
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

25

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and

Configurable Task-Knowledge

Oliver Prenzel1, Uwe Lange2, Henning Kampe2,
Christian Martens1 and Axel Gräser2

1Rheinmetall Defence Electronics,
2University of Bremen

Germany

1. Introduction

In Alex Proyas’s science fiction movie “I, Robot” (2004) a detective suspects a robot as
murderer. This robot is a representative of a new generation of personal assistants that help
and entertain people during daily life activities. In opposition to the public opinion the
detective proclaimed that the robot is able to follow his own will and is not forced to Isaac
Asimov’s three main rules of robotics (Asimov, 1991). In the end this assumption turned out
to be the truth.
Even though the technological part of this story is still far beyond realization, the idea of a
personal robotic assistant is still requested. Experts predicted robotic solutions to be ready to
break through in domestic and other non-industrial domains (Engelberger, 1989) within the
next years. But up to now, only rather simple robotic assistants like lawn mowers and
vacuum cleaners are available on the market. As stated in (Gräfe & Bischoff, 2003), all these
systems have in common that they only show traces of intelligence and are specialists,
designed for mostly a particular task. Robots being able to solve more complex tasks have
not yet left the prototypical status. This is due to the large number of scientific and technical
challenges that have to be coped with in the domain of robots acting and interacting in
human environments (Kemp et al., 2007).
The focus of this paper is to describe a tool based process model, called the

“FRIEND::Process”1, which supports the development of intelligent robots in the domain of

personal assistants. The paper concentrates on the interaction and close relation between the

FRIEND::Process and configurable task-knowledge, the so called process-structures.

Process-structures are embedded in different layers of abstraction within the layered control

architecture MASSiVE2 (Martens et al., 2007). Even though the usage of layered control

architectures for service robots is not a novel idea and has been proposed earlier (Schlegel &

1 The name FRIEND::Process is related to the FRIEND projects (Martens et al., 2007). It has been
developed within the scope of these projects, but is also applicable to other service robots.
2 MASSiVE – Multilayer Control Architecture for Semi-Autonomous Service Robots with Verified Task
Execution

www.intechopen.com

Robotic Systems – Applications, Control and Programming

530

Woerz, 1999; Schreckenghost et al., 1998; Simmons & Apfelbaum, 1998), MASSiVE is

tailored for process-structures and thus is the vehicle for the realization of verified

intelligent task execution for service robots, as it is shown in the following. The advantages

of using process-structures shall be anticipated here:

• Determinism: Process-structures represent the complete finite sequence of actions that

have to be carried out during the execution of a task. Due to the possibility of a bijective

transformation from process-structures to Petri-Nets, a-priori verification with respect

to deadlocks, reachability and liveness becomes possible. Thus, the task planner and

executor, as part of the layered architecture, operate deterministically when using

verified task-knowledge.

• Real-time capability: Additionally, the complexity of the task planning process satisfies

real-time execution requirements, because this process is reduced to a graph search

problem within the state-graph of the associated Petri-Net.

• Fault-Tolerance: Erroneous execution results are explicitly modeled within process-

structures. Additionally, redundant behavior is programmatically foreseen. If an

alternative robotic operation, which shall cope with the unexpected result, is not

available, the user is included as part of a semi-autonomous task execution process.

To be able to provide a user-friendly configuration of process-structures and to guarantee
consistency throughout all abstraction levels of task-knowledge, a tool-based process model
– the FRIEND::Process – has been developing. The process model, on the one hand, guides
the development and programming of intelligent behavior for service robots with process-
structures. On the other hand, process-structures can be seen as a process model for the

service robot itself, which guides the task execution of the robot during runtime. The unique
feature of the FRIEND::Process in comparison to other frameworks (Gostai, 2011; Microsoft,
2011; Quigley et al., 2009) and the above mentioned control architectures is to completely
rely on configurable process-structures and thus on determinism, real-time capability and
fault tolerance.
The FRIEND::Process consists of the following development steps:

• Analysis of Scenario and Task Sequence: A scenario is split up into a sequence of
tasks.

• Configuration of Object Templates and Abstract Process-Structures: The task
participating objects are specified as Object Templates and pictographic process-
structures on the symbolic (abstract) level are configured and verified.

• Configuration of Elementary Process-Structures: Process-structures on the level of
system resources and sub-symbolic (geometric) information are configured and verified
with the help of function block networks.

• Configuration and Testing of Reactive Process-Structures: Process-structures on the
level of algorithms and closed loop control, operating sensors and actuators, are
configured and tested, also with configurable function blocks.

• Task Testing: Task planning and execution is applied on all levels of process-structures
and a complete and complex task execution is tested.

In the following Section 2, the motivation for the introduction of process-structures is

explained in more detail by discussing the complexity of task planning for service robots

with the help of an exemplary scenario. The description of the FRIEND::Process

development steps is subject of Section 3. Throughout this description, exemplary process-

structures of the sample scenario of Section 2 are introduced for each development step.

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

531

Finally, Section 4 summarizes and concludes the description of the FRIEND::Process for

programming intelligent service robots.

2. Task planning on basis of process-structures

In this section, the complexity of classical task planning approaches is discussed first, before

the introduction of process-structures is motivated. The discussion is carried out with the

help of task execution examples from the field of rehabilitation robotics and the

rehabilitation robot FRIEND III (IAT, 2009; Martens et al., 2007).

2.1 The complexity of classical task-planning approaches
With respect to one exemplary task – a service robot is supporting the preparation and the

eating of a meal by a disabled person – the complexity of robotic task execution shall be

illustrated. For this purpose the figures Fig. 1 to Fig. 3 are introduced. Fig. 1 shows the

rehabilitation robot FRIEND III which is used as exemplary target system. In Fig. 2

snapshots of the task sequence “Meal preparation and eating assistance” are depicted.

Finally, Fig. 3 shows the decomposition of this task sequence according to the principles to

be presented in detail in this paper.

FRIEND III is a general purpose semi-autonomous rehabilitation robot suitable for the

implementation of a wide range of support tasks. As depicted, FRIEND III consists of an

electrical wheelchair which is equipped with several sensors and actuators: A stereo camera

system mounted on a pan-tilt-head, force torque sensor, robotic arm and gripper with force

control. FRIEND III has been developed by an interdisciplinary team of engineers, therapists

and designers and has been tested with disabled users within the AMaRob project (IAT,

2009).

