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Cellular Defences of the Lung:  
Comparative Perspectives 
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‘Our lungs are highly complex organs that are exquisitely  
specialized for gas exchange and host defense.’ 

Rawlins (2010) 

1. Introduction 

1.1 General considerations 

The most important function of the lung is to acquire molecular oxygen and eliminate 
carbon dioxide. Except probably for the gastrointestinal system, no other organ in the body 
interacts with the external environment as constantly and as intimately as the respiratory 
system. For example, during a 24 hour period, at rest, the human lung is ventilated ~25,000 
times with ~20,000 L of air (e.g. Burri, 1985; Brain, 1996), it has a respiratory surface area 
(RSA) of ~140 m2 (about the size of a tennis court) which is located in the acini that lie no 
more than 40 to 50 cm from the external environment (air) (e.g. Weibel, 1984), and the 
thickness of the blood-gas (tissue) barrier (BGB) (harmonic mean thickness, ht) is 0.62 μm, a 
value about one-fiftieth of the thickness of a foolscap paper or that of a human head hair 
(Gehr et al., 1978, 1990a). By weight, each day, more than 20 kg of air enters and leaves the 
human body, a load that far exceeds that of food and water ingested during the same time 
period (Brain, 1996). Depending on the level of air pollution, different types and quantities 
of foreign particulates and microbial pathogens are inhaled. While large RSA and thin BGB 
increase gas exchange, the concomitant downside to these structural properties is that they 
make the lung a leading portal of entry and therefore attack by pathogenic micro-organisms, 
damage by allergens and particulates, and injury by noxious gases (e.g. Brain, 1984, 1992; 
Lambrecht et al. 2001; Garn et al., 2006). The inhaled particulates are deposited on the 
epithelial lining of the conducting airways and that of the peripheral air spaces where they 
are retained for various durations before they are removed or destroyed (e.g. Geiser et al., 
1988; Gehr et al., 1990 a, b). Brain (1996) observed that ‘the lung is unique in that the marriage 

between environment and lung disease is profound. The respiratory system threfore forms a huge 
challenge to the body’s immune integrity (e.g. von Garnier and Nicod, 2009). 
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According to the United Nations Environmental Program (UNEP) and the WHO Report 
of 1994 (UNEP-WHO, 1994), annual averages of 600 mg/cm3 and peak concentrations that 
may exceed 1,000 mg/cm3 of solid particles occur in the air that covers many of the 
world’s large metropolis. The frequency and severity of respiratory diseases that arise 
from inhalation of airborne particles are on the increase (e.g. EPS, 1996; Peters et al., 1997; 
Wichman and Peters, 2000; Warheit et al., 2009). Epidemiological studies have shown that 
even moderate inhalation of particulates, especially those of a diameter <10μm (PM10), 
cause high morbidity and mortality not only from respiratory but also from 
cardiovascular diseases, especially in individuals with pre-existing medical conditions 
(e.g. Dockery et al., 1993; Schwartz, 1994; Brunekreef et al., 1995; Ware, 2000; Pope, 2000; 
Nemmar et al., 2002; Pope et al., 2002; Suwa et al., 2002; Schulz et al., 2005; Kaufman, 2010; 
Brook et al., 2010; van den Hooven et al., 2011; Kampfrath et al., 2011). PM2.5 cause airway 
inflammation that presents in form of influx of committed monocytes, even in healthy 
individuals (Schaumann et al., 2004). Pulmonary afflictions and diseases have 
considerable socioeconomic impact. For example, in the United Kingdom, in 2006 more 
people died from respiratory diseases than from coronary disease or cancer and the cost 
to the National Health Service (NHS) was over £6.6 billion (BTS, 2006). According to the 
National Institutes of Health (NIH), in the United States, people suffer an average 1 billion 
colds per year and in 2006 the country spent more than 3 billion dollars to investigate 
respiratory-related diseases (http://www3.niaid.nih.gov/topics/commonCold/). Over 
10% of hospitalizations and in excess of 16% of deaths in Canada are attributed to 
respiratory diseases (http://www.phac-aspc.gc.ca/ccdpc-cpcmc/crd-
mrc/facts_gen_e.html). According to the Canadian Lung Association (CLA), the economic 
burden of respiratory disease in the Country is ~3 billion ($US) dollars 
(http://www.bukisa.com/articles/455926_lung-health-occupational-health-
incidence#ixzz1I4jwMvBX). Based on net changes in gross domestic product (GDP) 
growth forecasts, the estimated annual cost of SARS (Sudden Avian Respiratory 
Syndrome) in Asia exceeds 10 billion dollars ($US) (Lee and McKibbin, 2003; Fan, 2003; 
McKibbin and Sidorenko, 2006) and according to the World Bank’s estimates, an influenza 
pandemic may result in a loss (expenditure) of 800 billion dollars ($US) (Brahmbhatt, 
2005): each year, seasonal influenza affects 5%-15% of the population in the northern 
hemisphere, with some some 3-5 million infections worldwide requiring hospitalization 
or leading to death (Sanders et al., 2011; http://www.euro.who.int/en/what-we-
do/health-topics/diseases-and-conditions/influenza/seasonal-influenza 2010). For 
poultry, an important relatively more affordable source of animal protein, worldwide 
losses from respiratory diseases are estimated to cost the broiler industry over 1 billion 
dollars ($US) annually (e.g. Dekich, 1997; Currie, 1999; Wideman, 2005). Because avian 
species form an important reservoir of human infections, it is vital to study and 
understand avian toll-like receptors and related recetors so as to both design vaccine 
adjuvants and substitutes to the widespread application of antibiotics and in selection of 
strains of birds with augmented pathogen resistance.  

