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1. Introduction 

Patients with diabetes mellitus (DM) exhibit greatly increased cardiovascular morbidity and 

mortality. The increased mortality of patients with DM stems from the more frequent 

development of heart failure (HF) (Bell, 2003a; Jaffe et al., 1984; Kamalesh, 2007; Marwick, 

2006; Solomon et al., 2002). In the past, the high incidence and poor prognosis of HF in 

diabetic patients was attributed to the concurrent presence of hypertension and/or 

myocardial ischemia. However, follow-up studies have shown that the increased risk for 

developing HF persists in DM patients even after adjusting for concomitant risks such as 

coronary artery disease and blood pressure (Ho et al., 1993; Kannel & McGee, 1979). It is 

now well established that DM increases the risk of cardiovascular morbidity and mortality 

by promoting cardiomyopathy, a distinct entity independent of coronary artery disease, 

hypertension or other known cardiac risk factors with origins in diabetic cardiac muscle 

(Bell, 1995; Cohen, 1995; Hamby et al., 1974; Regan et al., 1977; Spector, 1998).  

According to a new study commissioned by the Centers for Disease Control and Prevention, 

25.8 million children and adults in the United States, or 8.3% of the population, have DM, 

with about 1.9 million new cases of DM being diagnosed annually (Centers for Disease 

Control and Prevention, 2011). Worldwide, the number of people with DM has more than 

doubled since 1980 to 347 million (Danaei et al., 2011). With the global burden of DM rising, 

it is likely that the incidence of diabetes-induced cardiomyopathy and subsequent HF will 

continue to increase in this high-risk population. The goal of this chapter is to review the 

structural and functional changes in the diabetic heart and the pathophysiological 

mechanisms involved in the development of diabetic cardiomyopathy, taking into account 

the most recent developments in basic and clinical research. An overview of the latest 

advances in therapeutic approaches to treat diabetic cardiomyopathy will also be presented. 

Particular attention is given to the role of oxidative stress in the pathogenesis of diabetic 

cardiomyopathy and the potential of anti-oxidative therapy. The value of newly identified 

candidate biomarker proteins in assessing disease presence and progression, prognosis, and 

efficacy of therapies in the setting of diabetic cardiomyopathy will also be discussed.  
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2. Cardiomyopathy in diabetes 

Sustained DM leads to a deterioration of heart function that is independent of any of the 

known concomitant risk factors and pathologies that are frequently seen in DM patients 

such as dyslipidemia, coronary artery disease, thrombosis, myocardial infarction (MI), and 

hypertension. The clinical presentation of cardiac dysfunction in DM patients without 

evidence of any of these other risk factors was first reported by Rubler et al. in 1972 (Rubler 

et al., 1972) based on postmortem findings of HF in diabetic patients free of coronary 

disease. These and similar findings have been reported in numerous other clinical studies 

(Bell, 2003a; Boyer et al., 2004; Devereux et al., 2000; Fang et al., 2003, 2005; Galderisi et al., 

1991; Hamby et al., 1974; Kannel et al., 1974; Regan et al., 1977; Zabalgoitia et al., 2001) and 

animal models (Borges et al., 2006; Hamblin et al., 2007a; Kaul et al., 1995, 1996; Kralik et al., 

2005; Loganathan et al., 2006; Mihm et al., 2001; Shen et al., 2005, 2006). This has led to the 

increased recognition that DM produces damage to cardiac muscle without depending on 

the co-existence of other cardiovascular risk factors. This unique form of heart disease in the 

absence of clinically detectable atherosclerosis and/or coronary artery disease has been 

termed “diabetic cardiomyopathy”. This diabetes-related cardiomyopathy affects the 

myocardium secondary to DM and is accompanied by a prolonged decline in cardiac 

function. This unique cardiac phenomenon has been documented to progress to HF in both 

type 1 and type 2 DM patients.  

2.1 Contemporary clinical epidemiology of diabetic cardiomyopathy 
Older cardiovascular epidemiological studies showed that 30% of diabetic subjects without 

overt cardiac disease had LV dysfunction (Beljic & Miric, 1994; Di Bonito et al., 1996; 

Nicolino et al., 1995). However, this prevalence was based on standard echocardiography 

testing which frequently was not able to detect mild and early diastolic dysfunction (Bell, 

2003b). Contemporary assessments of the epidemiology of diabetic cardiomyopathy using 

more rigorous Doppler methods demonstrate that the prevalence of diabetic 

cardiomyopathy is much higher than was previously believed, and in addition, emphasize 

the ominous impact of DM on myocardial function by highlighting the high prevalence of 

pre-clinical diabetic cardiomyopathy in the diabetic population and its strong association 

with an adverse prognosis (Kiencke et al., 2010; Van Den Hurk et al., 2010). In an 

ambulatory clinic-based sample of middle-aged, overweight-to-obese individuals with 

prevalent DM for an average duration of over 10 years, diabetic cardiomyopathy was 

present in 48% of patients as assessed by Doppler echocardiography (Kiencke et al., 2010). 

Of note, diastolic function was abnormal in 38% of the DM patients studied (Kiencke et al., 

2010). The use of flow and tissue Doppler techniques suggests an even higher prevalence of 

diastolic dysfunction (as high as 40% to 60%) in individuals with type 1 and type 2 DM 

without discernable coronary heart disease (Boudina & Abel, 2007; Di Bonito et al., 2005; 

Poirier et al., 2001; Shivalkar et al., 2006). The high incidence of such diastolic dysfunction 

and its association with HF and with mortality (From et al., 2010) underscore the existence 

of diabetic cardiomyopathy as a very serious clinical condition.  

2.2 Diagnostic indices  
Cardiomyopathy in type 1 or type 2 DM is associated with a cluster of common cardiac 
abnormalities (Table 1). The most frequent and earliest detectable functional abnormality in 
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diabetic cardiomyopathy is impaired diastolic function (Fang et al., 2003, 2005; Karamitsos 
et al., 2007), owing to reduced elasticity of the diabetic myocardium as a result of interstitial 
collagen deposition. The reduced diastolic function early in the time course of DM is 
followed by late decreases in systolic performance (Devereux et al., 2000; Fang et al, 2003; 
Mildenberger et al., 1984; Raev, 1994; Von Bibra et al., 2005). Diabetic cardiomyopathy in 
humans is also manifested by left ventricular hypertrophy (LVH) (Devereux et al., 2000; 
Kannel et al., 1974; Ozasa et al., 2008). Although no single diagnostic test for diabetic 
cardiomyopathy exists, the use of different imaging modalities (echocardiography, cardiac 
MRI) makes it possible to detect the phenotypic features of this condition (Asghar et al., 
2009). Echocardiography is the diagnostic method that can achieve early detection of 
diabetic cardiomyopathy since it can detect structural myocardial changes (LVH and 
increased cardiac mass) in addition to evaluation of diastolic and systolic heart dysfunction 
(Mytas et al., 2009). As a result, echocardiography based methods currently stand as the 
preferred diagnostic approach for diabetic cardiomyopathy in clinical practice (Maya & 
Villarreal, 2010).  
 