Fig. 1. FRIEND III rehabilitation robot

To perform “meal preparation and eating assistance”, the robot system has to execute the
following actions:

• Locate the refrigerator, open the refrigerator door, locate the meal inside the
refrigerator, grasp and retrieve the meal from the refrigerator, close the refrigerator
door

• Open the microwave-oven, insert the meal, close the oven, start the heating process

www.intechopen.com

Robotic Systems – Applications, Control and Programming

532

• Open the microwave-oven door again, grasp and retrieve the meal, close the
microwave-oven door

• Place the meal in front of the user, take away the lid

• In a cycle, take food with the spoon and serve it near the user’s mouth, finally put the
spoon back to the meal-tray

• Clear the wheelchair tray

Fig. 2. Task sequence for meal preparation and eating assistance

Fig. 3. Decomposition of a scenario on four abstraction levels, illustrated with the sample
scenario “Meal preparation and eating assistance”

As shown in Fig. 3, the overall scenario is decomposed into tasks, abstract operators,
elementary operators and reactive operators according to the layered control architecture
MASSiVE. Abstract process-structures (PSA3) model behavior on task planning level and
elementary process-structures (PSE) model behavior on system planning level. The reactive
process-structures (PSR) define reactive operations on the executable algorithmic level. From
viewpoint of task planning, the “meal preparation and eating assistance” scenario is split up
into 6 tasks, 19 abstract operators and 43 elementary task planning operators. Additionally,
a large set of reactive operators is required within the execution layer.
In typical human environments, it is impossible to predefine a static sequence of operators
beforehand. Many dynamic aspects resulting from dynamic environmental changes have to be

3 Find all abbreviations in the glossary at the end of this paper.

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

533

considered, e. g. caused by changing lighting conditions, arbitrarily placed and filled objects,
changing locations of objects and the robotic platform, various obstacles, and many more.
Consequently, a strategy to plan a sequence of actions that fulfills a certain task is mandatory.
Many task planners are based upon deliberative approaches according to classical artificial
intelligence. Typically, the robotic system models the world with the help of symbolic facts
(e. g. first order predicate logic, (Russel & Norvig, 2003)), where each node of a graph
represents a state (snapshot) of the world. The planner has to find a sequence of operations
which transforms a given initial state into a desired target state. In the worst cases this leads
to NP-complete problems, as there is an exponential complexity of classical search
algorithms (Russel & Norvig, 2003). If we consider breadth-first search as a simple example,
a calculation time of hours results at search depth 8; and with a depth of 14, hundreds of
years are required for exhaustive search (branching factor 10 and calculation time of 10.000
nodes/s are assumed). The search depth is related to the number of required operators for a
certain task and the branching factor results from the number of applicable operators in one
node. Compared to the number of required and available operations shown in Fig. 3 it
becomes obvious that only trivial problems can be solved on this basis. Certainly, the mean
search time can be improved in comparison to breadth-first search, with e. g. heuristic
approaches like A*, with hierarchical planning, search in the space of plans or successive
reduction of abstraction (Russel & Norvig, 2003; Weld, 1999), but in worst cases a planning
complexity as mentioned has to be faced. Even though the improvements of deliberative
task planners are notable, it is still questionable whether they are efficient (real-time
capable) and robust (deterministic and fault-tolerant) enough for the application in real
world domains (Cao & Sanderson, 1998; Dario et al., 2004; Russel & Norvig, 2003).

2.2 Process-structures as alternative to classical planning approaches
An alternative to deliberative systems are assembly planning systems. Cao and Sanderson
proposed such an approach for the application to service robotics (Cao & Sanderson, 1998).
Based on this idea, Martens developed a software-technical framework (Martens, 2003) that
operates on pre-structured task-knowledge, called process-structures. Table 1 summarizes the
concept of process-structures and the distinction of task level, system level and algorithmic
level.
Fig. 4 shows an example of an abstract process-structure that models the fetching of a cup
from a container. The object constellations (OC) model the physical contact situation of the
involved objects box (B), container (C), gripper (G) and table (T). The object constellations
are connected via composed operators (COPs). These are in most cases (i. e. where this is
physically meaningful) bi-directional operators. To be able to perform task planning based
on an abstract process-structure, a set of OCs defines an initial situation and another set of
OCs defines the target situation. Thus, task planning on abstract level means to find a
sequence of COPs from initial to target situation. The initial situation is usually dynamically
determined at runtime with the help of an initial monitoring procedure (Prenzel, 2005). The
target situation is pre-determined for a certain PSA.
A process-structure contains a context-related subset of task-knowledge. The finite size of a
process-structure makes planning in real-time with short time intervals as well as a priori
verification possible. The logical correctness of a structure is checked against a set of rules. A
positive result of this check guarantees that no system resource conflicts exist. It also
guarantees the correct control and data flow. Altogether, the concept of process-structures is
the basis for a robust system runtime behavior. Despite pre-structuring, the process-

www.intechopen.com

Robotic Systems – Applications, Control and Programming

534

structures are still flexible to adapt to diverse objects, so that their re-usability in different
scenarios is achieved. Technical details of process-structures beyond this summarized
concept description can be found in (Martens et al., 2007).

PSA Task Level

Defines what happens Models e. g. the fetching of an object

Is configured by: Non-technical personnel or the user

PSE System Level

Defines how something happens from
system perspective

Models the usage of system resources
and the control and data flow

Is configured by: System programmer

PSR Algorithmic Level

Defines how something happens from
perspective of reactive algorithms

Models the combined usage of
hardware sensors and actuators

Is configured by: System programmer

Table 1. Summarized concept of process-structures

Fig. 4. Schematic illustration of an abstract process-structure (PSA) which models the
fetching of a cup from a container-like place as e. g. a fridge or a cupboard

The applicability of process-structures for the programming of service robots has been
shown in (Martens, 2003) with the help of several representative rehabilitation robotic
scenarios. As anticipated in the introduction this approach has been extended during the
AMaRob project (2006 – 2009) and within (Prenzel, 2009) to embed the process-structure-
based programming into a process model – the FRIEND::Process. From task analysis to final
testing of implemented system capabilities, the FRIEND::Process guides through the
complete development cycle of a service robot based on a closed chain of user-friendly
configuration tools. Enhancements of the FRIEND::Process are matter of ongoing
developments.