By exerting direct selective pressure and evolving novel strategies of evading and surviving 
host defences (e.g. Litman et al., 1993; DuPasquier, 1993; Bartl et al., 1994; Beck and Habicht, 
1996; Spurgin and Richardson, 2010; Finlay and Buckner, 2011), microbial pathogens have 
directly and indirectly fundamentally shaped the genetic and the phenotypic diversity of 
life. One of the most complex and astounding biological designs - the immune system - by 
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which ‘non-self’ is recognized, neutralized, and eliminated has developed to counter 
continuous assaults (e.g. Janeway, 1993; Beck et al. 1994; Litman, 1996; Beck and Habicht, 
1996; Wang et al., 2011; Yewdell and Dolan, 2011; McClung, 2011). In vertebrates, the genes 
for the major histocompatibility complex show how natural selection maintains variation in 
wild-populations of animals (e.g. Klein, 1986; Hughes and Neil, 1989; Apanius et al., 1997; 
Hughes, 1999; Meyer and Thompson, 2001; Hess and Edwards, 2002; Meyer and Mack, 
2003). A diverse and extensive immune defence system that comprises of cellular (innate = 
natural)- and immunological (adaptive = acquired = specific) immunities have formed for 
protection (Fig. 1). The innate immune system which predominates in plants, fungi, insects, 
and the primitive multicellular organisms is believed to have formed first (e.g. Litman et al., 
1993; DuPasquier, 1993; Bartl et al., 1994; Beck and Habicht, 1996; Hazlett and Wu, 2011). 
Invertebrates lack lymphocytes and antibody (immunoglobulin) based humoral immune 
system while lectins which are found in plants, bacteria, invertebrates, and vertebrates 
should have developed earlier (e.g. DuPasquier 1993; Beck et al., 1994). In certain interesting 
ways, the immunities of the sharks and skates are similar to the human one (e.g. Litman 
1996). Many aspects of the invertebrate host defense mechanisms and their control signals 
have been conserved and carried over from lower to higher orders of animals (e.g. Mulnix 
and Dunn, 1995; Brownlie and Allan, 2011).  

While among vertebrates host defences have been well-studied, mainly in the laboratory 
mammals and in the humans (e.g. Green et al., 1977; Johnson and Philip, 1977; Geiser, 2002; 
Whitset, 2002; Alexis et al., 2006), birds have only been modestly investigated (e.g. Ochs et 
al., 1988; Maina and Cowley, 1998; Nganpiep and Maina, 2002; Reese et al., 2006), and only 
scanty details exist on amphibians and reptiles (e.g. Bargmann, 1936; Grant et al., 1981; 
Welsch, 1981, 1983; Maina, 1989; Conlon, 2011). The need to understand immunological- and 
cellular defences in different animal taxa is becoming more important because of the most 
recent flare-up of high morbidity and mortality zoonotic infectious diseases, e.g., bovine 
spongiform encephalopathy, hemorrhagic fever, swine influenza, avian influenza H5N1, 
hantavirus, West Nile virus disease, Nipah virus, Rabies, leptospirosis, Rift Valley fever, and 
lyme disease (e.g. Rehman, 1998; Field et al., 2001; Cleaveland et al., 2001; Burroughs et al., 
2002; Krauss et al., 2003; Chen et al., 2004; Brown, 2004; Chomel et al., 2007; Greger, 2007). 
The term ‘zoonosis’ was coined by Rudolph Virchow (1821-1902) in his studies of the pig 
muscle parasite, Trichnella. Factors like increase of human population and consequently 
ecological pressures on land leading to relocation to totally new habitats (e.g. Tilman et al., 
2001; Daszak et al., 2001; Patz and Wolfe, 2002; Patz et al., 2004) and globalization with its 
rapid mass movement of people, animals, animal products, and global warming (e.g. IPCC, 
2007; Sachan and Singh, 2010; Mills et al., 2010) are some of the factors that have been 
implicated in the recent outbreaks of zoonotic diseases (e.g. Burroughs et al., 2002). 
Comparative immunology has shown some esoteric immune related systems and 
substances that have potential for use as medications for humans (Boman and Hultmark, 
1987; Hoffman and Hetru, 1992; Litman, 1996; Beck and Habicht, 1996).  

The term ‘macrophage’, which derives from Greek, means ‘large eaters’; a phagocyte 
literally means ‘eating cell’; and, to ‘phagocytose’ means ‘to eat’. Large leukocytic cells 
which in tissues differentiate into organ- specific (dedicated) subpopulations, macrophages 
move between tissue compartments in pursuit of invading pathogens and harmful 
particulates. The phagocytic cells of the immune system include macrophages, neutrophils, 
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and dendritic cells. On activation by an antigen, phagocytes release and/or react to a group 
of highly specialized molecular signals called cytokines, e.g., interferons, interleukins (e.g. 
IL-1 and IL-6), and tumour necrosis factor (TNF) (e.g. Beck and Habicht, 1991; Gerlach et al., 
2011). They also recognize and usually eliminate ‘altered self’, i.e., cells or tissues that have 
died, commonly by programmed cell death (apoptosis) or have changed by injury or disease 
like cancer. 

 
Fig. 1. The sterility of the lung is maintained by complex and efficient interplay of innate- 
(cellular) and acquired immune factors/systems. Pathogens and particulates that gain enty 
into it are neutralized, removed or sequestered. 

Macrophages form an important part of the innate immune system that comprises of a 
group of cells that instantly defend the host from infection in a non-specific (generic) 
manner. In contrast to acquired immunity, macrophages don’t confer long-lasting or 
protective immunity to the host. The common strategies by which bacteria become 
pathogens were comprehensively reviewed by Finlay and Falkow (1997). It is evident that 
pathogenic bacteria evolved from related non-pathogenic microorganisms by genetically 
gaining relatively large parts of genetic material that encode for virulence factors rather than 
by slow, adaptive evolution of pre-existing genes (e.g. Blum et al., 1994, 1995; Lee, 1996; 
Cheetham and Katz, 1995; Finlay and Falkow, 1997) and that the relentless nature of the 
challenge (selective pressure) posed by pathogens on animals (and even on plants) affected 
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the evolution of host genes, conceivablyby selecting for changes (genetic) that promote 
survival (Finlay and Falkow, 1997). This may have lead to sudden radical changes in the 
way antibody genes are organized (Litman, 1996). Pathogenic microorganisms appear to 
evolve in quantum leaps, normally by their gaining genetic segments (factors acquired from 
unrelated organisms) that encode for multiple virulences (Finlay and Falkow, 1997).  