Abnormality Manifestation (Stage of Disease) 

Diastolic Dysfunction Early 
Systolic Dysfunction Late 

Left Ventricular Hypertrophy Late 
Myocardial Fibrosis Late 

Table 1. Diagnosis of Diabetic Cardiomyopathy 

Although brain natriuretic peptide (BNP), a hormone secreted by the ventricles of the heart 
in response to ventricular volume and pressure overload, is both sensitive and specific for 
HF, research has shown that BNP is of limited diagnostic utility for diagnosing diabetic 
cardiomyopathy (Fang et al., 2005; Valle et al., 2006). This is due in part to the fact that BNP 
cannot reliably distinguish between systolic and diastolic HF, which limits its use in diabetic 
cardiomyopathy (Asghar et al., 2009; Fang et al., 2005; Maisel et al., 2003). Furthermore, the 
triggers for BNP secretion (increased intraventricular volume and pressure) does not occur 
in patients with subclinical, asymptomatic diabetic cardiomyopathy (Mytas et al., 2009; 
Stevanovic et al., 2006). In light of these findings, it is recommended that BNP not be used in 
isolation to diagnose or exclude diabetic cardiomyopathy (Fang et al., 2005; Kamalesh, 2007).  

3. Cardiac changes 

3.1 Structural remodeling 
3.1.1 LVH 
Data from the Framingham Heart Study (Kannel et al., 1974) as well as the Strong Heart 
Study (Devereux et al., 2000) indicated a disproportionate increase in LV mass and wall 
thickness among DM patients as compared to non-DM patients, even after adjusting for 
other cardiac risk factors (Devereux et al., 2000). In a recent multi-ethnic population study, 
the presence of type 2 DM, independent of body size, was associated with a 1.5-fold increase 
in risk of having LV mass >75th percentile of the general population (Eguchi et al., 2008). 
While LVH has consistently been linked to the increased incidence of cardiovascular events 
in a variety of high-risk patient groups, several studies have demonstrated that this 
cardiovascular risk is further enhanced by the presence of DM and thereby portends an 

www.intechopen.com



  
Cardiomyopathies – From Basic Research to Clinical Management 

 

490 

especially poor prognosis (Boner et al., 2005; Struthers & Morris, 2002; Valensi et al., 1997). 
Emerging evidence has implicated the diabetic milieu of hyperinsulinemia, insulin 
resistance, hyperglycemia, and increased non-esterified fatty acids in the pathophysiology 
of LVH in DM patients. In addition, higher circulating levels of the hormone leptin have 
been linked to the development of LVH in obese diabetic humans. Disruption of 
downstream leptin signaling leading to leptin excess and resistance has been implicated as a 
novel pathophysiological mechanism by which leptin contributes to adverse remodeling. 
The consistency of results demonstrate a clear impact of DM per se on increased LV mass 
that encompasses the development of diabetes-related LVH.  

3.1.2 Increased connective tissue collagen deposition and fibrosis  
Diabetic cardiomyopathy has been documented to be characterized by myocardial fibrosis. 

A significant increase in collagen deposition has frequently been observed in heart biopsy 

samples from DM patients without significant coronary artery disease (Regan et al., 1977; 

Shimizu et al., 1993; Van Heerebeek et al., 2008). Similar to humans, increased cardiac 

collagen deposition has also been observed in animal models of DM (Bhimji et al., 1986; 

Spiro & Crowley, 1993). In addition, an increase in the formation of advanced glycation end 

products (AGEs) has also been reported to occur in the myocardium of DM patients (Van 

Heerebeek et al., 2008) which cross-link with collagen and increase its tensile strength. The 

excess deposition of collagen as well as AGE cross-linking of collagen induced by DM has 

been shown to augment LV stiffness of the failing diabetic heart in the absence of coronary 

artery disease (Van Heerebeek et al., 2008). Because excessive LV stiffness of the diabetic 

heart is an important contributor to worsening HF in patients with DM, increased 

myocardial collagen and AGEs are thought to be important therapeutic targets for 

modulating the development of diabetic cardiomyopathy and subsequent HF.  

3.2 Functional alterations 
3.2.1 Diastolic dysfunction 
LV diastolic dysfunction has been reported to be the earliest detectable functional defect in 
diabetic cardiomyopathy (Fang et al., 2003, 2005; Karamitsos et al., 2007; Valle et al., 2006) 
and is characterized by increased LV end-diastolic pressure and a decreased LV end-
diastolic volume (Hamblin et al, 2007a; Regan et al., 1977). The higher filling pressures are a 
result of reduced diastolic ventricular compliance which thereby alters diastolic filling and 
HF ensues. Diastolic dysfunction is a common functional abnormality in diabetic 
cardiomyopathy that has been related to myocardial fibrosis occurring in response to 
hyperglycemia. The early reductions in diastolic performance have been found to be 
followed by progressive reductions in systolic function during the later stages of diabetic 
cardiomyopathy. Therefore, diastolic dysfunction may not necessarily exist in isolation in 
the setting of diabetic cardiomyopathy.  

3.2.2 Systolic dysfunction 
In both human and animal models of type 1 and type 2 DM, systolic functional disorders 
have been shown to be associated with a reduction in ejection fraction (EF), fractional 
shortening (FS), and cardiac output (CO) (Mihm et al., 2001; Mildenberger et al., 1984; Mytas 
et al., 2009 ). In vivo animal studies using invasive catheterization have revealed load-
dependent and -independent indices of systolic dysfunction in diabetic hearts (Hamblin et 
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al., 2007a; Van Den Bergh et al., 2006). Comparative investigation of cardiac dysfunction in 
rodent models of type 1 and type 2 DM suggest that systolic dysfunction may be more 
pronounced in type 1 diabetic cardiomyopathy (Radovits et al., 2009).  

