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1. Introduction 

Bioethanol is not only currently the most widely used biofuel, but also potentially the most 
promising alternative to fossil fuels. The majority of bioethanol in today’s use is made from 
sucrose-containing (e.g., sugarcane, sugar beet, and sweet sorghum) or starch-based 
feedstocks (e.g., corn, wheat, rice, barley, and potatoes). The excessive production of such 
crop-based (first generation) bioethanol, however, imposes an adverse effect on global food 
supply. A sustainable alternative feedstock which can be used for non-crop (second 
generation) bioethanol is lignocellulosic biomass such as rice straw (Binod et al., 2010), 
wheat straw (Talebnia et al., 2010), corn stover (Kadam & McMillan, 2003), switchgrass 
(Keshwani & Cheng, 2009), sugarcane bagasse (Cardona et al., 2010), and various other 
agriculture and forest residues. 
Lignocellulose primarily consists of cellulose, hemicellulose and lignin. Cellulose is a 

homopolymer of glucose, while hemicellulose is a heteropolymer of pentoses (i.e., xylose 

and arabinose) and hexoses (i.e., glucose, mannose, and galactose) sugars. Lignin is a rich 

source of aromatic carbon compounds but extremely recalcitrant. Lignocellulose is 

decomposed via pretreatment and hydrolysis into a spectrum of sugars in which glucose 

and xylose are the first and second most dominant. These cellulosic sugars are finally 

converted to bioethanol by fermentation. The lignocellulosic bioethanol has not yet been 

produced on a commercial scale due to lack of cost-effectiveness. For ensuring its 

economical viability, comprehensive efforts are required to reduce cost (and maximize the 

profit) throughout the entire process from biomass to bioethanol. 

In the current discussion, we limit ourselves to the fermentation step only and examine 
various issues with increasing bioethanol productivity. Cost-benefit analysis of the 
fermentation process shows that the processing cost is more dominant (two-thirds of the 
total cost) than the feed cost (Lange, 2007; Wingren et al., 2003). It is thus important to 
improve the processing efficiency, not just the sugar conversion alone. In this regard, 
increasing the productivity should be a preferred target over increasing the yield, not only in 
the reactor optimization, but also in strain improvement. 
The yeast Saccharomyces cerevisiae has typically been used for the production of crop-based 

bioethanol. This wild-type strain is, however, not suitable for converting cellulosic sugars as 

it can efficiently ferment glucose but hardly xylose. Considerable effort has been made to 
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endow S. cerevisiae with the ability to utilize xylose (Hahn-Hagerdal et al., 2007). Basic 

approaches to this end are to “push” and “pull” xylose into the central metabolism of S. 

cerevisiae. Push strategies introduce the transport and initial metabolic routes of xylose by 

expressing exogenous (i.e., foreign) genes. In pull strategies, reactions in the central 

metabolism are selectively overexpressed. Introduction of foreign plasmids imposes a 

“metabolic burden” or “metabolic load” on the host cell by consuming a significant amount 

of internal resources, hurting the normal metabolic functioning of the host cell (Glick, 1995). 

The most common observation is the decrease of cell growth rate (Bentley et al., 1990; Ricci 

& Hernandez, 2000). It is often (while not always) that as the product yield is increased, the 

production rate is reciprocally low (Chu & Lee, 2007).  
Most of the recombinant yeast strains currently available show a sequential pattern in their 
consumption of mixed sugars (i.e., glucose and xylose). They preferably consume glucose with 
xylose on standby as denoted by the vertical line in Fig. 1.1(a). Then, simultaneous 
consumption take places along the tilted line only when the preferred substrate is depleted to a 
very low level (say, one tenth or one fifth of xylose level). Obviously, the productivity can be 
increased if simultaneous consumption occurs earlier (i.e. at higher concentrations of glucose).  
To achieve this, two different strategies can be considered. First, we may develop a more 
efficient fermenting organism through further pathway modifications of existing 
recombinant yeast. The goal of this attempt at the genetic level corresponds to making the 
slope of the tilted line steeper (Fig. 1.1(b)). Alternatively, we may design a more efficient 
fermentation process through optimization of operating conditions or reconfiguration of 
reactors. For example, if we change initial sugar composition in batch culture by increasing 
relative portion of xylose in the culture medium, this also leads to earlier start of the 
simultaneous consumption (Fig. 1.1(c)).  
 

 

Fig. 1.1. (a) Sequential consumption of mixed sugars by existing recombinant yeast. Two 
possible ways to promote the simultaneous consumption: (b) metabolic pathway 
modification of fermenting organisms and (c) adjustment of sugar composition in the 
culture medium. Adapted from Song and Ramkrishna (2010) with minor modification. 