 

1.2 Pulmonary defences and macrophages  

Having a lot to do with the fact that it is continuously exposed to insults from inhaled 
particulates, allergens, noxious gases, and pathogens over a large surface area and across 
thin BGB (e.g. Gehr et al., 1978; Meban, 1980; Maina and King, 1982; Rohmann et al., 2011), 
directly and indirectly, the respiratory system is exceptionally well-defended (e.g. Brain, 
1980, 1992; Bedoret et al., 2009) (Figs. 1, 2). Directly, it is endowed with a formidable number 
of mechanical, physical, and cellular defences which are augmented by inflammatory and 
immune responses (e.g. Nicod, 2005). The inventory includes: a) a cough reflex that 
mechanically removes deposited irritants (Eckert et al., 2006; Canning, 2008; Poth and 
Matfin, 2010); b) a surface lining (surfactant) (Schürch et al., 1990; Gehr et al., 1990a, b; 
Geiser et al., 2003; Gehr et al., 2006), c) the BGB (e.g. Gil and Weibel, 1971; Maina and King, 
1982; Gehr et al., 1990a, b; Maina and West, 2005); d) ciliated, mucus covered epithelium that 
traps, destroys, and clears deposited particulates through a mucociliary escalator system 
(e.g. Kilburn, 1968; Lippmann and Schlesinger, 1984; Geiser et al., 1990, 2003; Whitsett, 2002; 
Callaghan and Voynow, 2006) (Figs. 3-6); e) motile phagocytic cells (macrophages) that 
engulf, destroy, and sequester harmful particulates and pathogens (e.g. Geiser et al., 1990; 
Nicod, 2005) (Figs. 7-14); f) epithelium endowed with tightly packed cells that physically 
stop and destroy harmful agents (e.g. Breeze and Wheeldon, 1977; Harkema et al., 1991; 
Godfrey, 1997; Maina and Cowley, 1998; Nicod, 2005; Nganpiep and Maina, 2002) (Fig. 4), 
and; g) strategically placed mucosal and bronchial lymphatic tissue that is involved in the 
dissolution and antibody labelling of foreign particulates (Fagerland and Arp, 1990, 1993; 
Crapo et al., 2000; Reese et al., 2006). 

Considering the intensity and the regularity of daily attacks to which it is exposed, its 
capacity of adapting to shifting environmental conditions, and the relative infrequency of 
diseases, the efficiency of the defences of the respiratory system is bewildering. In actual 

Definition of abbreviations

AM  Alveolar macrophage  
BEC  Bronchial epithelial cell 
BGB  Blood-gas (tissue) barrier 
BM  Bronchial macrophage 
BMM  Bone marrow monocyte  
DC  Dendritic cell  
PIM  Pulmonary interstitial macrophage 
PM  Pulmonary macrophage 
PIVM  Pulmonary intravascular macrophage 
PlM  Pleural macrophage  
PSM  Pulmonary surface macrophage 
ROS  Reactive oxygen species
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fact, the mechanisms and processes are so proficient that when pulmonary diseases and/or 
other pathologies are absent, the respiratory system is practically sterile below the larynx 
(e.g. Laurenzi et al., 1964; Green and Kass, 1964; Brain, 1980, 1984; Fawcett, 1986; Warheit et 
al., 1988; Brain, 1988; Steinmüller et al., 2000; Whitsett, 2002). This level of ‘cleanliness’ 
emanates from the diverse, well-coordinated pulmonary host defences that adeptly 
neutralize pathogenic microorganisms like bacteria, fungi, viruses, and harmful particulates 
that are inhaled or brought to the lung through blood (e.g. Zetterberg et al., 1998; Laskin et 
al., 2001; Whitsett, 2002; Pabst and Tschernig, 2002; Camner et al., 2002; Tschernig et al., 
2006; Moniuszko et al., 2007; Tschernig and Pabst, 2009).  

 
Fig. 2. Cellular defences of the respiratory system. Consistent with its high exposure to 
particulate matter and pathogenic microorganisms, the lung is very well-protected by 
various populations of phagocytic cells. Depending on need and circumstances, the cells can 
transfer from one compartment to another.  

Among the cellular defences of the respiratory system, at the gas exchange level, pulmonary 
surface macrophages (PSMs) form the frontline defence of the lung. Highly specialized cells, 
macrophages clear dead host cells while defending against infection by broad range of 
pathogen-recognition receptor and their ability to produce inflammatory cytokines and 
chemokines that control the replication of the invaders (e.g. Gordon, 2002; Hazlett and Wu, 
2011). Macrophages are highly specialized, robust motile cells that belong to a range of 
subpopulations: in different forms and locations, they display different behaviours and 
functions (e.g. Bowden, 1976; Dougherty and McBride, 1984; Lehnert, 1992; Brain, 1992; 
Gordon, 2002; Gordon and Taylor, 2005; Geissmann et al., 2010a, b; Schneberger et al., 2011). 
By detecting injurious agents, phagocytosing them, and acting as effector cells for both 
humoral and cell-mediated immune responses, macrophages serve as the frontline innate 
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defence cells of the lung and as sentinels of the immune system of the body (e.g. Fels and 
Cohn, 1986; Peão et al., 1993; Warheit and Hartsky, 1993; Yamaya et al., 1995; Rubovitch et 
al., 2007). A relationship exists between the numbers of PSMs [like the alveolar macrophages 
(AMs)] with the level of environmental pollution (Brain, 1971, 1987; Nagdeve, 2004; 
Sichletidis et al., 2005; Mateen and Brook, 2011; Conklin, 2011). Even with an elegant defence 
inventory, respiratory diseases, especially those caused by air pollution, are on the increase 
(e.g. Peters et al., 1997; Mateen and Brook, 2011; Conklin, 2011). After the particles or 
pathogens have eluded or overwhelmed the epithelial barrier of the upper airways, they 
come into contact with the dedicated antigen presenting dendritic cells (DCs) (e.g. Steinman 
and Cohn, 1973; Nicod, 1997; Lipscomb and Masten, 2002; Holt, 2005) which are highly 
phagocytic (Dreher et al., 2001; Kiama et al., 2001, 2006; Walter et al., 2001). If they reach the 
alveolar surface, they are dealt with by the PSMs (e.g. Bowden, 1976; Goldstein and 
Bartlema, 1977; Geiser, 2002).  