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

535

3. The FRIEND::Process

Process models structure complex processes in manifold application areas. With respect to
system- and software-engineering, a process model shall organize the steps of development,
the tools to be used and finally the artifacts to be produced throughout the different
development stages. The overall scheme of the FRIEND::Process is depicted in Fig. 5.
Central elements of the process and consequently the specialty in comparison to other
process models are the process-structures. Within the development steps, the building
blocks of process-structures are decomposed as shown in Table 2. In the following sections
the five development steps of the FRIEND::Process are discussed in detail. Thus, the
contents of Table 2, i. e. the composition of process-structures and the decomposition on the
next level as well as the abbreviations will be explained. Also, the application of the
FRIEND::Process for the development of the sample task of “meal preparation and eating
assistance” is shown in each step.

Fig. 5. Scheme of the FRIEND::Process with five development steps and the respective
process-structure levels as well as the involved tools for configuration, planning and
execution

Process-Structure Decomposition Process-Structure Building Blocks

Scenario  Task Sequence Tasks

Task  PSA System, Object Templates (OTs), Object Constellations
(OCs), Facts, Composed Operators (COPs)

COP  PSE System, Object Templates (OTs), Facts, Skills

Skill  PSR System, Object Templates (OTs), Reactive Blocks

Table 2. Decomposition and building blocks of process-structures

www.intechopen.com

Robotic Systems – Applications, Control and Programming

536

3.1 FRIEND::Process step 1: Analysis of scenario and task sequence
Development according to the FRIEND::Process starts with the “Scenario Analysis” as

step 1. Unlike the subsequent steps, this step is not (yet) tool-supported. The scenario

analysis splits up a complex scenario like “meal preparation and eating assistance” into a

sequence of re-usable tasks. Also, a structured collection of the objects takes place that are in

the focus of a certain scenario.

3.1.1 Description of the process step
The development step 1 is dedicated to a first analysis of the desired task execution scenario.

As shown in Fig. 6 a sequence of re-usable tasks is specified. Besides the strictly sequential

concatenation of tasks, cyclic repetitions are also possible, as e. g. required for the eating

assistance scenario introduced at the beginning of the paper.

Fig. 6. A complex task sequence consists of several tasks

The FRIEND::Process defines criteria for task splitting:

• Modularity, low complexity and re-usability: One task is focusing on a set of objects.
This set shall be kept as small as possible to limit the task’s complexity and to ensure re-
usability of a task. It shall be possible to use the tasks independently, but also to
concatenate them to more complex action sequences.

• The typical physical location of the objects: If movement of the robotic platform is
required, this is a clear indicator to switch the task context, e. g. when moving from
fridge to microwave oven in the meal preparation scenario. After moving the platform,
relative locations between platform and objects have to be re-assessed.

Currently, the process step 1 is not yet supported by a dedicated tool. Therefore, to still
achieve a certain level of formality, the results of scenario analysis are collected in a UML
use case diagram as seen in Fig. 7. For each task a use case with verbal task description is
specified. This includes the objects involved in the task, the so-called task participating
objects (TPO).

Fig. 7. Use case diagram with tasks (use cases) of the sample scenario. For each task, a
detailed description as well as the set of task participating objects (TPO) is specified

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

537

The objects involved in task execution are the elements that are relevant in all subsequent
development steps. To follow the principle of re-usable task-knowledge, the TPOs are
specified as abstract object classes. For example, a task that describes the fetching of an
object from a container-like place (see Fig. 4) can be re-used to fetch either a bottle or a meal
from the refrigerator. In the FRIEND::Process the re-usable classes of objects are specified as
hierarchical UML ontology. An exemplary ontology for the scenario “meal preparation and
assistance to eat” is depicted in Fig. 8. It is depicted that the TPOs are constructed from basic
geometric bodies (cuboid and cylinder) and more complex objects are created with
inheritance and aggregation.

Fig. 8. Ontology of task participating objects (TPO) for the scenario “Meal preparation and
assistance to eat”

To embed the TPOs in the tool-chain that covers all further development steps, the concept
of “Object Templates” (OT) has been introduced (Kampe & Gräser, 2010). The configuration
of Object Templates and their integration into the different levels of process-structure
configuration will be discussed in more detail within the following process steps.

3.2 FRIEND::Process step 2: Configuration of object templates and abstract process-
structures
In this development step the task participating objects are formally specified and configured
with the help of Object Templates. Subsequently, an abstract process-structure (PSA) is
configured based on pictographic And/Or-Nets. This means that physical object
constellations (OC) and physical transitions between the object constellations are specified.
Besides configuration of PSA, the logical correctness of the abstract process-structures is
guaranteed by the configuration tool. Finally, the pictographic PSA are converted to Petri-
Nets according to (Cao & Sanderson, 1998) for the input into the task planner.
In the following, a description of the process step is introduced first. Afterwards, the
configuration concept for Object Templates is shown. Finally, the configuration of an
abstract process-structure is exemplified.

3.2.1 Description of the process step
As shown in Fig. 9 the FRIEND::Process decomposes each task into an abstract process-
structure (PSA). A schematic exemplary pictographic PSA for the task “Fetch cup from
container” has already been introduced and discussed in Fig. 4. Within the
FRIEND::Process, the configuration of PSA is carried out within a pictographic configuration

www.intechopen.com

Robotic Systems – Applications, Control and Programming

538

environment, the so-called PSA-Configurator. Fig. 10 shows the PSA-Configurator with the
PSA “Fetch meal from fridge”.

Fig. 9. Decomposition of a task as abstract process-structure with object constellations (OC)
and composed operators (COP)

The procedure of PSA configuration is as follows:

• Selection of task participating objects (TPOs)

• Composition of object constellations (OCs)

• Connection of OCs via composed operators (COPs)

• Selection of default initial and default target situation

Fig. 10. PSA-Configurator with the pictographic abstract process-structure modeling the
Task “Fetch meal from fridge”4

4 For better readability, overlays have been added in this illustration.

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

539

The pictographic representation of an OC is configured within a sub-dialog within the PSA-
Configurator. Within this configuration dialog, the predicate logic facts, which are assigned
to an OC, can be inspected. These facts are the pre- and post-condition facts of the COPs that
interconnect the OCs. Within the constraints given by the COP facts, the pictographic
appearance of an OC can be adjusted within the PSA-Configurator within a 3D scene. The
rendering of object constellations is based on “Object Templates”.