In this chapter, we present model-based strategies for increasing the bioethanol productivity 
both at the genetic and reactor levels. Metabolic models help not only reduce trial and error, 
but also discover fresh strategies (Bailey, 1998). In view of the issues discussed above, there 
are two essential aspects of metabolic models required for the application to reactor and 
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metabolic engineering. First, the mathematical models should be able to address 
productivity as well as yield. Second, it should be possible to account for metabolic burden. 
While diverse modeling approaches have been suggested as a tool, the cybernetic 
framework (Ramkrishna, 1983) is unique in this regard (Maertens & Vanrolleghem, 2010). 
The cybernetic modeling approach describes cellular metabolism from the viewpoint that a 
microorganism is an optimal strategist making frugal use of limited internal resources to 
maximize its survival (Ramkrishna, 1983). Metabolic regulation of enzyme synthesis and 
their activities is made as the outcome of such optimal allocation of resources. This unique 
feature of accounting for metabolic regulation endows cybernetic models with the capability 
to accurately predict peculiar metabolic behaviors such as sequential or simultaneous 
consumption of multiple substrates. Further, in view of the constraint placed on resources, 
the cybernetic model provides a mechanism to account for metabolic burden imposed on 
the organism as a result of genetic changes.  
After a brief sketch of the model structure (Section 2), we will see how metabolic models are 
used to establish rational strategies for increasing the productivity. In Section 3, basic 
guidelines for genetic modification of fermenting organisms are provided by identifying the 
potential target pathway and reactions. Diverse reactor-level strategies are also discussed in 
Section 4.  

2. Metabolic model 
The hybrid cybernetic approach (Kim et al., 2008; Song et al., 2009; Song & Ramkrishna, 2009) 
is used for modeling of recombinant yeast consuming glucose and xylose. The hybrid 
cybernetic model (HCM) incorporates the concept of elementary modes (EMs) (Schuster et 
al., 2000) into the cybernetic framework. EM is a metabolic pathway (or subnetwork) 
composed of a minimal set of reactions supporting a steady state operation of metabolism. 
Any feasible metabolic state can be represented by nonnegative combinations of EMs. HCM 
views EMs as cell’s metabolic options, the choice of which is optimally modulated under 
dynamic environmental conditions such that a prescribed metabolic objective (such as the 
total carbon uptake flux) is maximized.  

2.1 Basic structure 
A hybrid cybernetic model can be given in a general form as follows:  

 
 IN

IN OUT

Fd
c

dt V
dV

F F
dt

  

 

x M IN

x
S Zr x x

 (1) 

where x is the vector of nx concentrations of extracellular components in the reactor (such as 

substrates, products and biomass), Sx is the (nxnr) stoichiometric matrix, and Z is the (nrnz) 
EM matrix, rM is the vector of nz fluxes through EMs, FIN and FOUT are volumetric feed rates 
at the inlet and outlet, V is the culture volume, xIN is the vector of nx concentrations  
of extracellular components in the feed. Eq. (1) can also represent batch operation by setting  
FIN = FOUT = 0 (i.e., V is constant), and fed-batch systems by setting FOUT = 0. In chemostat 
operations, FIN = FOUT = F, and F/V is often given as dilution rate D. With Z normalized with 
respect to a reference substrate, rM implies uptake fluxes through EMs. Fluxes through EMs 
are given as below: 
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  max
, , , , ,/ kin

M j M j M j M j M jr v e e r  (2) 

where the subscript j denotes the index of EM, vM,j is the cybernetic variable controlling 
enzyme activity, eM,j and max

,M je  are the enzyme level and its maximum value, respectively, 
and ,

kin
M jr  is the kinetic term. Enzyme level eM,j is obtained from the following dynamic 

equation, i.e., 

 
,

, , , , , ,
M j kin

M j M j ME j M j M j M j

de
u br e e

dt
       (3) 

where the first and second terms of the right-hand side denote constitutive and inducible 
rates of enzyme synthesis, and the last two terms represent the decrease of enzyme levels by 
degradation and dilution, respectively. In the second term of the right-hand side, uM,j is the 
cybernetic variable regulating the induction of enzyme synthesis, b is the fraction of internal 
resources (such as DNA, RNA, protein, lipid and other components) involved in the enzyme 
synthesis process, and ,

kin
ME jr  is the kinetic part of inducible enzyme synthesis rate. In the 

third and fourth terms, M,j and  are the degradation and specific growth rates, 
respectively.  
The cybernetic control variables, uM,j and vM,j are computed from the following the 

“Matching Law” and the “Proportional Law”(Kompala et al., 1986; Young & Ramkrishna, 

2007), respectively: 

 , ,;
max( )

j j
M j M j

k k
kk

p p
u v

p p
 


 (4) 

where the return-on-investment pj denotes the carbon uptake flux through the jth EM.  
The structure of HCMs is illustrated using Fig. 2.1. In this tutorial example, we get three 
EMs from the network. The uptake flux is split into three individual fluxes thorough EMs, 
which are catalyzed by enzymes E1, E2 and E3, respectively. HCMs view that the uptake 
fluxes are optimally distributed (by the cybernetic variables u and v) among three EMs for 
maximizing a metabolic objective function (such as the carbon uptake flux or growth rate). 
The uptake and excretion rates are represented by nonnegative combinations of individual 
fluxes through EMs.  