While macrophages are central to the defence of the lung from assaults by injurious 
materials and pathogenic agents (e.g. Holt et al., 1982; Brain, 1984; Weissler et al., 1986), their 
roles extend beyond engulfing (phagocytosing) and neutralizing harmful agents. They are 
secretory and regulatory and control activities of other cells like neutrophils, lymphocytes, 
and fibroblasts (e.g. Adamson and Bowden, 1981). Contrary to their well-serving protective 
activities, under certain conditions, macrophages function as a ‘double-edged sword’: they 
can initiate, exacerbate, and prolong inflammatory responses that cause immune 
suppression and progression of pathologies like cancer, leading to higher morbidity and 
mortality (e.g. Brain, 1976, 1980, 1984, 1986, 1992; Brain et al., 1984; Bowden, 1987; Warner, 
1996; Yanagawa et al., 1996; Fireman et al., 1999; Ishii et al., 2005; Parbhakar et al., 2005; 
Rubovitch et al., 2007; Shimotakahara et al., 2007; Sica and Bronte, 2007; Kaczmarek et al., 
2008; Gill et al., 2008; Biswas et al., 2008; Aharonson-Raz and Singh, 2010; De Palma and 
Lewis, 2011). 

In spite of their widely accepted common origin from the bone marrow, their hematogenetic 
origin (e.g. Brain, 1976, 1984; van Furth, 1982; Geiser, 2010), macrophages display great 
phenotypic and functional heterogeneity (Krombach et al., 1977; Nguyen et al., 1982; 
Lehnert, 1992; Warheit and Hartsky, 1993; Kiama et al., 2008). Local environments largely 
determine the structural and functional differences (e.g. Morrissette et al., 1999). Within and 
between animal species, the immune reactions, phagocytic competences, and the 
cytoenzymological properties of different groups of macrophages have been shown to be 
spatially compartmentalized: observations made on one population of macrophages may 
therefore not correctly apply to another. For example, the AMs have slower rate of 
phagocytosis, higher motility, and faster particle clearance compared to the pulmonary 
intervascular macrophages (PIVMs) (Molina and Brain, 2007). Compared to the human 
ones, the dog’s AMs have relatively less cytoplamic motility when acutely exposed to 
cigarette smoke (Yamaya et al., 1989) and during acute asthmatic attack (Yamaya et al., 
1990). Among rodents, the AMs of the rat lung are the most efficient in clearing inhaled iron 
particles while the hamster ones are recruited to the site of particle deposition by 
noncomplement-mediated mechanism (Warheit and Hartsky, 1993) while the hamster and 
guinea pig’s AMs best respond to bacteria (Warheit et al., 1988). Compared to those of the 
rat, the PSMs of the bird lung phagocytose polystylene particles more efficiently (Kiama et 
al., 2008).  
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The term ‘pulmonary macrophage’ (PM) loosely refers to cells that occupy two anatomical 
compartments of the lung: in the upper airways are the bronchial macrophages (BMs) and in 
the lower respiratory tract are the surface (free) macrophages (SMs) (e.g. Crowell et al., 
1992). Other groups of phagocytes, however, exist in other parts of the lung. These are the 
dendritic cells (DCs), the pleural macrophages (PlMs), the pulmonary interstitial 
macrophages (PIMs), and in the lungs of certain species of animals the pulmonary 
intravascular macrophages (PIVMs). The structural attributes and the functional roles of 
these groups of cells are succinctly described below. To the best of my knowledge, this is the 
first comprehensive review of the biology of the PMs from a comparative perspective.  

2. Pulmonary surface (free) macrophages (PSMs) 

Acting as scavengers on the respiratory surface, the highly motile PSMs phagocytose, 
neutralize, and sequester harmful foreign materials (e.g. Sibille and Reynolds, 1990; Kelley, 
1990; Lohmann-Matthes et al., 1994; Steinmüller et al., 2000). Also, by having receptor sites 
for immunoglobulins and complement on their cell membranes, PSMs contribute to the 
health of the lung by passing on specific information to immunologically competent cells 
like neutrophils, lymphocytes, and plasma cells, in so doing promoting antigen-antibody 
response (e.g. Said and Foda, 1989; Ooi et al., 1994). PSMs appear to stimulate and promote 
repair of epithelial cells after injury by releasing a growth factor (e.g. Takizawa et al., 1990). 
Interaction between PSMs and bronchial epithelial cells (BECs) during exposure to 
particulates with a diameter of less than 10 μm (PM10) contributes to production of 
mediators (molecular factors) that induce a systematic inflammatory response (e.g. Hirano, 
1996; Fujii et al., 2002; Ishii et al., 2005; Rubovitch et al., 2007).  

Large, mononuclear cells, PSMs consist of several subtypes that can be categorized by 
criteria like size, morphology, numbers, motility, ingestion and handling of foreign 
materials, adherence onto surfaces, and expression of surface receptors (e.g. Brain, 1976, 
1980, 1992; Zwilling et al., 1982; Nguyen et al., 1982; Holt et al., 1982; Warheit et al., 1984, 
1986; Sebring and Lehnert, 1992; Spiteri et al., 1992; Lavnikova et al., 1993; Johansson et al., 
1997). The existence of subpopulations of macrophages that have functionally distinct roles 
in airway immunity derives from the individual bone marrow precursor cells and the 
environment that they reside in (Gant and Hamblin 1985). Compared to the PIVMs, the rat 
PSMs exhibit marked microbial activity through high production of reactive oxygen species 
(ROS), nitric oxide (NO), and tumour necrotic factor-┙ (TNF-┙) (Steinmüller et al., 2000). 
Exposure of rats to NO induces infiltration of AMs that are phenotypically and functionally 
different (regarding mediator mRNA expression and production as well as mRNA 
expression for several matrix metalloproteinases) from the resident AMs (Garn et al., 2006). 
Ensuing from infection or overwhelming by irritants, need for more macrophages is met by 
in situ replication of existing cells, release of pre-existing cells from various compartments 
(reservoirs) within the lung, increased production from macrophage precursors in the lung 
interstitium, and increased flux of monocytes from blood to the lung (e.g. Brain, 1980, 1992). 
The PSMs are renewed at a rate of ~1-2% of the total number of cells in the lung (e.g. Shellito 
et al., 1987) daily. 