3.2.2 Object templates
Objects play a central role in process-structures. The different levels of process-structures
model different aspects of objects. On abstract level, a symbol is associated with an object for
the purpose of task planning (e. g. “Mt.1” for the meal tray in the sample scenario). On
system level, i. e. on the level of elementary process-structures, so-called sub-symbolic (i. e.
geometric) object information is processed. With respect to the meal tray this is, for instance,
the location to grasp the tray. To model the different aspects of objects and to assure an
information consistency throughout the different information layers, the concept of Object
Templates has been introduced.
Object Templates comprise the following aspects:

• A 3D model of the object, used for pictographic rendering of object constellations on
PSA level as well as for motion planning and collision avoidance on PSR level

• Associated sub-symbolic (geometric) data for planning and execution on PSE and PSR
level, e. g. the grasping location of an object

• Complex objects can be composed of simpler objects; e. g. a meal tray consists of a tray,
a plate, a lid and a spoon

• Object Templates are configured with natural parameters of the composed object, e. g.
width, height, depth and wall thickness for a container, instead of separate specification
of all geometric primitives

• The 3D appearance of Object Templates is associated with task-knowledge like
symbolic facts and characteristics. For example the fact “IsAccessible(MicrowaveOven)”
renders the opening status of the door of the oven’s 3D model.

An exemplary Object Template is the meal tray depicted in Fig. 11. It consists of a base tray,
a plate with a lid and a spoon. Both the lid and the spoon are detachable from the meal tray.
The different stages of separation are depicted in Fig. 12.

Fig. 11. The meal tray of the eating scenario as photo (left) and modeled by means of an
Object Template (right)

Fig. 12. The different separation stages (detached lid, detached spoon, both lid and spoon
detached) of the meal tray

www.intechopen.com

Robotic Systems – Applications, Control and Programming

540

The configuration of Object Templates takes place within the Object-Template-Configurator
(OT-Configurator) which is part of the PSA-Configurator as shown in Fig. 13.

Fig. 13. Object-Template-Configurator (OT-Configurator) as part of the PSA-Configurator

Within the screenshot in Fig. 13 the Object Template of the refrigerator is modeled. On the
left side the parameters and their association to symbolic facts are specified. On the right
side the 3D model of the object is rendered according to the current configuration. To render
the 3D model of a composed object, the aggregated sub-objects are composed with formulas
within the Object-Template-Configurator tool. Frequently required and complex formulas
like alignment and rotation of Object Templates are provided with the help of assistive
functions.
Certain aspects of the 3D geometry have a fix association with object characteristics as given
in the following table:

Characteristic Associated sub-symbolic element

IsGrippable Coordinates to grasp the object

IsPlatform Limits to place other objects onto this object

IsContainer Limits to place other objects within this object

Table 3. Relations between characteristics and sub-symbolic elements

3.2.3 Exemplary abstract Process-Structure: Fetch meal tray from fridge
The exemplary PSA that shall be discussed in detail has already been introduced within the
PSA-Configurator frontend in Fig. 10. In this PSA the task participating object are a fridge
(symbol “Fr” with instance number “1”  “Fr.1”), a meal tray (“Mt.1”), the manipulator
(“MP.1”) and the abstract symbol for a relative location (“InsertLoc”). In this PSA the initial

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

541

situation consists of two object constellations. The first one models the manipulator in a free
position in the workspace (instance number “0” is assigned to this object constellation 
“MP.1_0”). The second object constellation models the already opened fridge containing the
meal tray (“Fr.1-Mt.1_0”). The two OCs are connected via the assembly COP
“GraspObjectInContainer(MP.1, Mt.1, Fr.1)”. If physically possible, a complementary
disassembly operator is assigned to model the reverse operation for re-usage of the PSA in
another scenario context. In this case this is the COP “DepartFromContainer(MP.1, Mt.1,
Fr.1)”. The assembled object constellation is depicted on the bottom left side and the
associated abstract planning symbol is “Fr.1-MP.1-Mt.1_0”. Due to the associated symbolic
facts, which are imposed within the object constellation by the post-condition facts of the
COP, the pictographic representation is rendered so that the manipulator grasps the meal
tray in the fridge.
Besides assembly and disassembly operators, the And/Or-Net syntax provides operators
modeling the internal state transition (IST) of object constellations (IST COPs). IST COPs are
applied when the physical contact state of the involved objects is not changed. From the
viewpoint of planning on abstract level, objects being in close relative locations to each other
are considered to be in a physical contact situation. Therefore, the IST COP
“GetObjectOutside(MP.1, Mt.1, Fr.1, InsertLoc)” is applied to transform the OC “Fr.1-MP.1-
Mt.1_0” on the left side into the OC “Fr.1-MP.1-Mt.1_1” on the right side. Finally, the COP
“MoveObjectFromRelLoc(MP.1, Mt.1, Fr.1, InsertLoc)” models the disassembly operation
and results in two object constellations which model the target situation of this abstract
process-structure: “Fr.1_0” is the empty fridge and “MP.1-Mt.1_0” is the manipulator with
the gripped meal tray in a free position in the work space.
To be able to develop and verify the three levels of process-structures independently, i. e. in
a modular manner, the consistency of task-knowledge on all levels has to be assured. This is
achieved with common building blocks of the different process-structures as shown in the
decomposition chain in Table 2. The common elements are the interfaces to the next level of
process-structures. The important interfacing elements between PSA and PSE are the pre-
and post-condition facts of the COP to be decomposed as PSE in the next process step. For
the COP “GraspObjectInContainer” the facts are shown in Table 4.