4. Mechanisms of diabetes-induced cardiomyopathy 

4.1 Derangements in cardiac energy metabolism 
The primary metabolic defect observed in diabetic hearts is an exaggerated reliance on fatty 
acid metabolism due to reduced insulin production or insulin resistance. As a result, cardiac 
glucose uptake and utilization declines while free fatty acid use and oxidation by the 
diabetic heart increases. The augmented fatty acid metabolism of the diabetic heart leads to 
intracellular lipid accumulation, energy deprivation and ultimately cardiomyopathy (An & 
Rodrigues, 2006). Accumulation of lipids can result in increased non-oxidative production of 
toxic lipid products that precipitate cell death and decrease myocardial contractile 
dysfunction, thereby inducing myocardial lipotoxicity. In addition, the metabolic switch to 
increased usage of free fatty acids impairs cardiac energy efficiency in the diabetic heart due 
partly to the fact that glucose utilization is about 10% more efficient at generating ATP per 
O2 consumed (2.58 vs. 2.33 ATP/ oxygen atom) (Wang et al., 2006a).  
We and others have shown that type 1 DM alters the protein composition of cardiac 

mitochondria to accommodate the increased oxidation of fatty acids (Hamblin et al., 2007a; 

Shen et al., 2004). In-depth mining of the type 1 diabetic myocardial proteome by proteomic 

analysis revealed that half of the altered proteins were localized to the mitochondria 

(Hamblin et al., 2007a; Shen et al., 2004). Most of the cardiac protein changes were due to 

increased content of enzymes required for fatty acid metabolism and oxidation (e.g. acyl 

coenzyme A thioester hydrolase, acyl CoA dehydrogenase) (Hamblin et al., 2007a; Shen et 

al., 2004). These findings identify a specific ‘type 1 diabetic’ pattern of cardiac proteome 

changes indicative of diabetic cardiomyopathy and its attendant altered metabolic 

phenotype of enhanced fatty acid utilization.  

4.2 Advanced Glycation End products (AGEs) 
AGEs are a heterogeneous group of molecules formed from the non-enzymatic reaction of 

reducing sugars with free amino groups of proteins, lipids, and nucleic acids (Peppa et al., 

2003). The formation of these sugar-derived substances is markedly accelerated in DM because 

of the increased availability of glucose (Peppa et al., 2003). A common consequence of their 

formation is covalent cross-link formation with proteins such as collagen which decrease the 

compliance of the extracellular matrix (ECM) (Brownlee, 2000; Singh et al., 2001). In the 

myocardium, this may lead to ventricular stiffness (Bell, 1995; Spiro & Crowley, 1993) with 

resultant impaired diastolic function. Increased activation of the diacylglycerol (DAG)-protein 

kinase C (PKC) signal transduction pathway has been shown in hearts of streptozotocin (STZ)-

diabetic animals (Inoguchi et al., 1992) and activation of this pathway has been documented as a 

mechanism linking AGEs to diabetic complications (Mamputu & Renier, 2002; Way et al., 2001).  

AGEs are not only directly damaging through covalent modification of proteins but they 

also contribute to the increased production of reactive oxygen species (ROS) by binding to 

the receptor for advanced glycation end products, RAGE (Wang et al., 2006a). The resulting 

RAGE activation by AGEs has been shown to lead to an increased generation of intracellular 

ROS (Brownlee, 2001).  
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4.3 Renin-Angiotensin-Aldosterone System (RAAS) 
It is well recognized that DM is characterized by enhanced up-regulation of the local and 
systemic RAAS. Although the basis for dysfunction of the RAAS system in the setting of DM 
remains incompletely understood, its activation during DM has been demonstrated to be 
associated with increased oxidative damage which in turn activates the death pathways 
implicated in myocardial cell apoptosis and necrosis (Frustaci et al., 2000; Privratsky et al., 
2003). These myocyte and non-myocyte alterations in diabetic hearts resulting from 
increased activation of RAAS induces impairment of ventricular function. The benefits of 
RAAS blockade in preventing and reversing diabetic cardiomyopathy in DM patients 
(Asghar et al., 2009) underscore the importance of dysregulated RAAS in the pathogenesis 
of diabetic cardiomyopathy.  

4.4 Mitochondrial dysfunction 
Abnormalities in myocardial mitochondrial function have been reported in human as well 

as animal models of DM. Morphological study of diabetic cardiomyopathy in OVE26 mice, a 

chronic model of type 1 DM, revealed a significant increase in mitochondrial area and 

number as well as focal regions with severe damage to mitochondria (Shen et al., 2004). 

Mitochondria isolated from these OVE26 diabetic hearts exhibited a reduced respiratory 

control ratio due to lower state 3 respiration (Shen et al., 2004), indicating impaired 

mitochondrial function. Similar observations have also been reported in STZ and other 

animal models of DM (Kuo et al., 1983; Pierce & Dhalla, 1985; Tomita et al., 1996). 

Impairment in mitochondrial respiratory capacity has also been shown to occur in diabetic 

human hearts. The most comprehensive and direct evidence to date for the presence of 

myocardial mitochondrial dysfunction in human diabetes comes from a recent study 

examining mitochondrial respiration in the atrium of type 2 diabetic human myocardium 

(Anderson et al., 2009). This study demonstrated decreased mitochondrial respiratory 

capacity with palmitoyl-carnitine and glutamate in atrial tissue of type 2 DM individuals. 

Collectively, these findings provide solid evidence of impairment of mitochondrial function 

in both type 1 and type 2 diabetic hearts which may contribute to or amplify derangements 

in cardiac energetics that have been linked to contractile dysfunction in diabetic 

cardiomyopathy over time.  

4.5 Myocardial fibrosis 
Interstitial and perivascular fibrosis has been described in the myocardia of patients and 
animals with DM. Most of this has been documented to be composed of collagen fibers 
(Shimizu et al., 1993). In that regard, the percentage of type III collagen in the perimysium 
and perivascular region has been reported to be significantly higher in the hearts of patients 
with DM, indicating the occurrence of collagen remodeling (Shimizu et al., 1993). It has been 
suggested that although collagen is a major determinant of ventricular stiffness, alterations 
in collagen phenotype may play an important role in the impaired LV diastolic filling that is 
typical of diabetic cardiomyopathy (Shimizu et al., 1993).  
As indicated earlier in this chapter, it has been demonstrated that collagen is particularly 
susceptible to AGE cross-linking (Susic et al., 2004). The cross-linking of collagen molecules 
to each other not only leads to loss of elasticity but also impairment of collagen degradation, 
leading to further collagen accumulation or fibrosis (Wang et al., 2006a). As a result, the 
cross-linking of collagen molecules due to accelerated AGEs formation in the diabetic heart 
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is thought to be an important mechanism that contributes to the myocardial fibrosis and 
resulting decreased myocardial compliance characteristic of diabetic cardiomyopathy.  