The temporal sequence of particle clearance by phagocytes entails particle identification, 
endocytosis, and transport from the alveolar surface (Green, 1973, 1984; Warheit et al., 1984). 
Resting freely on the respiratory surface, PSMs are directly exposed to particulates,  
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Fig. 3.-4. Bronchial epithelial cells (EC) that comprise of ciliated cells (arrows) and mucus 
secreting cells (MC). Er, erythrocyte. Fig. 5.-6. Respiratory epithelium at the bronchiole level 
showing Clara cells (CC) interspersed between ciliated cells (arrows). Figs. 7.-14. Surface 
macrophages (arrows) of the mammalian- (Figs. 7-12) and the frog lungs (Fig. 13. -14.). Stars, 
filopodia (feet); Er, erythrocyte; asterisks, lysosomes; Nu, nucleus; Ep, epithelial cell. Scale 
bars: Figs. 3, 30 μm; 4, 45 μm; 5, 30 μm; 6, 50 μm; 7, 10 μm; 8, 25 μm; 9, 10 μm; 10, 10 μm; 11, 
10 μm; 12, 15, μm; 13, 20 μm; 14, 10 μm.  

environmental toxicants, and pathogens. In contrast to fixed or interstitial macrophages that 
are attached to the collagenous fibers of the tissue matrix, they (PSMs) actively move over 
the respiratory surface by ameboid movement that entails formation of deformations of the 
cell membrane, leading to cytoplasmic extensions (advancing lamella = filopodia = 
pseudopodia) in the direction of the movement, pulling the main part of the cell with it 
(Figs. 10, 11, 13, 14). Actin-binding protein and myosin advance in the tips of the filopodia 
(Reaven and Axline, 1973; Stossel and Hartwig, 1976; Hartwig et al., 1977). In addition to 
effecting movement, formation of filopodial extensions by contractile proteins is involved in 
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phagocytosis of foreign agents (Stossel, 1978; Zigmond and Hirsch, 1979). Cytoplasmic 
motility corresponds with phagocytic activity of PSMs: both cytoplasmic movement and 
phagocytosis may be regulated by similar mechanism in the cytoskeletal system (Yamaya et 
al., 1995). Once the phagocytosed particle is engulfed, i.e., is enclosed within the invaginated 
cell membrane and transferred to a cytoplasmic location, it is called a phagosome.  

Macrophages are chemotactically driven to foreign materials/agents. The terms ‘free’, 
‘wandering’, and ‘fixed’ macrophages refer to different functional states and/or stages of 
the development of cells of same cell phagocytic lineage. When stimulated, fixed 
macrophages detach from collagenous fibers and migrate as free macrophages to sites of 
pathogen invasion, injury, or irritation. PSMs remain motile up to a certain particle loading 
and beyond that the mobility is greatly inhibited (e.g. Yu et al., 1989; Lehnert et al., 1990; 
Kiama et al., 2008). For the avian PSMs (Kiama et al., 2008), the cells burst after ingesting 
high loads of polystylene particles (Figs. 15-17). Inability of dust-laden AMs to reach the 
mucociliary escalator system of the upper airways correlates with the particle loading 
(Morrow, 1988). In the Fischer 344 rat, when the loading exceeds ~600 μm3 per cell, particle 
clearance ceases and the particle laden cells remain in the alveolar region. Interestingly, 
PSMs can be overwhelmed by even small amounts of ingested particulates, e.g., carbon 
particles (concentration 0.2 μm.10-6) and also by long term (22-44 hr) incubation with low 
concentrations (12.5 M.ml-1) of interferon-┛ (IFN-┛) (Lundborg et al., 1999, 2001). PSMs may 
also be rendered non-functional by exposure to inordinately high concentration of 
particulates or pathogens, especially where there are underlying infections that invoke 
increase in production of IFN-┛ (Baron et al., 1991; Cuffs et al., 1997; Camner et al., 2002). 

 
Fig. 15.-17. Pulmonary surface macrophages of the avian lung showing various stages of 
uptake of polystylene particles (arrows). At a certain critical point of particulate ingestion, 
the cells burst (dashed line). Nu, nucleus. Scale bars: 3µm.  

The ultrastructural morphology of the AMs has been well-documented (e.g. Weibel, 1984, 
1985). Remarkably heteromorphic, they vary in size from 10 to 40 μm in diameter, constitute 
2 to 9% of the pneumocytes, and have an indented (bean = horse shoe-shaped) eccentrically 
located nucleus (e.g. Sebring and Lehnert, 1992; Weibel, 1984, 1985) (Fig. 12). The nuclear 
indentation contains numerous vacuoles, Golgi apparati, rough endoplasmic reticulum, and 
mitochondria. The most striking structural features of the PSMs are the large number of 
membrane bound cytoplasmic inclusions that include lysosomes, phagososmes, vacuoles, 
and lipid droplets (Figs. 7, 11, 12). Many of the vacuoles are about 0.5 μm or less in diameter 
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and are oblong or spherical in shape. They contain high concentrations of various strong 
hydrolytic enzymes which are synthesized in the rough endoplasmic reticulum and 
packaged in the Golgi complex, forming the primary lysosomes. When the primary 
lysosomes combine with the phagosomes, they form the secondary lysosomes. The broken-
down/detoxified foreign agents are either discharged from the cell or are stored in 
membrane bound granules called residual bodies. The foreign indigestible materials, e.g., 
carbon- and heavy metal particles, are sometimes permanently stored in the phagocytic cells 
of the lung. When macrophages are overwhelmed by large foreign materials that cannot be 
efficiently phagocytosed by individual cells, they form multinucleated giant cells that 
sequester such factors. Nodular inflammatory lesions that contain these cells are termed 
granulomas (e.g. Fawcett, 1986).  

Although different views have been expressed by, e.g., Sorokin et al. (1984), it is now widely 
accepted that PSMs do not form in situ, i.e., in the lung: they belong to the general 
mononuclear phagocyte (formerly reticuloendothelial) system of the body and originate 
from stem cells in the bone marrow from where they are transported in blood as monocytes. 
On entering the interstitium of the lung they undergo a series of maturational stages before 
transferring to the surface (e.g. van Furth, 1970; Bowden and Adamson, 1980; Blussé van 
Oud Alblas et al., 1983; Bowden, 1987; Sebring and Lehnert, 1992; Brain et al., 1999; Geiser, 
2010). The turnover time of the PSMs is ~6 days and amounts to 15.103 cells per hour (Blussé 
van Oud Alblas et al., 1983). The fate of PSMs is varied: a) many of the cells leave the 
peripheral air spaces via the bronchi where they are transported by the mucociliary 
escalator system to the oral pharynx (e.g. Spritzer et al., 1968) to be swallowed or 
expectorated; b) others move to the interstitium and either settle there or leave via the 
lymphatics (e.g. Sorokin and Brain, 1975). Compared to the PIMs, AMs have greater 
phagocytic activity and faster attachment and ingestion properties (Franke-Ullmann et al., 
1996; Fathi et al., 2001).  