Pre-Facts Post-Facts

HoldsNothing(Manipulator) = True HoldsNothing(Manipulator) = False

IsInFreePos(Manipulator) = True IsInFreePos(Manipulator) = False

- IsGripped(Manipulator, Object) = True

ContainerAccessible(Container) = True -

IsInsideContainer(Object, Container) = True -

Table 4. Pre- and Post facts of COP “GraspObjectInContainer(Manipulator, Object,
Container)”

3.3 FRIEND::Process step 3: Configuration of elementary process-structures
In the third process step, each composed operator (COP) of an abstract process-structure
(PSA) is decomposed into an elementary process-structure (PSE). To achieve user-friendly
configuration of PSE, configurable function blocks are assembled to function block networks
(FBN). Each function block models a reactive robot system operation, also called skill. A

www.intechopen.com

Robotic Systems – Applications, Control and Programming

542

priori verification of task-knowledge on this level takes place with the help of Petri-Nets,
which result from automatic conversion of FBNs.

3.3.1 Description of the process step
Fig. 14 depicts the decomposition principle of COPs into elementary process-structures,
consisting of skill blocks. An elementary process-structure, as first introduced by (Martens,
2003), is a Petri-Net with enhanced syntax and superordinated construction rules. The
advantage of Petri-Nets is their ability to model parallel activities. This is useful for the
behavioral modeling on robot system level, for instance, if a manipulator action is guided by
input from a camera system or another sensor. Furthermore, Petri-Net-based PSE offer
mathematical methods for analysis of the reachability of a certain system state, for
verification of the correctness of control and dataflow and for the exclusion of resource
conflicts (Martens, 2003).

Fig. 14. Decomposition of a composed operator (COP) as elementary process-structure

Besides these conceptual advantages, from the viewpoint of implementation it turned out
that the programming of elementary process-structures with Petri-Nets is a time consuming
and error prone procedure. The setup of a correctly verified Petri-net-PSE usually takes
several hours. Even with strong modularization of the networks, the large number of places
and transitions leads to hardly manageable Petri-Nets in real-life applications. This is the
reason why the FRIEND::Process introduces the configuration of PSE on the basis of function
block networks (FBN). Similar to the PSA-Configurator, a configuration frontend, called PSE-
Configurator, has been created. This tool subsumes all logical and syntactical rules that are
required for PSE-configuration. Furthermore, a conversion algorithm has been developed
(Prenzel et al., 2008), which converts an FBN into a Petri-Net for automatic execution of
verification routines, like a reachability analysis. A screenshot of the PSE-Configurator with
the PSE “GraspObjectInContainer” is given in Fig. 15.
With respect to their representative function for Petri-Nets, the control flow within the FBN
structures is token-oriented. The execution starts from the “Start” block and ends at the
“Target Success” block. In-between, reactive skills are executed, including manipulative
operations as well as sensor operations or user interactions. Each function block has one
input port, and several output ports according to the possible execution results of the skill
(see e. g. block “CoarseApproachToObjectInContainer” in Fig. 15 with the output ports
“Success”, “Failure”, “Abort” and “UserTakeOver”). The output port “Abort” is not

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

543

explicitly connected to an abort block to increase the readability of the network structure.
The typical construction rule for a semi-autonomous system (like FRIEND) is to provide
user interactions as redundant action for autonomous system operations. As shown in Fig.
15, the failure of an autonomous operation (e. g. “AcquireObjectBySCam”) is linked to the
user interaction “DetermineObjectBySCam”, replacing the failed system action.

Fig. 15. PSE-Configurator with elementary process-structure as function block network,
modeling the COP “GraspObjectInContainer”.5

The configuration of PSE on the basis of function block networks does not only achieve a
decisive increase of development comfort (configuration instead of programming), but it
also decreases the required task-knowledge engineering time significantly. By building the
PSE directly in the correct manner, the time-consumption for the construction of one PSE is
reduced from hours to 10-15 minutes per network. On this basis, real world problems like
the “Meal preparation and assistance” task, become manageable in their complexity.

3.3.2 Exemplary elementary process-structure: Manipulator grasps meal tray in fridge
The exemplary PSE “GraspObjectInContainer”, as shown in Fig. 15, models the grasping of
an object in a container-like place in a general way. In the sample scenario “meal
preparation” this PSE is applied to fetch the meal tray from the refrigerator and also from the
microwave oven after heating of the meal.
The objects (Object Templates) “Manipulator”, “Object” and “Container”, which are
involved in this PSE, are the input artifacts handed over as COP parameters from the
previous step of the FRIEND::Process. The first skill block that follows the “Start” block is
the manipulator skill “OpenGripper”. Subsequently, the container (fridge) is located with
the help of the vision skill “AcquireObjectBySCam(Object)”. This skill calculates the location
and size of the given object with the help of a stereo camera (SCam). In the sample scenario
the COP parameter “Container” (i. e. the fridge) is inserted at the skill’s placeholder

5 For better readability, overlays have been added in this illustration.

www.intechopen.com

Robotic Systems – Applications, Control and Programming

544

“Object” according to the principle of type-conform parameter replacement (Martens, 2003).
The Object Template of a fridge provides the according two sub-symbolic parameters
location and size. A successful execution of the skill guarantees that the container’s location
and size are stored in the system’s world model and can serve as input parameters for
subsequent skills. After verification of the associated Petri-Net of this PSE the correctness of
the data flow between all skill blocks is assured. If the recognition of the fridge is successful
and the user has not to be involved, the skill “AcquireObjectInContainerBySCam” is
executed to determine the location of the meal tray in the fridge. Afterwards, a
“CoarseApproachToObjectInContainer” follows. This skill roughly directs the manipulator
in front of the meal tray in the fridge based on the location information calculated
beforehand. Fig. 15 depicts that this manipulator skill is followed by an enforced user
interaction, since all output ports are connected to the Or-block preceding the user
interaction. The confirmation by the user is included at this place due to testing purposes to
assure a correct execution of the first skill. For real task-execution a quick reconfiguration of
the PSE will change the system behavior and directly execute the next manipulator skill
“FineApproachToObjectInContainer”. This skill leads to a final grasping of the meal tray
handle, while avoiding collisions of the manipulator with the fridge with the help of
dedicated methods for collision avoidance and path planning (Ojdanic, 2009). The final
action necessary to complete the grasping is to close the gripper. The PSE ends with setting
the post-facts of the COP as specified in Table 4.
From the viewpoint of the system’s task planner, each skill-function-block represents an
elementary (executable) operation. Within the execution level of the system, the operations
are not seen as atomic units. The execution of one skill means to activate reactive system
functionality, for instance the sensor-controlled approach of an object to be grasped in the
skill “FineApproachToObjectInContainer”. These basic system skills have to couple sensors
and actuators on the algorithmic level. To pursue the paradigm of configurable process-
structures also on this level, the FRIEND::Process introduces reactive process-structures.