2.2 Recombinant yeast strain 1400 (pLNH33) 
Among many recombinant yeast strains currently available, we specifically choose S. 
cerevisiae 1400 (pLNH33) developed by Ho and coworkers (Krishnan et al., 1997). The strain 
was constructed by transforming the recombinant plasmids with two exogenous genes 
XYL1 and XYL2 (introduced from xylose-metabolizing Pichia stipitis), and one endogenous 
gene XKS1 (introduced from S. cerevisiae) into the host strain Saccharomyces yeast 1400 with 
high ethanol tolerance (Krishnan et al., 1997). The first two genes encode xylose reductase 
(XR) and xylitol dehydrogenase (XDH), which convert xylose to xylitol, and xylitol to 
xylulose, respectively, and the last one encodes xylulokinase (XK), which converts xylulose 
to xylulose-5-phophaste. 
The HCM for the recombinant yeast 1400 (pLNH33) is presented below. The model has been 

previously developed by the authors (Song et al., 2009). The formulation of HCM is  
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Fig. 2.1. Schematic illustration of the HCM concept. Adapted from from Song et al. (2009). 

composed of (i) construction of metabolic network, (ii) computation and selection of EMs, 
and (iii) parameter identification by model fitting. 

2.3 Construction of network model 
The metabolic network encompasses all the primary reaction routes involved in the 
anaerobic growth of recombinant yeast such as glycolytic and pentose phosphate pathways, 
citric acid cycle, and reactions for pyruvate metabolism. In addition, two oxidoreductase 
reactions from xylose to xylulose catalyzed by the heterologous expression of XR and XDH 
enzymes are incorporated. Biochemical reactions participating in the metabolism of 
recombinant yeast are listed up in Table 2.1. 

2.4 EM decomposition and reduction 
Using METATOOL v5.0 (von Kamp & Schuster, 2006), the network is decomposed into 201 
EMs, which are too many to be incorporated in the model. In general, as the network size 
increases, the number of EMs undergoes combinatorial explosion (Klamt & Stelling, 2002), 
leading to overparameterization (which implies an excessive number of parameters relative 
to the measurements available to determine them). This problem can be avoided using the 
Metabolic Yield Analysis (MYA) developed by Song and Ramkrishna (2009) by which an 
original set of EMs is condensed to a much smaller subset. As a result, 201 EMs are reduced 
to 12 EMs which can be classified into three groups depending on the substrate associated 
with them (Table 2.2).  

www.intechopen.com



 
Bioethanol 

 