4.6 Myocardial oxidative stress: A key contributor to diabetic cardiomyopathy 
Oxidative stress is defined as an imbalance between the generation of free oxygen radicals 
(FORs) and the antioxidant defense system. In the simplest of terms, a free radical is any 
atom or molecule that has an unpaired electron in their outer orbit making that atom or 
molecule a highly reactive species. Free radical production occurs via the addition of an 
electron or by its removal in a reduction/oxidation reaction. Due to its unique diradical 
configuration, oxygen is a major intracellular source of radical species. A sequential 
univalent reduction of oxygen gives rise to reactive intermediate products (Kaul et al., 
1993; Singal et al., 1988). A single electron reduction of oxygen gives rise to superoxide 
anion (O2-), which can act as both a reducing and an oxidizing agent. The relatively short 
half life of superoxide anion limits its diffusion away from the site of its generation. The 
divalent reduction of oxygen yields the nonradical species, hydrogen peroxide (H2O2). 
H2O2 has a relatively long half life and therefore can travel significant distances, causing 
damage at sites distant from its origin. A three electron reduction of oxygen yields the 
hydroxyl radical (OH-), which is the most reactive and potent of all the FORs. Addition of 
a fourth electron results in the formation of water.  
FORs are neutralized by various cellular defense mechanisms consisting of enzymatic 

[(superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSHPx)] and 

non-enzymatic (vitamin E, ┚-carotene, vitamin C) antioxidants (Palace et al., 1999). 

However, during pathological conditions, the delicate balance between FOR production and 

the protective antioxidant defense system may shift in favor of a relative increase in free-

radical production and resultant FOR-induced tissue injury via lipid peroxidation of 

polyunsaturated fatty acids located in the cell membrane. Hyperglycemia can elevate levels 

of FORs by increasing mitochondrial superoxide anion production or by the process of 

glucose auto-oxidation (Eriksson & Borg, 1993; Nishikawa et al., 2000).  

Early experimental evidence implicating myocardial oxidative stress in diabetic 

cardiomyopathy was mainly derived from reports evaluating the rate of lipid peroxidation. 

Increased cardiac levels of thiobarbituric acid reactive substances (TBARS) and lipid 

peroxides were observed in rats with STZ-induced diabetic cardiomyopathy (Jain & Levine, 

1995; Kaul et al., 1996; Nishio et al., 1998). More recently, F2-isoprostanes (F2-IsoPs), a novel 

class of prostaglandin F2-like compounds formed in vivo by non-enzymatic free radical-

catalyzed peroxidation of arachidonic acid (Montuschi et al., 2004; Morrow et al., 1990), have 

emerged as one of the most reliable approaches to assess oxidative stress status in vivo 

(Montuschi et al., 2004). Of these, 8-iso-prostaglandin F2┙ (8-iso PGF2┙) has recently been 

shown to be a specific and sensitive quantitative index of oxidative stress in vivo (Delanty et 

al., 1997). We and others have found that in STZ rats with type 1 diabetic cardiomyopathy, 

LV levels of 8-iso PGF2┙ were significantly increased in vivo (Hamblin et al. 2007a, 2007b; Xia 

et al., 2007). Collectively, these experimental animal studies demonstrate that diabetic 

cardiomyopathy is associated with greater myocardial oxidative stress burden. 

Intermediates in the pathway of formation of IsoPs are endoperoxides, which are reduced to 
form F2-IsoPs but also undergo rearrangement to form isomeric ketoaldehydes termed 
isoketals (IsoKs) (Roberts et al., 1999). IsoKs are remarkably reactive compounds that adduct 
almost instantaneously and irreversibly with lysine (Lys) residues on proteins and cross-link 
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proteins (Iyer et al., 1989; Jirousek et al., 1990; Salomon et al., 1987) and as such, would be 
expected to profoundly alter protein function. Because myocardial ischemia can induce 
oxidative stress and the high incidence and poor prognosis of post-MI HF in DM patients 
has been linked in part to the presence of an underlying diabetic cardiomyopathy, we have 
recently performed a preliminary study in which we measured the levels of IsoK-lysyl-
lactam adducts in STZ-diabetic post-MI rat hearts at 4 weeks after induction of MI using 
liquid chromatography electrospray tandem mass spectrometry (LC/MS) methods (Fukuda 
et al., 2005). Levels of IsoK-lysyl-lactam adduct were increased strikingly in the viable LV 
myocardium of diabetic infarcted rats compared with the same LV region in non-diabetic 
infarcted hearts (Fig. 1). These results clearly demonstrate that IsoK adducts are selectively 
increased in diabetic post-MI hearts. Protection of diabetic hearts from the downstream 
effects of these novel products formed via the IsoP pathway of free radical-mediated lipid 
peroxidation deserves evaluation as a new therapeutic approach for the prevention and 
treatment of oxidative-dependent cardiac complications of DM, including cardiomyopathy.  
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Is
o
k
e
ta

l-
ly

s
y
l-
la

c
ta

m
 a

d
d
u
c
ts

 (
n
g
/g

)

CONT VEH
     (n= 5)

MI DM + MI

(n= 5) (n= 4)

*

 

Fig. 1. Myocardial isoketal–lysyl-lactam adducts increase in DM + MI. 

Myocardial isoketal–lysyl-lactam adducts in control vehicle (CONT VEH), MI, and DM + MI 
rats at 4 weeks post-MI. The levels of isoketal–lysyl-lactam adducts were measured in the 
surviving myocardium remote from the site of infarction. *Significantly different (P<0.05) 
from CONT VEH and MI groups. 
Increased FOR production has also been shown to be involved in triggering cardiomyocyte 
apoptosis associated with diabetic cardiomyopathy (Cai et al., 2002). In addition, recent 
investigations have suggested that DM induces an inflammatory response by oxidative 
mechanisms, which may contribute to the development of diabetic cardiomyopathy (Garcia-
Bailo et al., 2011). These synergistic impacts of myocardial oxidative stress in the presence of 
DM suggest that it is a major player in the pathogenesis of diabetic cardiomyopathy.  
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5. Candidate cardiac-specific biologic markers of diabetic cardiomyopathy  