3.4 FRIEND::Process step 4: Configuration and testing of reactive process-structures
Historically, during the elaboration of the FRIEND::Process, the elementary operators
(skills) have been implemented directly in C++. Subsequently, when appropriate CASE-
tools became available, the elementary operators have been implemented with model driven
development techniques (Schmidt, 2006) as executable UML models. Then, a configuration
tool has been developed, which makes user-friendly configuration of process-structures
possible also on this development level. With the help of this tool it is assured that the
verified interfaces from the PSE-layer are respected and the robustness assertion throughout
the complete system architecture is maintained.

3.4.1 Description of the process step
Fig. 16 depicts the decomposition of a skill block from PSE-layer into a reactive process-
structure (PSR) consisting of algorithmic blocks. Similar to the PSE function blocks, PSR are
also based on configurable function block networks. The PSR-Configurator tool results from
the Open-Source Image Nets Framework6, which originally has been developed for
configurable image processing algorithms.

6 http://imagenets.sourceforge.net/

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

545

The PSR Configuration Framework consists of the following five parts (see Fig. 17):

• PSR-Configurator,

• Embedding of PSR into any C++ code via PSR-Executor,

• Reactive process-structures (PSR), which are executable function block networks,

• Extensible set of Plug-Ins and

• Configurable function blocks

Reactive Process-Structure (PSR)

Elementary Process-Structure (PSE)

Block 1

Block 3a

Block 4a

Block 5

Block 3b

Block 4bBlock 2

Skill 1 Skill 2a

Skill 3a

Skill 4 Skill 2b

Skill 3b

Fig. 16. Decomposition of a skill into a reactive process-structure

The “PSR-Configurator” is a graphical user interface, which can be used to rapidly create a
“function block network”, namely a reactive process-structure (PSR). With the PSR-Executor,
it is possible to load and execute the previously configured PSR. The PSR itself is a directed
graph, connecting configurable “function blocks”. Each block can execute code to process its
input (image data or other data) and save its outputs. One or more blocks are grouped in a
“Plug-In” and an arbitrary number of Plug-Ins can be loaded dynamically by the PSR. In this
way, the PSR-Framework can be easily extended by new independent Plug-Ins. This
independency of the algorithmic modules results in completely independent development
within a team of developers. In addition, the strong modularization leads to a technically
manageable amount of code within a single block and reduces the time of inspecting an
erroneous block. The PSR execution library can save a PSR in human readable XML format.
Thus, on the one hand the PSR-Configurator can configure, load and save a PSR, but on the
other hand also external C++ code can load a PSR file.

Fig. 17. The UML structure of the PSR-Configuration Framework

Hierarchical modeling is a common method to subdivide algorithms into separate parts - it
breaks down the complexity and facilitates reusability. In the PSR-Framework, parts can be
constructed as separate PSR and can be combined afterwards to constitute a complete

www.intechopen.com

Robotic Systems – Applications, Control and Programming

546

algorithm. The PSR-Executor is in fact also a function block, which can load and process a
PSR. The connection between the PSR inside an Executor and the outer net is established by
special input and output blocks. For example the PSR “Color2Color3D” shown in Fig. 18
calculates a colored point cloud out of a stereo image pair. On the left side there are two
input blocks, which hand over the images from the block in orange. This block only exists in
this PSR for testing the net and will be ignored on execution if this PSR is loaded by a PSR-
Executor (see Fig. 19, right side).

Fig. 18. The functionality of calculating a colored point cloud out of a stereo image pair is
depicted in this PSR, called “Color2Color3D”

Fig. 19. The previously shown PSR can be loaded as one PSR-Executor block

Fig. 20. Left: original image, right: resulting point cloud of the stereo camera images
visualized in 3D by the PSR-Configurator

The PSR in Fig. 19 shows the use of a subnet of an image acquisition together with the
calculation of the extrinsic matrices of a stereo camera, which describe the relation of the
cameras to the robot. These matrices depend on an invariant transformation frame inside
the pan-tilt-head (see Fig. 1) and its rotation angles. By combining the two subnets, a live
view of the stereo camera’s point cloud can be calculated (depicted in Fig. 20, in the center of
the images the meal tray can be seen). As a visually guided robot is a real world object,
which moves in the three dimensional Cartesian space, it is useful to display the vision

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

547

results in the same space. While configuring a PSR with the PSR-Configurator, intermediate
results can be visualized in two and three dimensions; depending on the data type, for
example scalar values can only be visualized in 2D, camera matrices can be visualized in 2D
and 3D (using OpenGL (Wright et al., 2010), see Fig. 20, right).
To be able to execute a PSR as skill block within the context of the PSE layer and to guarantee
that the PSE interfaces are respected, a special type of “Verified PSR-Executor block” is
created. During configuration of this kind of block, the PSR-Configurator checks that the
used resources as well as input and output parameters match the specification of a certain PSE
skill to be modeled as PSR. For example in the case of the PSR “AquireObjectBySCam(Object)”
the allowed resource is the stereo camera system. The input parameter is the Object Template
of the given object and the output parameter are the return values “Success” and “Failure”.

3.4.2 Exemplary reactive process-structure: Acquire meal tray by stereo camera
To show the capabilities of the reactive process-structures, a simplified example is discussed
in the following, namely the machine vision skill to acquire an object by the stereo camera
with the configuration “Meal Tray”. This example of a PSR is non-reactive, as no actor is
involved. Though, in a more complex PSR, it is possible to combine the camera and the robot
in a feedback loop to implement visual servoing to achieve reactive behaviour.
In Fig. 21 several general blocks are used to find the red meal tray handle in an image. The
processing chain starts with the detection of highly saturated, red parts. It is followed by a
9x9 closing operation to eliminate noise. Afterwards, contours are detected and filtered
according to a priori knowledge of the size of the handle. Then, the minimum rectangles
around the contours are determined and the major axes and their end points are calculated.
For testing the current PSR, again the orange blocks have been added to visualize
intermediate testing results and they are not executed during task execution.