178 

GLYCOLYSIS 

1 
2 
3 
4 
5 

GLC + ATP  G6P + ADP 

G6P  F6P 

F6P + ATP  DHAP + GAP + ADP 

DHAP  GAP 

DHAP + NADH  GOL + NAD 

6 
7 
8 
9 

GOL  GOLx 
GAP + NAD + ADP  PG3 + NADH + ATP 

PG3  PEP 

PEP + ADP  PYR + ATP 

PYRUVATE METABOLISM 

10 
11 
12 
13 

PYR  ACD + CO2 

ACD + NADH  ETH + NAD 

ACD + NADHm  ETH + NADm 

ACD + NADP  ACT + NADPH  

14 
15 
16 

ACT  ACTx 
ACT + CoA + 2ATP  AcCoA + 2ADP 

PYR + ATP + CO2  OAA + ADP 

PENTOSE PHOSPHATE PATHWAY 

17 
18 
19 

G6P + 2NADP  Ru5P + CO2 + 2NADPH 

Ru5P  X5P 

Ru5P  R5P 

20 
21 
22 

R5P + X5P  S7P + GAP 

X5P + E4P  F6P + GAP 

S7P + GAP  F6P + E4P 

CITRIC ACID CYCLE 

23 
24 
25 
26 

PYR+NADm+CoAm  AcCoAm+CO2+NADHm 

OAA+NADm+NADH  OAAm+NADHm+NAD 

OAAm + AcCoAm  ICT + CoAm 
ICT + NADm  AKG + CO2 + NADHm 

27 
28 
29 
30 

ICT + NADPm  AKG + CO2 + NADPHm 

AKG+NADm+ADP  SUC+ATP+CO2+NADHm 

SUC + 0.5NADm  MAL + 0.5NADHm  

MAL + NADm  OAAm + NADHm 

XYLOSE METABOLISM 

31 
32 
33 

XYL + NADH  XOL + NAD 

XYL + NADPH  XOL + NADP 

XOL  XOLx 

34 
35 

XOL + NAD  XUL + NADH 

XUL + ATP  X5P + ADP 

BIOMASS FORMATION 

36 1.04AKG + 0.57E4P + 0.11GOL + 2.39G6P + 1.07OAA + 0.99PEP + 0.57PG3 + 1.15PYR + 0.74R5P + 2.36AcCoA 

+ 0.31AcCoAm + 2.68NAD + 0.53NADm + 11.55NADPH + 1.51NADPHm + 30.48 ATP + 0.43CO2  “1 g BIOM” 
+ 2.36CoA + 0.31CoAm + 2.68NADH + 0.53NADHm + 11.55NADP + 1.51NADPm + 30.48ADP 

OTHERS 

37 ATP  ADP + MAINT  38 NADH  NAD   

Table 2.1. List of biochemical reactions included in the metabolic network model of 
recombinant yeast 1400 (pLNH33). Adapted from Song and Ramkrishna (2009).  

 

Substrate EM Net reaction 

Glucose 
1 
2 
3 

GLC → 2 CO2 + 2 ETH + 2 MAINT 
25.31 GLC → BIOM + 41.43 CO2 + 33.21 ETH 
40.41 GLC → BIOM + 56.52 CO2 + 48.31 ETH + 15.10 GOLx 

Xylose 

4 
5 
6 
7 

XYL → 1.833 CO2 + 1.583 ETH + 1.583 MAINT 
2 XYL → 2 CO2 + 1.5 ETH + 1.5 MAINT + XOLx 
31.97 XYL → BIOM + 49.42 CO2 + 33.21 ETH 
138.5 XYL → BIOM + 160.4 CO2 + 117.6 ETH + 84.37 GOLx 

Mixture 

8 
9 
10 
11 
12 
 

GLC + 4 XYL → 2 ACTx + 2 CO2 + 2 MAINT + 4 XOLx 
GLC + 4 XYL → 9.333 CO2 + 8.333 ETH + 8.333 MAINT 
2.39 GLC + 25.99 XYL → 22.19 ACTx + BIOM + 37.82 CO2 + 9.037 ETH 
5.333 GLC + 2 XYL → ACTx + 8.5 CO2 + 4.5 ETH + 7.5 GOLx 
81.62 GLC + XYL → 12.03 ACTx + 1.754 BIOM + 105.9 CO2 + 85.25 
ETH + 39.01 GOLx 

Table 2.2. EMs represented in terms of extracellular metabolites. Acronyms for metabolites: 
ACTx = acetate, BIOM = biomass, CO2 = carbon dioxide, ETH = ethanol, GLC = glucose, 
GOL = glycerol, MAINT = Dissipated ATP for maintenance, XOLx = xylitol, XYL = xylose.  
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2.5 Model fit to experimental data 
The model was compared with four different sets of anaerobic growth data on single and 
mixed sugars (Fig. 2.2). As a measure for the quality of model fit, coefficient of 
determination (also referred to as R2) is presented for each component of Figs. 2.2(a) to (d) 
(Table 2.3). R2 is defined as follows: 

    2 22
,exp ,model ,exp exp1 ; , ,err

err i i tot i
tot i i

SS
R SS y y SS y y

SS
        (5) 

where ,expiy , ,modeliy , and expy  denote experimental data, their associated modeled value, 
and the mean of the observed data, respectively. R2 values are very high (i.e., over 0.9) for 
major components (such as glucose, xylose, biomass and ethanol). R2 values of minor 
components (such as glycerol and xylitol) are relatively low which is possibly due to the 
error introduced in data reading from literature graphs. Average R2 values are over 0.8 in all 
cases. 
 

 

Fig. 2.2. Comparison of model simulations with experimental data. Substrates: (a) glucose 
only, (b) xylose only, (c) and (d) mixed sugars. Symbols:  glucose,  xylose,  ethanol,  
cell dry weight,  glycerol,  xylitol, ▬ simulations.  