Proteomics (the concept of characterizing global alterations in protein expression of cells, 
tissues, and organs in health and disease) has become a powerful tool in the search for 
clinically useful biomarkers of disease and treatment response. Since the sum of the 
temporal alterations in proteins ultimately promotes or reflects the particular disease state, 
proteins represent an array of potential disease-specific markers and drug targets 
(Chaurand et al., 2004). Until recently, information concerning alterations that occur in the 
diabetic myocardial proteome and in the cardiac proteome of hearts with diabetic 
cardiomyopathy was lacking because proteomics had not been used to examine global 
cardiac protein changes that occur in diabetic cardiac complications. In an effort to bridge 
this gap, we recently performed proteomic analysis of diabetic cardiomyopathy utilizing 
two-dimensional difference gel electrophoresis and mass spectrometry (DIGE/MS) 
techniques (Hamblin et al., 2007a). Employing this technology, we established a specific 
‘type 1 diabetic’ pattern of cardiac proteome changes indicative of diabetic cardiomyopathy 
(Hamblin et al., 2007a). We found that a high proportion (50%) of the altered proteins that 
could be identified by MS were localized to the mitochondria, many of which were up-
regulated and involved in fatty acid metabolism. Specifically, protein expression levels for 
acyl coenzyme A thioester hydrolase and acyl CoA dehydrogenase, both of which are 
involved in fatty acid oxidation (J.J. Kim & Battaile, 2002), were found to be elevated 2-to 
2.5-fold in the LV myocardium of rats with STZ-induced diabetic cardiomyopathy (Hamblin 
et al., 2007a). Our finding by proteomic analysis that these fatty acid utilization proteins are 
significantly more abundant in type 1 diabetic cardiomyopathy has been confirmed in 
proteomics-based studies of diabetic cardiomyopathy in OVE26 mice (Shen et al., 2004). 
Taken together, these consistent proteomic results show that elevated cardiac fatty acid 
utilization proteins are associated with diabetic cardiomyopathy and, hence, could serve as 
candidate markers and indicators of diabetic cardiomyopathy. As such, these results 
represent a starting point for the identification and development of a panel of cardiac 
biomarkers able to delineate diabetic cardiomyopathy. Continued proteomics-based studies 
of diabetic cardiomyopathy are essential to rapidly expand the range of biomarkers that is 
required for the emergence of new and successful protein diagnostics of diabetic 
cardiomyopathy.  

6. Therapeutic strategies for the treatment of diabetic cardiomyopathy 

6.1 Glycemic control  
Until recently, clinical trials examining the effectiveness of good glycemic control in 

reducing cardiovascular events in diabetics has produced mixed results. The publication 

of 2 randomized intervention trials, Action in Diabetes and Vascular Disease: Preterax and 

Diamicron Modified Release Controlled Evaluation (ADVANCE) trial and the Action to 

Control Cardiovascular Risk in Diabetes Study Group (ACCORD) trial, showed that 

lowering of blood glucose in type 2 diabetics to near-normal levels did not significantly 

reduce cardiovascular events and actually increased mortality (Gerstein et al., 2008; Patel 

et al., 2008). However, these results were obtained from middle-aged and older patients 

with a long duration of DM and a high risk of cardiovascular disease. A recent 

epidemiologic analysis of the cardiovascular effect of glucose lowering in patients with 

type 2 DM revealed that patients with high levels of co-morbidity may receive diminished 
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cardiovascular benefit from intensive blood glucose control (Greenfield et al., 2009). 

Furthermore, the ACCORD trial was not designed to test whether patients with HbA1c 

levels below 7.5% receive greater benefit from intensive glucose lowering (Gerstein et al., 

2008). Examination of the hazard ratios for the primary outcome and death from any 

cause in relation to glycated hemoglobin levels at baseline in the ACCORD trial showed a 

fewer number of events in type 2 DM patients with HbA1c levels at baseline < 8%, 

suggesting a better response to therapy than patients with higher HbA1c levels. This 

hypothesis is supported by a recent epidemiologic analysis of the cardiovascular effect of 

glucose lowering in type 2 DM patients whereby HbA1c levels of 7.0% or less at baseline 

was associated with a lower 5-year incidence of cardiovascular events (Greenfield et al., 

2009).  

A series of recent reports have also established that improved glycemic control reduces 

the subsequent risk of any cardiovascular disease event in type 1 DM. The most 

convincing clinical evidence in support of this paradigm stems from the Diabetes Control 

and Complications Trial (DCCT) in which the DCCT randomly assigned 1441 patients 

with type 1 DM to receive either intensive diabetes therapy (three or more daily injections 

of insulin or insulin treatment with an external pump) or conventional diabetes therapy 

(one or two daily injections of insulin) for a mean of 6.5 years (DCCT, 1993). After treating 

them for a mean of 6.5 years, mean HbA1c was 7.2% in the intensive therapy arm and 9.0% 

in the conventional treatment arm. Although a reduction in the risk for macrovascular 

events was observed in the intensive diabetes therapy arm, it did not achieve statistical 

significance (DCCT, 1993). After completion of this component of the DCCT, ninety-three 

percent of the 1441 patients were continued to be followed up as part of an ongoing 

observational study (Epidemiology of Diabetes Interventions and Complications [EDIC] 

study). After a mean follow-up of 17 years, intensive diabetes therapy, as compared to 

conventional therapy, reduced the risk of a cardiovascular event by 42% (Nathan et al., 

2005). These beneficial effects were observed despite non-significant differences in mean 

HbA1c concentrations between the previous intensive and conventional therapy groups at 

year 11 of the EDIC study, indicating intensive diabetes therapy has long-term, sustained 

beneficial effects on the risk of cardiovascular disease in patients with type 1 DM (Nathan 

et al., 2005).  