While pulmonary cellular defence appears to exist in the amphibian- (e.g. Welsch, 1981, 
1983; Maina and Maloiy, 1988; Maina, 1989) (Figs. 13, 14) and reptilian lungs (Grant et al., 
1981), PSMs are rare in the lungs of the lower vertebrates (Bargmann, 1936). Welsch (1983) 
experimentally stimulated a macrophagic response in the lung of Xenopus laevis after 
exposure and aspiration of carbon particles. In the caecilian lung, macrophages contain acid 
phosphatase, ┚-glucosaminidae, and unspecific esterase (Welsch, 1981). In the lungs of the 
lower vertebrates (Welsch and Müller 1980), epithelial cells (pneumocytes) contain acid 
phosphatase and have a phagocytic capacity. No resident surface macrophages occur in a 
nonchallenged lung of the snake, Boa constrictor (Grant et al., 1981): unphagocytosed 
materials remained on the respiratoty surface for up to 4 days. Challenge of the snake lung 
with inspirable particles increases surfactant secretion, elicits surfacing of nonphagocytic 
eosinophilic granulocytes, but interestingly doesn’t set off release of mononuclear 
phagocytic macrophages (Grant et al., 1981).  

While the biology of the AMs has been well-studied (e.g. Bowden, 1987), relatively little is 
known about the SMs of the avian respiratory system. Paucity of SMs (e.g. Stearns et al., 
1986; Toth et al., 1988; Klika et al., 1996; Maina and Cowley, 1998; Nganpiep and Maina, 
2002; Kiama et al., 2008) and even lack of them was reported by, e.g., Lorz and López (1997). 
In mice, rats, and guinea pigs, respectively, yields of 0.55-1.55.106, 2.86-4.43.106, and 1.08-
1.77.107 AMs were determined by Holt (1979). Some of these values are 20 times greater than 
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those determined in much larger birds (e.g. Toth and Siegel, 1986). The average number of 
SMs in the lung of the pigeon, Columba livia is 1.6.105 (Maina and Cowley, 1998), in the 
domestic fowl, Gallus gallus variant domesticus it is 2.5.105 (Toth and Siegel, 1986; Toth et al., 
1987), and in the turkey, Meleagris gallopavo is 1.15.106 (Ficken et al., 1986). The number of 
SMs per unit body mass in the rat was significantly greater than that of the domestic fowl 
and the duck, Cairina moschata (Nganpiep and Maina 2002) (Fig. 18). In a 30 year-old smoker 
and a nonsmoker, respectively, 1.5.107 and 5.2.107 AMs were harvested by 
bronchopulmonary lavage by Hof et al. (1990). Regarding cellular defence strategies, 
mechanisms, and proficiencies, it has been contended by different investigators, e.g., Klika 
et al. (1996) and Spira (1996) that compared to mammals, birds are relatively more 
susceptible to pulmonary diseases and afflictions. In the poultry industry, huge economical 
losses have been ascribed to mortalities arising from respiratory diseases (e.g. Mensah and 
Brain, 1982; Toth et al., 1988). Scarcity of SMs in the avian lung (e.g. Stearns et al., 1986; 
Maina and Cowley, 1998; Nganpiep and Maina, 2002; Kiama et al., 2008) and enzymatic 
deficiencies in the oxidative metabolism of the SMs (e.g. Penniall and Spitznagel, 1975; 
Bellavite et al., 1977) have been reported.  

 
Fig. 18. Comparison between the numbers of pulmonary surface macrophages (PSMs) in the 
chicken (domestic fowl) (Gallus domesticus), the rat (Rattus rattus), and the duck (Cairina 
moschata). Birds have relatively fewer PMS compared to mammals. From Nganpiep and 
Maina (2002). 

The foremost morphological and physiological factors that may predispose the avian 
respiratory system to injury by inspired foreign agents are: a) a relatively thin BGB and 
extensive RSA (e.g. Maina et al., 1989), b) large tidal volume and continuous and 
unidirectional ventilation of the lung (e.g. Fedde 1980, 1997; Brown et al., 1997), and c) in 
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some species, e.g., the ostrich, Struthio camelus (Bezuidenhout et al., 2000), the air sacs extend 
out of the coelomic cavity to lie subcutaneously, where they are highly susceptible to trauma 
and infection: in such cases, air sacculitis (infection of the air sacs) can easily spread to the 
lung.Categorical proof that the avian lung is relatively more susceptible to infection by 
inhaled biological pathogens is lacking. It was argued by Maina (2005) that in the bird lung, 
PSMs, cells that are abundantly endowed with lysosomes (Nganpiep and Maina 2002) (Fig. 
19-24) and have greater motility and phagocytic capacity (Kiama et al., 2008) may be so 
efficient that only few of them are required to reside on the respiratory surface and provide 
adequate protection. Pulmonary cellular defence is reinforced by capacity of rapidly 
mobilizing and transferring PIMs, PIVMs and probably blood monocytes to the respiratory 
surface (Nganpiep and Maina, 2002). Under similar conditions, birds may not be any more 
susceptible to pulmonary diseases than mammals. Factors like extreme genetic 
manipulation for faster growth and weight gain and the intensive and stressful regimes of 
battery production and management may explain the high incidence of aerosol transmitted 
pulmonary diseases, particularly in poultry.  