 

 
Fig. 2.2 

(a) (b) (c) (d) 

Glucose 0.997 – 0.972 0.982 
Xylose – 0.974 0.985 0.990 
Cell dry weight 0.988 0.929 – – 
Ethanol 0.936 0.926 0.956 0.957 
Glycerol 0.788 0.857 0.501 0.480 
Xylitol – 0.828 0.838 0.729 

Average 0.927 0.903 0.850 0.828 

Table 2.3. Coefficient of determination (or R2) for individual components of Figs. 2.2(a) to (d).  
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3. Strategies for metabolic pathway modification 

Comprehensive in silico analysis is carried out to establish rational guidelines for further 

genetic modification of recombinant yeast. The basic strategy is to identify the effective 

target mode for the genetic change. To this end, we examine the effect of overexpressing 

enzymes (catalyzing the throughput flux of EMs) on the ethanol productivity (PETH) which is 

computed as follows:  

 [ ( ) (0)]/ETH ETH f ETH fP x t x t   (6) 

where xETH is the (molar or mass) concentration of ethanol, and tf is the batch fermentation 

time. 

For realistic simulations, incorporation of metabolic burden is critical. Metabolic burden is 

ascribed to the lower availability of internal resources for host cells because the same 

resources are competitively used by plasmids for their replication and more importantly, the 

synthesis of exogenous proteins. While several empirical correlations are available to 

consider the change of growth rate with the plasmid content (e.g., Lee et al., 1985; Satyagal 

& Agrawal, 1989), cybernetic models are able to directly take into account of the reduction of 

internal resources (b), for example, as follows: 

 0

1

b
b





 (7) 

where  is the parameter depending on the overexpressed level of heterologous proteins as 

well as the plasmid copy number, and b0 denotes the fraction of internal resources when no 

genetic modification is made (i.e.,  = 0). We simulate enzyme overexpression by increasing 

the constitutive enzyme synthesis rate (M,j ’s) in Eq. (3) and relate  to the ratio of “the total 

incremental of M,j ’s due to plasmids” to “the summation of inducible enzyme synthesis 

rates.” 

3.1 Identification of target pathway 
Sensitivity analysis reveals the dependence of the ethanol productivity on the 
overexpression of enzymes catalyzing EM fluxes. The sensitivity of the ethanol productivity 
is calculated as follows: 

 
,

,

Sensitivity of , {1,2,...,12}
M j ETH

ETH
ETH M j

dP
P j

P d




   (8) 

The sensitivity plot (Fig. 3.1(a)) shows that all xylose-consuming EMs (EM4 to EM7) are 

effective in increasing the ethanol productivity but the highest sensitivity is found among 

glucose-consuming modes (i.e., EM2). Both can contribute to increasing the productivity but 

in different ways. The former (i.e., amplifying fluxes of EM4 to EM7) promotes the 

simultaneous consumption of mixed sugars as illustrated in Fig. 1.1(b). On the other hand, 

the latter (i.e., amplifying EM2 flux) effectively increases the biomass formation as the 

growth rate of EM2 is the highest among others. 

It should be noted that information provided from the sensitivity analysis is local because it 
shows only the change of productivity with respect to the “infinitesimal” change of enzyme 
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expression level. It is more important to know how the productivity will change with 
respect to the “appreciable” change of enzyme levels. This information on nonlinear cellular 
behaviors can be acquired from dynamic simulations. The results are shown in Fig. 3.1(b) 
where mixed-sugar-consuming modes (EM8 to EM12) are excluded due to their negligible 
level of activation (Song et al., 2009). From this investigation, EM6 (red line) is chosen as the 
“best” mode, while EM2 is the second.  
Non-monotonic profiles are observed in Fig. 3.1(b). For example, as the overexpression level 
of mode 5 increases, the productivity goes up initially but comes down afterwards. This 
may be seen as the outcome of competition between amplification of throughput flux of 
EM4 (i.e., benefit) and metabolic burden (i.e., cost).  
 

 

Fig. 3.1. The effect of enzyme overexpression on the ethanol productivity: (a) sensitivity of 
the productivity, (b) change of productivity subject to appreciable change of enzyme level. 

3.2 Effect of amplifying the flux of the target pathway 
The effect of amplifying EM6 flux on ethanol productivity is more clearly presented in batch 
fermentation profiles (Fig. 3.2).  
Obviously, overexpression of enzymes has a limit due to the finite internal resources and 
other reasons. Although it is difficult to estimate the upper limit to overexpression level, we 
constrain the constitutive synthesis rates of enzymes to be less than a certain threshold, i.e., 

the total increase of M,j’s is less than or equal to 0.4.  
Fig. 3.2 shows that xylose consumption rate is accelerated, while glucose consumption rate 
is reduced. The decrease of glucose consumption rate can be attributed to a combined effect 
of metabolic burden and cellular regulation. Consequently, simultaneous consumption of 
glucose and xylose is facilitated, leading to the substantial increase of ethanol productivity 
from 1.5 to 2.07 g/L/h (i.e., increase of volumetric productivity by 38%), while the ethanol 
yield is slightly decreased from 0.402 to 0.392. The total conversion of mixed sugars is fixed 
to 0.99 in this calculation. 

www.intechopen.com



 
Bioethanol 

 

182 

 

Fig. 3.2. Dynamic fermentation curves in a batch reactor before (black lines) and after (red 
lines) overexpressing the target mode (EM6). (a) Ethanol, (b) glucose (GLC), xylose (XYL) 
and biomass (BIOM).  