The recent publication of an observational study involving type 1 DM patients has 

demonstrated the benefits of optimum glycemic control in reducing specifically the risk of 

HF in type 1 DM (Lind et al., 2011). The positive association between glycated hemoglobin 

and risk of HF in fairly young patients with type 1 DM together with the finding that tight 

control of glycemia in type 1 diabetes can prevent HF besides other aspects of 

cardiovascular disease (Lind et al., 2011) indicates a potential for prevention of HF with 

improved glycemic control. Given that patients with poorly controlled type 1 DM, as in 

those included in this recent observational study, have a high probability of diabetic 

cardiomyopathy, these results suggest that intensive glucose control be initiated as early as 

possible in people with type 1 DM to reduce the risk of cardiovascular complications, 

including cardiomyopathy and HF. In that regard, evidence that diabetic cardiomyopathy 

does not develop in patients with tightly controlled type 1 DM (Konduracka et al., 2007) 

supports the use of anti-hyperglycemic agents as part of the treatment regime for diabetic 

cardiomyopathy.  
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6.1.1 Sulfonylureas 
Sulfonylureas are agents that act to increase insulin release from the beta cells in the 
pancreas and thus are almost exclusively used in the management of type 2 DM. Clinical 
studies examining the use of sulfonylureas in diabetic HF are rather limited but have 
produced conflicting results due in large part to the fact that the subjects included in these 
studies either had pre-existing cardiovascular disease or were at high risk of cardiovascular 

events (Simpson et al., 2006). In animal models of STZ-induced diabetic cardiomyopathy 
that are devoid of cardiovascular co-morbidities, chronic treatment with glyburide, the most 
widely used sulfonylurea, ameliorated the decline in myocardial function associated with 
diabetic cardiomyopathy (Mozaffari et al., 1989). Clearly, further studies are needed to 
determine the benefits of these drugs in patients with DM and HF. 

6.1.2 Metformin 
Metformin is a member of the insulin-sensitizing drugs that was previously contraindicated 
in patients with HF due to concerns over lactic acidosis. Although its use is still strongly 
cautioned, recent evidence from three cohort studies in which metformin therapy was 
compared with other anti-hyperglycemic agents demonstrated that metformin treatment 
was associated with a lower risk of all-cause mortality and all-cause hospital admissions 
(Eurich et al., 2007). In addition, metformin therapy has been reported to improve outcomes 
in older patients with DM and HF (Masoudi et al., 2005). Metformin has also been 
demonstrated to have favorable actions on the development of diabetic cardiomyopathy in 
Zucker diabetic rats (ZDF) (Forcheron et al., 2009).  

6.1.3 Thiazolidinediones (TZDs) 
The TZDs [PPAR┛ (peroxisome–proliferator–activated receptor ┛) receptor agonists] are 
primarily insulin-sensitizing agents that have been shown to exert beneficial effects on the 
myocardium. However, due to their propensity for fluid retention, their use is limited to 
patients in New York Heart Association (NYHA) functional class I-II HF. The PROspective 
pioglitAzone Clinical Trial In macroVascular Events (PROactive) is currently the only 
completed cardiovascular (CV) outcomes study with a thiazolidinedione and remains the 
only large-scale, prospective, secondary prevention trial carried out entirely in patients with 
type 2 DM (Betteridge et al., 2008). The results from this study demonstrated that the TZD 
pioglitazone does not increase the risk of macrovascular events or worsen outcomes in those 
who develop signs of heart failure in a high-risk population with type 2 DM with 
macrovascular disease (Betteridge et al., 2008). Even when the increased incidence of signs 
of HF (with a normal ejection fraction) was taken into account, the overall CV benefit of 
pioglitazone remained (Betteridge et al., 2008). These results suggest that from a safety 
perspective, the favorable cardiovascular effects of pioglitazone treatment outweigh any 
inherent risks (Betteridge et al., 2008). 

6.1.4 Incretins: A new line of therapy 
Incretins are hormones produced by the gastrointestinal tract in response to nutrient entry 
that act to regulate postprandial glucose homeostasis. Among several incretin hormones, 
glucagon-like peptide-1 (GLP-1) stimulates insulin secretion in a glucose dependent 
fashion. As a result, an important safety advantage of incretin-based therapy is the 
abolishment of risk for hypoglycemia. Currently, there are two types of incretin-based 
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drugs that have been developed to improve the effects of glucagon-like peptide-1 (GLP-1): 
incretin mimetics such as GLP-1 receptor agonists and the dipeptidyl peptidase-4 (DPP-4) 
inhibitors, which potentiate the incretin hormones by inhibiting the enzyme responsible for 
their degradation.  
The GLP-1 receptor agonists mimic the actions of endogenous GLP-1 and are currently 
marketed as exenatide and liraglutide. Clinical trials of GLP-1 analogues have 
demonstrated improved LV function in patients with LV dysfunction after acute MI 
(Nikolaidis et al., 2004) and in patients with chronic advanced HF (Sokos et al., 2006). In 
an observational study involving patients with DM and HF, administration of GLP-1 over 
a period of three days improved the glycemic state and caused a trend towards 
improvement of parameters expressing LV function in DM patients with stable HF 
(Thrainsdottir et al., 2004). The beneficial actions on cardiac function reported so far with 
GLP-1 analogues provide a rationale for their use in DM patients with cardiomyopathy 
(Jax, 2009).  
The DPP-4 inhibitors are newer drugs and currently marketed products include sitagliptin, 
saxagliptin, and vildagliptin. Cardiovascular outcomes as well as safety trials using this 
class of incretin-based drugs in patients with DM is underway to determine their efficacy 
and safety.  

6.2 RAAS blockade 
6.2.1 Renin inhibitors 
The discovery that the binding of prorenin or renin to the prorenin/renin or (pro)renin 

receptor results in the augmented formation of angiotensin I has led to the development of 

direct renin inhibitors. Cardiac (pro)renin receptor expression has recently been 

documented to be increased in experimental diabetic cardiomyopathy (Connelly et al., 

2011). Blockade of RAAS via administration of the direct renin inhibitor, aliskiren (10 mg/kg 

per day for 6 weeks duration), reduced cardiac over-expression of both (pro)renin mRNA 

and protein in diabetic TGR (mRen2)-27 rats, a transgenic rodent model that following the 

induction of STZ-diabetes develops diabetic cardiomyopathy (Connelly et al., 2011). Just as 

importantly, the reduced cardiac pro(renin) receptor expression with aliskiren treatment 

was associated with improved cardiac structure/function (Connelly et al., 2011). Given 

these exciting findings, direct renin inhibitors, particularly aliskiren, are ripe for further 

evaluation as novel therapeutics to modulate/prevent diabetic cardiomyopathy. 