Fig. 21. PSR “MajorAxisPoints” which detects red areas of a certain size and calculates the
major axes of these areas. Orange blocks are omitted when this PSR is used in a PSR-Executor

To grasp the meal tray handle with the manipulator, the determination of its location in 3D
is required. Thus, a 2D detection of the meal tray is not sufficient. However, the previously
created and tested PSR “MajorAxisPoints” can be used twice, one for each image of the
stereo camera. Fig. 22 depicts the usage of the previous net to calculate the 3D line,

www.intechopen.com

Robotic Systems – Applications, Control and Programming

548

describing the handle of the meal tray. The block Optimal Stereo Triangulation computes a 3D
contour based on key feature points, extracted from a stereo image. With the known camera
matrices and the 2D feature correspondences, the 3D points are found by the intersection of
two projection lines in the 3D space using optimal stereo triangulation, as described in
(Natarajan et al., 2011).

Fig. 22. PSR which detects the meal tray handle in 3D

Next, the 3D line of the 3D handle detection is used to calculate a transformation frame,
having the position of the right 3D point and the rotations to point the y-axis in line
direction. Using the a priori knowledge that the meal tray should be parallel to the world
coordinate system, only rotation around z-axis has to be calculated. Fig. 23 displays (top,
from left to right) the 3D line, the calculated frame, the meal tray Object Template and the
placed meal tray, based on the frame. For the fulfillment of the specification of the calling
PSE, the Object Template has to be written to the World Model (a service to read from and
write data to) with the “Write to World Model” block. This ensures that the detected object
is globally available for later processing steps and is the actual result of this PSR.

Fig. 23. Meal tray detection and Object Template placement based on 3D handle detection,
frame calculation and Object Template movement (UD = user data)

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

549

For simulation and PSR unit testing in the PSR-Configurator, the fridge, the static
environment (wheelchair, monitor and user) and the robot with its current configuration can
be placed in the same 3D scene with the meal tray. Fig. 24 and Fig. 25 show the real scene
and the 3D simulation result in comparison.

Fig. 24. Real scene of this PSR

Fig. 25. Simulated scene of this PSR

3.5 FRIEND::Process step 5: Task testing
After finishing the configuration of process-structures on all three levels, the planning and
execution of a task (PSA) has to be tested. The modularly configured, verified and tested
process-structures of lower abstraction (PSE and PSR) are involved in this final process
step.

3.5.1 Description of the process step
For the purpose of task testing the “Sequencer” is used, which embeds a task planner for
process-structures and the PSR-Executor (see Fig. 5). The Sequencer is part of the process-
structure-based control architecture MASSiVE mentioned in Section 1. The Sequencer
interacts with skill servers, which offer the functionality that has been configured and

www.intechopen.com

Robotic Systems – Applications, Control and Programming

550

verified as reactive process-structures beforehand. The layered system architecture
organizes a hardware abstraction via skill layer, so that there is a unique access-point on the
sensors and actuators from a certain responsible skill server.
Task tests can be performed in the following execution modes:

• Probabilistic simulation: the skill interfaces and the communication infrastructure are
tested and skill return values are simulated,

• Skill simulation: the skill’s functional core is simulated,

• Motion simulation: the motion governed by manipulative skills is simulated and
visualized within a virtual 3D space as shown in Fig. 25,

• Hardware simulation: the sensors and actuators are simulated,

• Real execution: the skill is executed with access of sensors and actuators.
Based on the process-structures, a complete task is planned and executed in one of the listed
skill execution modes. This means that the Sequencer first plans a sequence of COPs and
subsequently decomposes each COP into an elementary process-structure. Planning on this
level results in a sequence of skills to be executed then. Step by step and based on the
execution result of each skill, the once planned skill sequence is pursued, or re-planning
takes place if an unexpected result is obtained.

4. Conclusion

As shown in Section 2.1 it is a challenging task to establish intelligent behavior of service
robots operating in human environments. Typical operation sequences of support tasks in
daily life activities seem to be simple from human understanding. However, to realize them
with a robotic system, a huge complexity arises due to the variability and unpredictability of
human environments.
In this paper the FRIEND::Process – an engineering approach for programming robust
intelligent robotic behavior – has been presented. This approach is an alternative solution in
contrast to other existing approaches, since it builds on configurable process-structures as
central development elements. Process-structures comprise a finite-sized and context-related
set of task knowledge. This allows a priori verification of the programmed system behavior
and leads to deterministic, fault-tolerant and real-time capable robotic systems.
The FRIEND::Process organizes the different stages of development and leads to consistent
development artifacts. This is achieved with the help of a tool chain for user-friendly
configuration of process-structures.
The applicability of the here proposed methods has been proven throughout the realization
of the AMaRob project (IAT, 2009) where task execution in three complex scenarios for the
support of disabled persons in daily life activities has been solved. One of theses scenarios is
the “Meal preparation and eating assistance” scenario, used for exemplification throughout
this paper. The most error prone and thus challenging action in this scenario is the correct
recognition of smaller objects (e. g. the handle of the meal tray) under extreme lighting
conditions. However, with the inclusion of redundant skills in the elementary process-
structures, the system’s robustness has been raised in an evolutionary manner. In cases
where even redundant autonomous skills did not execute successfully, the accomplishment
of the desired task was achieved via inclusion of the user within a user interaction skill.
Currently, the methods and tools discussed in this paper are continuously developed
further and are applied in the project ReIntegraRob (IAT, 2011). The mid-term objective is to
integrate the different configuration tools for process-structures into one integrated

www.intechopen.com

Programming of Intelligent Service Robots
with the Process Model “FRIEND::Process” and Configurable Task-Knowledge

551

configuration environment. The PSR Configuration Framework, which is the most
elaborated tool, will build the basis for this.