3.3 Implications of amplifying EM6 flux 
Comparison of the flux distributions between before (r) and after (r’) pathway modification 
suggests an approach to redirect flux distribution for increasing ethanol productivity. Fig. 
3.3(a) shows r and r’ at a specific instant when cell density is 3g/L. Metabolic shift caused by 
the genetic change is also presented by displaying the difference between r and r’ (Fig. 
3.3(b)). Then, amplification of the mode throughput flux could be translated as amplification 
of a set of reactions with positive values of r’- r which are highlighted in colors in Figs. 3.3(a) 
and (b). From this analysis, we obtain several interesting findings as follows: 
i. First of all, it is observed that none of the reactions in the glycolytic pathway are 

amplified. It implies that amplification of the glycolytic enzymes may not be a key to 
increasing ethanol productivity. This is consistent with experimental findings reported 
in the literature. Overproduction of different glycolytic enzymes of S. cerevisiae showed 
no effect on the rate of ethanol formation (Schaaff et al., 1989). It is because flux control 
is not inside the glycolytic pathway. Understandably, past efforts for increasing the 
glycolytic flux by overproduction of glycolytic enzymes have been often unsuccessful 
(Koebmann et al., 2002). In the in silico analysis, flux control is found elsewhere 
(highlighted in color) which includes xylose utilization pathway, and pentose 
phosphate (PP) pathway.  

ii. While recombinant strain 1400 (pLNH33) efficiently utilizes xylose through the 
pathway constructed by overexpressing exogenous genes (XR and XDH), as well as 
endogenous gene (XK), simulation shows that the increase of ethanol productivity 
requires further overexpression of not only xylose transport reactions (i.e., R31 and 
R32), but also xylitol conversion to X5P (i.e., R34 and R35).  

iii. In addition, it is shown that four reactions in the PP pathway (R19 to R22), i.e., 
transaldolase (TAL1), transketolase (TKL1), ribulose-5-phosphate 4-epimerase (RPE1) 
and ribulokinase (RKI1), are possible targets for overexpression. The finding by 
Johansson & Hahn-Hagerdal (2002) that overexpression of all four genes resulted in 
better ethanol production than the overexpression of each gene individually is also 
consistent with the simulation result.  

iv. Another interesting aspect that emerges from the model is as follows. Jeppsson et al. 
(2002) observed that deletion of ZWF1 (i.e., R17), coding for glucose-6-phosphate 
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dehydrogenase, results in higher ethanol yield but lower productivity. Instead, the 
hybrid model shows the need to overexpress this oxidative PP pathway to increase 
ethanol productivity. The calculations show an increase in productivity though there is 
a small drop in the yield. 

 

 

Fig. 3.3. Comparison between before and after amplifying the flux of the target mode (EM6). 
(a) Flux distributions within the network. The upper and lower numerical values along 
arrow denote the magnitude of fluxes before (r) and after (r’) the genetic change. The unit of 
flux is mmol/gDW/h. (b) Difference between r’and r. 

4. Reactor-level approaches 

In this section, we discuss reactor-level strategies towards the enhanced ethanol 
productivity in two ways. First, we seek optimal ratios of glucose and xylose in batch and 
continuous cultures to maximize bioethanol productivity. Second, various configurations 
combining batch, fed-batch and continuous reactors are considered. Their maximum 
achievable productivities are assessed using the model for the original recombinant strain S. 
cerevisiae 1400 (pLNH33) (i.e., with no amplification of EM6 flux). 
The ethanol productivity in a batch and continuous reactor is computed as follows: 
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,

[ ( ) (0)]/( ) (batch)

[ ( ) ] (continuous)

ETH f ETH f s
ETH

ETH ETH IN

x t x t t
P

x t x D

  


 (9) 

where xETH,IN is the ethanol concentration in the feed (which is zero in our case), ts is the 
extra time taken for harvesting and preparation for the next batch. The normal range of ts is 
from 3 to 10 hours (Shuler & Kargi, 2002) and we set it to 6 hours.  

4.1 Effect of sugar composition 
We examine the effect of increasing the portion of xylose in the culture medium on ethanol 
productivity (Fig. 4.1). The total conversion of mixed sugars is set to 0.99 as before. 
Additional xylose is assumed obtainable by collecting an unconverted sugar from 
fermentation systems using wild-type yeast which converts glucose only.  
 