6.2.2 Angiotensin Converting Enzyme (ACE) inhibitors 
Treatment with ACE inhibitors has been shown to exert an ameliorative effect on diabetic 

cardiomyopathy in both diabetic animals and diabetic patients. Administration of ramipril 

(2.5 mg/day) for 3 months to asymptomatic type 2 DM patients with echocardiographic 

indices of early diabetic cardiomyopathy improved echocardiographic indices of LV 

diastolic function in these patients (Symeonides et al., 2007). The reversal of indices of 

diabetic cardiomyopathy in these type 2 DM patients with ramipril was accompanied by a 

reduction of plasma BNP levels (Symeonides et al., 2007). In an experimental rat model of 

diabetic cardiomyopathy, administration of captropril (13 mg/kg) for 8 weeks in rats with 

clear cardiomyopathy improved the myocardial structure and cardiac function (C.H. Zhang 

et al., 2008). Taken together, these results suggest that treatment with ACE inhibitors can 

exert a beneficial effect on the development of diabetic cardiomyopathy.  
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6.2.3 Angiotensin Receptor Blockers (ARBs) 
ARBs have emerged as a promising treatment modality for diabetic cardiomyopathy. 
Damage to the myocardial ultrastructure of rats with diabetic cardiomyopathy has been 
shown to be reduced by the type 1 angiotensin II receptor blocker (AT1RB) valsartan (C.H. 
Zhang et al., 2008). In DM patients with cardiomyopathy as assessed by Doppler 
echocardiography, the administration of the ARB telmisartan resulted in improved 
echocardiographic and biochemical indices of diabetic cardiomyopathy (Symeonides et al., 
2007). Since a majority of patients develop dry cough with ACE inhibitors, the 
cardioprotection afforded by ARBs offer the distinct advantage of having better compliance. 

6.3 β-blockers 
Until recently, patients with DM were less likely to be prescribed ┚-blockers due in part over 

fears of worsening insulin resistance and lipid metabolism. However, the realization of the 

importance of the sympathetic nervous system in the release of vasoactive substances 

(Murarka & Movahed, 2010) and the demonstrated benefit of ┚-blockers in other forms of 

HF has led to ┚-blockers being accepted as a mainstay in the treatment of DM patients with 

HF. The utility of ┚-blockade has also been demonstrated in experimental models of diabetic 

cardiomyopathy. Chronic treatment with the ┚-blocker metoprolol (┚1-selective inverse 

agonist) has been shown to improve cardiac function in STZ-induced diabetic 

cardiomyopathy in rats as evidenced by significant increases in cardiac output (Sharma et 

al., 2008). Treatment with bisoprolol (┚1-selective antagonist) for 3 months reversed 

myocardial hypertrophy and changes in diabetic cardiomyopathy rats (J.N. Zhang et al., 

2003). Clinical trials to evaluate ┚-blocker intervention in patients specifically with diabetic 

cardiomyopathy are lacking and should be conducted to exploit this recent experimental 

data.  

6.4 Antioxidants 
As the pathogenesis of diabetic cardiomyopathy involves oxidative stress, antioxidants have 

received considerable interest as a therapeutic strategy. Several different approaches, such 

as dietary supplementation, administration of pharmacological agents with antioxidant 

properties, and over-expression of antioxidant enzymes to augment antioxidant defense 

mechanisms, have proven to be effective in reversing diabetic cardiomyopathy in animal 

models of both type 1 and type 2 DM.  

Vitamin E, a lipid-soluble and potent antioxidant, has been shown in diabetic rats to evoke 
cardioprotective effects against diabetic cardiomyopathy. We have previously reported that 
dietary supplementation with vitamin E (2000 IU of tocopherol acetate/kg of feed) 
beginning early after the onset of type 1 DM in rats and continuing for a period of 8 weeks 
improved LV function as evidenced by a significant improvement in LVSP, LVEDP, and 
+dP/dt compared with un-supplemented DM rats (Hamblin et al., 2007b). The improved 
LV hemodynamic function of type 1 diabetic cardiomyopathy rats supplemented with 
vitamin E was accompanied by significantly reduced levels of myocardial oxidative stress 
(Hamblin et al., 2007b). Specifically, vitamin E blunted the diabetes-induced amplification of 
myocardial 8-iso PGF2┙ and oxidized glutathione (GSSG) formation (Hamblin et al., 2007b). 
Vitamin E administration has also been documented to be associated with a significant 
decline in apoptosis, lipid peroxidation, protein oxidation, and enhancement of the 
antioxidant defense system, suggesting that this antioxidant may promote a convalescing 
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effect on diabetic cardiomyopathy through the attenuation of oxidative stress and 
abrogation of apoptotic signals (Shirpoor et al., 2009). These findings demonstrate the 
usefulness of vitamin E as a protective anti-oxidative agent against cardiac sequel of DM 
involving cardiomyopathy.  
Resveratrol, the principal effector constituent of red wine, has been shown to improve 
cardiac function in diabetic cardiomyopathy (Huang et al., 2010; Sulaiman et al., 2010). Oral 
administration of resveratrol (2.5 mg/kg body wt/day) to STZ-diabetic rats for 15 days has 
been shown to result in a direct cardioprotective effect on the diabetic myocardium 
(Thirunavukkarasu et al. 2007). Resveratrol treatment of chronic diabetic mice resulted in a 
tremendous improvement of all functional parameters to the extent that cardiac function 
was comparable to age-matched controls (Sulaiman et al., 2010). These data demonstrate 
that resveratrol can prevent diabetes-induced decline in cardiac function and resultant 
cardiomyopathy. Studies have revealed that resveratrol treatment improves cardiac 
dysfunction of diabetic myocardium in part via modulation of oxidative stress proteins 
(Dekkers et al., 2008). The recognition that resveratrol treatment up-regulates the protein 
expression of the antioxidant enzyme catalase in diabetic hearts (Dekkers et al., 2008) is 
further evidence of its ability to increase protection against oxidative stress.  
Tempol is a membrane-permeable SOD mimetic that has been shown to attenuate the effects 

of FORs (Thiemermann et al., 2001). In vivo treatment with the antioxidant tempol (1 

mmol/l in drinking water) for a period of 4-weeks to mice rendered insulin-resistant by 

deficiency of the insulin-sensitive GLUT4 transporter significantly and potently attenuated 

cardiac hypertrophy in concert with tempol up-regulated ventricular expression of 

thioredoxin-2 (confirming an antioxidant action) (Ritchie et al., 2007). Since the pre-diabetic 

insulin-resistant heart exhibits many features of diabetic cardiomyopathy, including both 

left ventricular dysfunction and structural abnormalities such as cardiac hypertrophy and 

fibrosis (Ritchie et al., 2007), these results indicate that tempol should be considered for 

preventing oxidative stress and cardiomyopathy in the diabetic heart.  

