreadsheet software that runs on a personal computer. 

Model (1) is not proved to interpret what is going on in the oscillation, but we can approach 

the real image of the oscillatory reaction. By changing the parameters k1, k2, and kd, we will 

have curves that look like what we observe, and we should then determine the values for 

the three parameters and evaluate their suitability from a biochemical viewpoint. 

As reported in relation to Fig. 13, luminescence from the suspension with a volume of 
several tens – hundreds of mL might contain luminescence from cells of different conditions. 
Future investigation of cells with similar conditions is indicated, therefore, to be necessary. 
The relationship between the bacterial motility and luminescence was investigated (Sasaki, 
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S.; Okamoto, T. & Fujii T. (2009)). The evaluation of surface-adsorbed cells was thought to be 
an effective way for this purpose. The characteristics of the luminescence from ca. 1.0 X 106 
cells adsorbed on a glass surface are shown in Fig. 16. Irradiation of the cells was performed 
using a near-UV light (UV lamp—long wavelength, # 166-0500EDU, BIO RAD). The 
irradiation has the potential to cause a change in the redox state of FMN or other materials 
that produce an increase in luminescence. Bacterial bioluminescence from the 
electromagnetic viewpoint has been studied (Pooley DT. (2011)). Investigation of this 
luminescence from physico-chemical as well as biochemical viewpoints would be needed to 
explain the entire image of bacterial bioluminescence. 

 

 

 
The initial values were [X[=1,000 and [Y]=100, with constants k1=0.009, k2=0.06, and kd=0.0001. The 
integration time was set at 1, and the calculation was performed using Microsoft Excel 2007 running on 
a personal computer.  

Fig. 15. Solution of Equation (2) using a numerical calculation (Runge-Kutta method)  
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Oil was used to prevent the bacterial environment from drying. Glass with an amino group 
modification (MAS coated glass slides, Matsunami Glass Ind., Ltd.) was used for the adsorption. The 
glass was soaked in a marine-broth-based bacterial suspension overnight. A measurement was 
performed using a luminescence meter (GENE LIGHT GL-200S, Microtec Nichion). 

Fig. 16. Effect of irradiation to the luminescence from cells adsorbed on a glass surface.  

4. Conclusion 

Oscillation in the bacterial bioluminescence mode is strongly dependent on the amount of 

oxygen supply to the solution. There is no clear relationship between the DO concentration 

and luminescence intensity, perhaps due to the consumption of oxygen by both the 

luminescence and respiration. The oscillation occurred at a very low DO concentration, and, 

when the time course of cell density was plotted with the same timescale as the 

luminescence intensity, the cell growth rate seemed to decrease after the strong 

luminescence. The fluorescence ability of LumP seemed constant during the oscillation 

period, but, at the beginning and at the end, it seemed to decrease. The characterisation of 

luminescence from a smaller number of cells would be necessary for further investigation of 

oscillation, considering that the suspension is a mixture of cell groups with a variety of cell 

phases.  
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