 

Fig. 4.1. Productivities with different initial sugar concentration in (a) batch and (b) 
continuous reactors. Adapted from Song and Ramkrishna (2010). 

First, the change of ethanol productivity with initial glucose concentration in a batch reactor 
is given in Fig. 4.1 (a). Ethanol productivity may or may not increase with the ratio of xylose 
to glucose concentration depending on initial glucose concentrations. If, for example, the 
upper limit of xXYL,0/xGLC,0 is 1.0, xylose addition results in increase (or decrease) of 
productivity when xGLC,0 is below (or above) about 50 g/L. If the ratio of initial sugar 
concentration is allowed to vary up to 2.0, such threshold is extended to xGLC,0 = 58 g/L. 
Higher improvement of ethanol productivity is expected for lower initial concentrations of 
glucose (e.g., 45% up at xGLC,0 = 20 g/L, but 5.4% up at xGLC,0 = 50 g/L). Optimal operating 
conditions correspond to segments of curves above other ones. In Fig. 4.1(a), for example, 
optimal operating conditions imply that xXYL,0/xGLC,0 = 2 when 20 ≤ xGLC,0 ≤ 58, and 
xXYL,0/xGLC,0 = 0.5 when 58 ≤ xGLC,0 ≤ 80. 
Next, operating curves in a continuous reactor are presented in Fig. 4.1(b). It is shown that, 
unlike the batch case, it is always recommendable to increase xylose level in the feed to 
increase the ethanol productivity. The best productivity is obtained when xXYL,IN/xGLC,IN = 
2.0, which increases the productivity by 56%, 26%, and 12% at xGLC,IN = 20, 50, and 80 g/L, 
respectively. 
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4.2 Comparison of batch and continuous reactors 
Ethanol productivity curves at standard conditions in batch and continuous systems are 
collected together in Fig. 4.2 for clear comparison. In general, the productivity of growth-
associated products in a chemostat is far higher than in a batch reactor. This is not the case 
with ethanol production because it is suppressed by growth (Shuler & Kargi, 2002). The 
ethanol productivity from mixed sugars in batch culture is about two to three times higher 
than in continuous culture (Fig. 4.2(a)). Meanwhile, the foregoing considerations show that 
chemostats outperform batch fermenters in ethanol production from glucose alone as cells 
grow relatively fast (Fig. 4.2(b)). Choice of preculture medium affects ethanol productivity 
of batch fermentation and its effect is more clearly shown for mixed sugars (Fig. 4.2(a)) than 
a single substrate (Fig. 4.2(b)). 
 

 

Fig. 4.2. Performance comparison between batch and continuous systems: (a) fermentation 
of mixed sugars, (b) fermentation of glucose only. Adapted from Song and Ramkrishna 
(2010). 

4.3 Synergistic integration of different type of reactors 
In the preceding section, the possibility of improving the productivity in batch reactors was 
examined by increasing the initial concentration of xylose. Elevation of xylose concentration 
has both positive and negative effects, i.e., it facilitates simultaneous consumption initially, 
but prolongs the fermentation time after glucose consumption. Overall, this trade-off 
resulted in the increase of ethanol productivity only at low sugar concentrations. It was 
further shown that continuous operation produces significantly more ethanol than batch 
when only glucose is consumed, but less when mixed sugars are consumed. These findings 
suggest the investigation of new reactor configurations which may outperform conventional 
batch fermentation. 
We consider the following five configurations (denoted by C1 to C5), each of which 
combines two different reactor operations (O1 and O2) (Table 4.1). C1 represents a 
conventional batch operation where mixed sugars are fermented to ethanol by recombinant 
S. cerevisiae. The same is repeated at every batch (i.e., O1 is identical to O2). In C2, O1 is a 
batch reactor for the growth of the “wild-type” S. cerevisiae which can ferment glucose alone. 
Leftover sugars in O1 are then fed to O2 (i.e., fed-batch operation) where mixed sugars are 
fermented using the recombinant strain. C3 is the same as C2 except that a chemostat is used  
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Config. 
Operation 1 (O1) Operation 2 (O2) 

Reactor Strain Sugar Reactor Strain Sugar 

C1 Batch GM GLC, XYL Batch. GM GLC, XYL 

C2 Batch WT GLC Fed-batch GM GLC, XYL 

C3 Cont. WT GLC Fed-batch GM GLC, XYL 

C4 Batch WT GLC Fed-batch GM GLC, XYL 

C5 Cont. WT GLC Fed-batc GM GLC, XYL 

Table 4.1. Reactor configurations integrating two different types of reactors. Acronyms: C1 
to C5 = reactor configurations 1 to 5, GM = genetically modified strain, WT = wild-type 
strain. GLC = glucose, XYL = xylose. Redrawn from Song et al. (2011). 