3. Pulmonary interstitial (subepithelial) macrophages (PIMs) 

Mainly because they are relatively less accessible, compared to the PSMs which are easily 
harvested by pulmonary lavage (e.g. Holt et al., 1985; Steinmüller et al., 2000), the PIMs have 
been relatively less well-studied. They are found in the peribronchial and perivascular 
spaces, in the interstitial spaces of the lung parenchyma (Fig. 25), in the lymphatic channels, 
and in the visceral pleural region (e.g. Bedoret et al., 2009; Nganpiep and Maina, 2002). 
Occurring in substantial numbers, PIMs provide bactericidal and immune mediated 
protection against particles and pathogens that escape the PSMs and penetrate the 
epithelium: there, they are sequestered or removed via the lymphatic channels. In the rat 
lung, PIMs form a substantial fraction of the PMs (e.g. Sebring and Lehnert, 1992): they 
comprise from 37% to 40% of the PMs (Lehnert et al., 1985; Crowell et al., 1992). However, 
using a different method, Blussé van Oud Alblas and van Furth (1979) determined that PIMs 
form only 7% of the PMs in the mouse-, rat-, and hamster lungs. In normal and injured 
lungs, PIMs exceed the number of PSMs (e.g. Thet et al., 1983).  

Phenotypical and functional differences occur between the PIMs and the PSMs: PIMs are 
smaller in diameter (7.6 μm versus 16 μm for the PSMs), are more homogenous in size, have 
a smoother outline [i.e., they have fewer and blunter filopodia (pseudopodia)], have an 
indented (kidney-shaped) nucleus and greater nuclear to cytoplasm ratio, the primary 
lysosomes and phagososmes are fewer and larger, mitochondria and rough (granular) 
endoplasmic reticulum are scanty, Golgi bodies are rare, the cells are less phagocytic, they 
possess greater antigen presenting capability to T-cells, when they are activated they can 
release different cytokines [particularly TGF-┚, TNF-┙, and metalloproteinases-1 (MCP-1) 
and IGF-1], and the cells resemble the peripheral monocytes (e.g. Kobzik et al., 1988; Sebring 
and Lehnert, 1992; Lavnikova et al., 1993; Wizemann and Laskin, 1994; Prokhorova et al., 
1994; Johansson et al., 1997; Fathi et al., 2001). Antigenic differences occur between the PIMs 
and the PSMs (e.g. Kobzik et al., 1986). In the rat lung, regarding the mechanisms that are 
mainly involved in the induction and the furtherance of specific immune reactions, e.g., the 
major histocompartibility complex (MHC) class-II expression and interleukin (IL-1) and IL-6 
production, the PIMs are more efficient than the PSMs (Steinmüller et al., 2000). Since they  
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Fig. 19.-24. Pulmonary surface macrophages of the chicken (domestic fowl) (Gallus 
domesticus) showing the concentration of lyric vesicles in the cytoplasm in Figs. 19-22) 
(asterisks) and arrows (Figs. 23 and 24). Nu, nucleus. Scale bars: 4 µm. Figs. 19-22 from 
Nganpiep and Maina (2002) and Figs 23 and 24 from Kiama et al. (2008). 
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Fig. 25. Subepithelial macrophages in the lung of the chicken, Gallus domesticus (arrows). Ep, 
respiratory epithelium. Figs. 26 & 27: Bronchial epithelial cells of the chicken’s lung which 
have phagocytosed polysylene particles (stars). Arrow heads, cilia. Fig. 28: Surface of an 
atrium of a parabronchus of the lung of the chicken showing a surface macrophage (arrow), 
particles (arrow heads), and extravasated red blood cell (dashed circles) that are about to be 
phagocytosed by the epithelial cells. If, infundibulum. Fig. 29: Close-up of a foreign particle 
(FP) being engulfed by an epithelial cell (Ep) in the chicken lung. Arrows, cytoplasmic 
extensions of the epithelial cell. Fig. 30: Close-up of extravasated erythrocytes (Er) on the 
epithelial surface (Ep) of the lung of the duck, Cairina moschata. One of the erythrocytes 
(arrow) is being engulfed by the epithelial cell. Figs. 31-33: The ciliated bronchial epithelial 
cells (arrows) of the lung of the domestic fowl, Gallus gallus are well-endowed with 
lysosomes (stars). Nu, nuclei of the epithelial cells. Scale bars: Figs. 25, 50 μm; 26 & 27, 10 
μm; 28, 50 μm; 29, 10 μm; 30, 10 μm; 31-33, 10 μm. From Nganpiep and Maina (2002). 

are set in the lung tissue, the cytotoxic or inflammatory mediators released by the PIMs have 
greater biological and/or pathological effects on the surrounding lung tissue than those 
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released by the PSMs (Steinmüller et al., 2000; Laskin et al., 2001). In the murine lung, PIMs 
exhibit immunoregulatory and phagocytic functions (e.g. Bilyk et al., 1988; Franke-Ullman et 
al., 1996). Increased numbers of PIMs appear within active lesions of the injured lung (e.g. 
Brain, 1988). There is ample evidence that PIMs replicate in situ (e.g. Bowden and Adamson, 
1980). Compared to the PSMs, the PIMs exhibit a significantly greater proliferative capacity 
(Johansson et al., 1997), a process that maintains the lung macrophage pool in the lung tissue 
compartment (Adamson and Bowden, 1981). 

The PIMs can be discriminated from the PSMs by their unique capacity of inhibiting the 
maturation of the lung’s DCs and their migration on stimulation with lipopolysaccharides 
(LPS) like those located in the outer membrane of gram positive bacteria which act as 
endotoxins that elicit strong immune responses that prevent sensitization to prevailing 
antigens (e.g. Buckner and Finlay, 2011). In presence of LPS, PIMs and not PSMs disrupt the 
link between the innate and the adaptive immunity, allowing inhaled antigens to escape 
from T-cell dependent responses (e.g. Bedoret et al., 2009). The PIMs are morphologically 
more like the BMs than they are to PSMs (Sebring and Lehnert, 1992). It has been suggested 
by some investigators, e.g., Holt et al. (1982), Bluseé van Oud Alblas and van Furth (1982), 
and Sebring and Lehnert (1992) that PIMs are an intermediate maturation stage (from the 
bone marrow monocytes) of the PSMs, i.e., they are precursors of the PSMs before the cells 
transfer to the respiratory surface. There is, however, contrary evidence that PIMs represent 
a distinct population of cells with dedicated pulmonary inflammatory and 
immunoregulatory roles of defending the lung (e.g. Chandler et al., 1988; Dethloff and 
Lehnert, 1988; Lehnert, 1992; Prokhorova et al., 1994; Johansson et al., 1997; Zetterberg et al., 
1998; Steinmüller et al., 2000). Although concerning inflammation and antimicrobial defense 
AMs exhibit greater functional repertoire related to and including increased chemotaxis, 
phagocytosis, cytotoxicity, and release of ROSs, PIMs express higher quantities of C3-
receptor and intercellular adhesion molecule-1 and are more active in producing 
interleukins-1 and -6 (IL-1 and -6) and exhibit greater I-a antigen expression (Chandler and 
Brannen, 1990; Franke-Ullmann et al., 1996; Steinmüller et al., 2000). 