Metallothionein (MT), a cysteine-rich protein, is a potent antioxidant owing to its high thiol 

content. Using a cardiac-specific, MT-overexpressing transgenic (MT-TG) mouse model, MT 

has been shown to be effective in preventing diabetic cardiomyopathy through the 

suppression of oxidative damage (Cai et al., 2005, 2006; Liang et al., 2002). Supplementation 

with Zinc (Zn), a potent inducer of MT, prevented the increases in cardiac morphological 

impairment, fibrosis, and dysfunction observed in diabetic mice without Zn 

supplementation (Wang et al., 2006b). Silencing of MT expression with small-interfering 

RNA abolished the prevention of diabetic cardiomyopathy by Zn supplementation (Wang et 

al., 2006b). These results demonstrate that Zn supplementation protects against diabetic 

cardiomyopathy via cardiac MT induction and suggest Zn supplementation, with cardiac 

MT induction, as a potential therapeutic approach to prevent diabetic cardiomyopathy.  

Targeted over-expression of the antioxidant proteins SOD and catalase to the heart has been 

shown to be effective in reducing diabetic cardiomyopathy (Shen et al., 2006; Ye et al., 2004). 

Chronic over-expression of catalase has been documented to eliminate excess FOR 

production in diabetic cardiomyocytes concomitant with preservation of normal cardiac 

morphology and contractile function (Ye et al., 2004). Over-expression of the mitochondrial 

antioxidant protein manganese SOD (Mn SOD) has been reported to protect against the 

formation of exogenous oxidants and also completely normalize contractile function in both 

type 1 and type 2 models of diabetic cardiomyopathy (Shen et al., 2006).  
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Although a number of previous large randomized placebo-controlled clinical trials have failed 

to show any beneficial effects of antioxidants (in particular vitamin E) on cardiovascular 

events, recently published literature suggests that these clinical trials of antioxidants and 

cardiovascular diseases may be fatally flawed (Blumberg & Frei, 2007; Roberts et al., 2007; 

Traber et al., 2008). Implicit in the majority of randomized placebo-controlled clinical trials that 

have previously explored the benefits of antioxidants is that the antioxidants tested effectively 

suppressed oxidative stress status but this was never determined (Roberts et al., 2007). 

Furthermore, not including elevated oxidative stress in patient eligibility criteria substantially 

reduces statistical power to detect antioxidant or cardiovascular effects (Block et al., 2008; 

Roberts et al., 2009). To that end, it has recently been reported that “the negative evidence 
regarding vitamin E supplements from previous randomized clinical trials is more a reflection of 
inadequate study design and methods of analysis than proof of failure of vitamin E in primary 

prevention”(Blumberg & Frei, 2007). Data obtained in experimental animals must obviously be 

extrapolated to the clinical arena with caution. Nevertheless, the present findings suggest that 

vitamin E and other antioxidants may confer cardiovascular benefit in select patients who are 

diabetic and in greater oxidative stress. Indeed, support for this paradigm has recently been 

demonstrated in a retrospective analysis of the Heart Outcomes Prevention Evaluation 

(HOPE) trial where vitamin E administration to diabetic individuals homozygous for the 

haptoglobin (Hp) 2 allele, which confers markedly less antioxidant protection against 

hemoglobin-induced oxidation, was shown to result in a 50% reduction in non-fatal MI and 

cardiovascular death (Levy et al., 2004). The validity of these findings have subsequently been 

confirmed in Hp 2-2 DM individuals in a prospective, double-blind, placebo-controlled trial 

of vitamin E (Milman et al., 2008). These positive results impel future clinical trials to study 

the efficacy of antioxidants specifically in patients with diabetic cardiomyopathy.  

6.5 Cell transplantation  
Transplantation of stem cells has emerged as an alternative therapeutic approach to improve 

cardiac function in the post-MI setting as well as in ischemic cardiomyopathic hearts. However, 

until recently, stem cell therapy studies had not been evaluated in the diabetic heart. In the past 

few years, cell transplantation has begun to be examined in the setting of diabetic 

cardiomyopathy. Transplantation of bone marrow mesenchymal stem cells (MSCs) into the 

hearts of STZ-diabetic rats via injection into the femoral vein has been shown to improve the 

cardiac function of diabetic cardiomyopathy through increased angiogenesis and attenuation of 

cardiac remodeling (N. Zhang et al., 2008). Bone marrow MSC transplantation has also been 

reported to improve cardiac function in the rat diabetic cardiomyopathy model through an anti-

apoptotic effect (Li et al., 2008). Treatment combining smooth muscle cell (SMC) transplantation 

via intramyocardial injection and insulin therapy has been shown to result in the preservation 

of heart function in STZ-diabetic rats with cardiomyopathy as assessed by echocardiographic 

and hemodynamic techniques (B.O. Kim et al., 2008). Although the clinical significance of these 

studies will require further testing and confirmation in other animal models of DM, cell 

transplantation holds great promise for the treatment of diabetic cardiomyopathy.  

7. Conclusions and future directions  

The full spectrum of diabetic cardiomyopathy encompasses a progression from subclinical 
LV diastolic and systolic dysfunction to clinically overt symptomatic HF. Recognition and 
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treatment of diabetes-induced myocardial dysfunction in its infancy is paramount for the 
prophylaxis of ensuing cardiomyopathy and HF. Thus, there is an eminent need for early 
detection of this clinical entity. In that regard, the knowledge that structural and functional 
alterations of a particular disease state are preceded by changes in proteins has led to the 
recent application of proteomics to the field of DM. The use of proteomic technologies, such 
as mass spectrometry, provides an ideal vehicle into this arena. Analysis of protein 
expression profiles in serum and tissues from diabetic animals and humans is now 
underway and will increase our power to identify early and subtle abnormalities of cardiac 
dysfunction in DM. One can also foresee the use of this technology to help establish 
biomarkers that are predictive for risk of developing diabetic cardiomyopathy. The potential 
capability of proteomics to elucidate protein changes occurring in response to 
pharmacological therapeutics is a particularly exciting application of this technology. 
Studies of drug-induced proteomic changes will be required to determine the ability of this 
molecular technology to correlate changes in protein expression with efficacy of established 
and novel therapies for cardiomyopathy in DM. The recent development of more sensitive 
and sophisticated echocardiographic techniques such as tissue Doppler, strain, strain rate, 
and ultrasonic tissue characterization appears helpful in identifying early myocardial 
dysfunction in asymptomatic patients with DM. Integration of proteomics with sensitive 
diagnostic imaging modalities holds tremendous potential for the comprehensive detection 
of preclinical cardiac dysfunction in patients with DM and thus should facilitate earlier 
therapeutic intervention to prevent cardiomyopathy and subsequent HF in this high-risk 
patient population.  
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