for O1. C4 and C5 are respective counterparts of C2 and C3, and these two groups are 
differentiated only by the xylose feeding policy in O2. That is, in C2 and C3, all leftover 
sugars in O1 are fed into O2 at its start-up (which implies that O2 is a batch system with 
elevated initial concentration of xylose). In C4 and C5, on the other hand, the xylose feeding 
rate is optimized such that the ethanol productivity in O2 is maximized.  
We introduced a continuous reactor in C3 and C5 in the above. Chemostats have been 
preferred less than batch reactors in practice. One of the primary reasons for this is the 
genetic instability of fermenting organisms as continuous operation will impose strong 
selective pressure of fast growing cells instead of efficient ethanol producers. This will pose 
a serious problem for recombinant yeast strains, but may not for the wild-type. Thus, we 
consider C3 and C5 also as practically meaningful configurations. 
In Table 4.2, an overall comparison is made for C1 to C5 at three different sugar 
concentrations with respect to the actual productivity and its relative change (in comparison 
to C1), respectively. From the comparison of the C2-C3 group and the C4-C5 group, it is 
clear that the effect of optimizing the feed rate is most significant at high sugar 
concentration,  and appreciable at  medium, but least at  low. Strangely,  at 
[GLC]/[XYL]=20/10, the productivities of C4 and C5 with optimal feeding policies  
are lower than those of C2 and C3, respectively, where all extra sugars are dumped into  
reactors at their start-up without optimization. This is because the initial feeding of  
C2 and C3 is closer to the “true” optimal than the feed profiles of C4 and C5 obtained  
from direct methods involving control profile discretization (Song et al., 2011). Other than  
this exception, C5 exhibits the highest productivity among all other configurations. In  
 

 Productivity (increase or decrease in comparison to C1) 

 [GLC]/[XYL]=20/10 70/35 120/60 

C1 0.43 1.04 1.30 

C2 0.51 (19%) 1.06 (2%) 1.22 (-6%) 

C3 0.66 (52%) 1.29 (23%) 1.40 (8%) 

C4 0.51 (18%) 1.13 (9%) 1.41 (9%) 

C5 0.64 (48%) 1.34 (29%) 1.60 (23%) 

Table 4.2. Total bioethanol productivities of C1 to C5 and relative increase (or decrease) of 
productivities of C2 to C4 in comparison to C1. The total conversion of mixed sugars in all 
configurations is fixed to 0.95. Redrawn from Song et al. (2011). 
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comparison to C1, C5 achieves a substantial increase of the bioethanol productivity, i.e., by 
48, 29 and 23 % when [GLC]/[XYL] = 20/10, 70/35, and 120/60, respectively. [GLC]/[XYL] 
denotes the mass concentration ratio of glucose and xylose.  

5. Conclusion 

Various possibilities of increasing the productivity of lignocellosic bioethanol at the 
fermentation step have been discussed, including metabolic pathway modification of 
fermenting organisms, optimization of reactor operating conditions, and synergistic 
combination of different types of reactors. Mathematical models play a key role in 
establishing rational strategies at such diverse levels. The success of the proposed methods, 
of course, depends on the reliability of the employed mode. We have demonstrated that the 
cybernetic models are uniquely effective for the in silico analysis of fermentation systems in 
view of their capacity to address productivity.  
In regard to strain modification, it is emphasized that increasing the productivity rather 
than the yield is a more suitable goal as the former is directly related to economic 
competiveness. Note that emphasis on productivity is not at undue expense of yield since 
any pronounced drop on yield would also lead to a drop in productivity. On the other hand, 
sole stress on yield at the expense of productivity (due to a possible drop in growth rate) is 
not conducive to economics. Therefore, in the course of metabolic engineering undergoing 
several rounds of analysis and synthesis of strains, the productivity issue must be 
considered from the very outset. While the HCM framework based on a reduced subset of 
EMs can be useful in developing basic guidelines for flux redistribution of fermenting 
organisms, reasonable interpretation should be made under the possible loss of modes with 
significance for strain improvement. For metabolic engineering application, more 
sophisticated frameworks such as Lumped HCM (L-HCM) (Song & Ramkrishna, 2010; 2011) 
or Young’s model (Young et al., 2008) represent promising methodologies in the future.  
It is also shown that the productivity of lignocellulosic bioethanol can significantly be 
enhanced by synergistic combination of continuous and fed-batch reactors and optimizing 
their operating conditions. While experimental verification should follow, our model-based 
study provides solid proof-of-concept support for the success of the proposed methods. 
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