5. Glossary

COP Composed Operator

FBN Function Block Network

FRIEND Functional Robotarm with user-frIENdly interface for Disabled people

MASSiVE Multilayer Control Architecture for Semi-Autonomous Service Robots with
Verified Task Execution

OC Object Constellation

OT Object Template

PS Process-Structure

PSA Abstract Process-Structure

PSE Elementary Process-Structure

PSR Reactive Process-Structure

TPO Task Participating Object

6. References

Asimov, I. (1991). Robot Visions, Roc (Reissue 5th March 1991), ISBN-10: 0451450647
Cao, T. & Sanderson, A. C. (1998). AND/OR net representation for robotic task sequence

planning, In: IEEE Transactions on Systems, Man, and Cybernetics - part C: Applications
and Reviews, 28(2)

Dario, P., Dillman, R., and Christensen, H. I. (2004). EURON research roadmaps. Key area 1
on ‘Research coordination’, Available from http://www.euron.org

Engelberger, J. F. (1989), Robotics in Service, MIT Press, Cambridge, MA, USA, 1st ed, 1989
Gostai. (2010). Urbi 2.0. Available from http://www.gostai.com
Gräfe, V. & Bischoff, R. (2003). Past, present and future of intelligent robots, Proceedings of the

2003 IEEE International Symposium on Computional Intelligence, In: Robotics and
Automation (CIRA 2003), volume 2, ISBN 0-7803-7866-0, Kobe, Japan

IAT (2009). AMaRob Project, Institute of Automation, University of Bremen, Germany.
Available from http://www.amarob.de

IAT (2011). ReIntegraRob Project, Institute of Automation, University of Bremen, Germany.
Available from http://www.iat.uni-bremen.de/sixcms/detail.php?id=1268

Kampe, H. & Gräser, A. (2010). Integral modelling of objects for service robotic systems,
Proceedings for the joint conference of ISR 2010 (41st International Symposium on
Robotics) und ROBOTIK 2010 (6th German Conference on Robotics), 978-3-8007-
3273-9, Munich, Germany

Kemp, C. C., Edsinger, A. & Torres-Jara, E. (2007). Challenges for robot manipulation in
human environments, In: IEEE Robotics and Automation Magazine, vol. 14, pp. 20-29

Martens, C. (2003). Teilautonome Aufgabenbearbeitung bei Rehabilitations-robotern mit
Manipulator - Konzeption und Realisierung eines software-technischen und
algorithmischen Rahmenwerks, PhD dissertation, University of Bremen, Faculty of
Physics / Electrical Engineering, (in German)

www.intechopen.com

Robotic Systems – Applications, Control and Programming

552

Martens, C., Prenzel, O. & Gräser, A. (2007). The rehabilitation robots FRIEND-I & II: Daily
life independency through semi-autonomous task-execution, In: Rehabilitation
Robotics (Sashi S Kommu, Ed.), pp. 137-162., I-Tech Education and Publishing,
Vienna, Austria, Available from
http://www.intechopen.com/books/show/title/rehabilitation_robotics

Microsoft. (2011). Microsoft Robotic Studio, Available from
http://www.microsoft.com/robotics

Natarajan, S.K., Ristic-Durrant, D., Leu, A., Gräser, A. (2011). Robust stereo-vision based 3D-
modeling of real-world objects for assistive robotic applications, in Proc. of IEEE/RSJ
International Conference on Robots and Systems (IROS), San Francisco, USA

Ojdanic, D. (2009). Using cartesian space for manipulator motion planning - application in
service robotics, PhD dissertation, University of Bremen, Faculty of Physics and
Electrical Engineering

Prenzel, O. (2005). Semi-autonomous object anchoring for service-robots, in B. Lohmann (Ed.),
A. Gräser, Methods and Applications in Automation, pp. 57 - 68, Shaker-Verlag,
Aachen, 2005, ISBN 3-8322-4502-2

Prenzel, O., Boit, A. and Kampe H. (2008) Ergonomic programming of service robot
behavior with function block networks, in Methods and Applications in Automation,
Shaker-Verlag, pp. 31-42

Prenzel, O. (2009). Process model for the development of semi-autonomous service robots, PhD
dissertation, University of Bremen, Faculty of Physics and Electrical Engineering

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A. Y.
(2009) ROS: an open-source Robot Operating System, In: Proc. Of ICRA Workshop on
Open Source Software

Russel, S., and Norvig, P. (2003). Articial Intelligence - A Modern Approach, Prentice Hall,
Upper Saddle River, New Jersey, 2nd ed.

Schlegel, C., and Woerz, R. (1999) The software framework SmartSoft for implementing
sensorimotor systems, In: Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1610-1616

Schmidt, D. C. (2006). Model-driven-engineering, In: guest editor's introduction, pp. 25-31,
IEEE Computer

Schreckenghost, D., Bonasso, R., Kortenkamp, D., Ryan D. (1998) Three tier architecture for
controlling space life support systems, In: Proc. of IEEE SIS'98, Washington DC,
USA

Simmons, R., Apfelbaum, D. (1998) A task description language for robot control, In: Proc. of
Conference on Intelligent Robotics and Systems

Weld, D. S. (1999). Recent advances in AI planning, in AI Magazine, vol 20, pp. 93-123
Wright, R. S., Lipchak, B., Haemel, N. & Sellers, G. (2010). OpenGL SuperBible: Comprehensive

Tutorial and Reference (5th Edition), Addison-Wesley, ISBN 978-0321712615

www.intechopen.com

Robotic Systems - Applications, Control and Programming

Edited by Dr. Ashish Dutta

ISBN 978-953-307-941-7

Hard cover, 628 pages

Publisher InTech

Published online 03, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book brings together some of the latest research in robot applications, control, modeling, sensors and

algorithms. Consisting of three main sections, the first section of the book has a focus on robotic surgery,

rehabilitation, self-assembly, while the second section offers an insight into the area of control with discussions

on exoskeleton control and robot learning among others. The third section is on vision and ultrasonic sensors

which is followed by a series of chapters which include a focus on the programming of intelligent service robots

and systems adaptations.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Oliver Prenzel, Uwe Lange, Henning Kampe, Christian Martens and Axel Gräser (2012). Programming of

Intelligent Service Robots with the Process Model “FRIEND::Process” and Configurable Task-Knowledge,

Robotic Systems - Applications, Control and Programming, Dr. Ashish Dutta (Ed.), ISBN: 978-953-307-941-7,

InTech, Available from: http://www.intechopen.com/books/robotic-systems-applications-control-and-

programming/programming-of-intelligent-service-robots-with-the-process-model-friend-process-and-

configurable-tas

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