4. Bronchial epithelial cells (BECs) and bronchial macrophages (BMs) 

The ciliated BECs and the nonciliated cells of the upper airways of the lung are the first 
cellular entities that interact and deal with the inhaled particulates and pathogenic 
microorganisms (Figs. 31-34). They secrete inflammatory cytokines that initiate and 
ultimately aggravate host innate inflammatory responses that may cause harmful immune-
mediated pathologies (e.g. Yoshikawa et al., 2010) and afterwards initiate remodelling of the 
lung (Altraja et al., 2009). In the bronchial tree, macrophages are suspended in the mucus 
carpet while others lie under the layer, directly attached onto the epithelial substratum (e.g. 
Sorokin and Brain, 1975; Brain et al., 1984; von Garnier and Nicod, 2009) (Fig. 34). A highly 
active group of cells, ciliated BECs and non-ciliated BECs may ingest and degrade antigens 
that land on the surface of the airways and/or may release mediators that attract 
lymphocytes, neutrophils, or mast cells to the airways and regulate their activities there 
(Geiser et al., 1988). On their depositing on the airway epithelium, inhaled bacteria soon 
loose their replicative capacity (e.g. Laurenzi et al., 1964; Brain et al., 1984). Particulates with 
a diameter of less than 10 μm (PM10) stimulate epithelial cells to produce ROS and 
inflammatory mediators/cytokines (Carter et al., 1997; Fujii et al., 2001; Schaumann et al., 
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2004; Ishii et al., 2005). In the avian lung, ciliated epithelial cells particularly phagocytose 
inhaled atmospheric particles (Fedde, 1997; Maina and Cowley, 1998; Fujii et al., 2001; 
Nganpiep and Maina, 2002) (Figs. 26, 27). Ciliated BECs express an oxidative stress response 
that is different from that of the PSMs by rapidly shifting from cytoprotective to cytotoxic 
responses but are incapable of converting N-acetylcysteine to cytoprotective glutathione (Li 
et al., 2002). A mucus escalator system, which is maintained by the motility of cilia (Fig. 34), 
transports particulates and pathogens that settle on the airways towards the mouth. Normal 
motility of cilia is vital to the preservation of the integrity of the mucus conveyer-belt 
system. Infectious diseases and genetic conditions that reduce or abolish cilia motility, e.g., 
Kartagener’s syndrome (e.g. Mahsud and Din, 2006; Kapur et al., 2009), and those that 
increase the consistency (viscosity) of the mucus, e.g., cystic fibrosis (Chmiel and Davis, 
2003; McShane et al., 2004) lead to higher incidence of pulmonary infections, as they 
decrease the removal of particulates and pathogens by the mucus escalator system.  

 
Fig. 34. Schematic diagram of the bronchial epithelium. Bronchial macrophages are located 
in the mucus carpet and on the epithelial cells themselves. Dendritic cells are located in  
the subepithelial space from where they send their long projections between the epithelial 
cells to sense foreign agents.  

According to Fireman et al. (1999), ‘asthma may be defined as failure to regulate T-cell 
mediated immunoreactivity within the bronchial wall of hyperreactive airways’. Inadequate 
regulation of the T-cell response by suppressive macrophages may set off allergic bronchial 
inflammation. The BMs of asthmatics are functionally modulated (e.g. Fireman et al., 1999: 
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they have lower suppressive activity. Probably caused by T-helper cell cytokines (Th-2), this 
explains the bronchial hyperactivity displayed by asthmatics (Fireman et al., 1999; Alexis et 
al., 2001). Different subsets of the BMs may to different extents regulate the inflammatory 
response in allergic asthma and respond to immunomodulatory signals, especially those 
mediated by interleukin 10 (IL-10) (Moniuszko et al., 2007). Power et al. (1994) observed that 
in normal human bronchial wall, a small number of T-cells, the majority of which were 
CD8+ cells existed: CD4+ cells predominated in the subepithelial tissue and a small number 
of macrophages were present. In individuals with sarcoidosis, compared to healthy subjects, 
Hawley et al. (1979) observed physical interaction between the BMs and the lymphocytes, 
the BMs presented a more highly irregular cell surface, and more membrane bound 
inclusions and fewer lysosomes and phagolysosomes were present: no significant 
differences were observed in the nuclear or cellular diameters of the BMs from normal- and 
sarcoidosis affected individuals. In patients with chronic obstructive pulmonary disease 
(COPD), the BMs were relatively small in size, contained little cytoplasm, and had a 
markedly high kario-cytoplasmic ratio (Fedosenko et al., 2010): these features improved 
after treatment with the drug tiotropium. In the bronchial mucosa of patients with chronic 
bronchitis, there was a significant number of BMs and T-lymphocytes in the lamina propria 
(Saetta et al., 1993): these cells may be involved in the pathogenesis of the disease.  

5. Dendritic cells (DCs) 

The DCs derive from bone marrow precursor cells and with their maturation, dependent on 
the extracellular microenvironments establish themselves as immature cells in tissues (e.g. 
Steinman, 1991; Reid, 1997; Hart, 1997; Banchereau and Steinman, 1998; Austyn 1998; 
Satthaporn and Eremin, 2001; Lipscomb and Masten, 2002; Geurtsvankessel and Lambrecht, 
2008; Fries and Griebel, 2011). Under appropriate signals, monocytes can differentiate into 
DCs (e.g. Banchereau and Steinman, 1998; Satthaporn and Eremin, 2001) which are potent 
antigen uptake, processing, and presenting cells (e.g. Belz et al., 2004; Harada et al., 2009; 
Bedoret et al., 2009). Highly specialized and notably heterogenous, DCs function as 
messengers and regulators between innate and acquired immunity (e.g. Reid, 1997; Hart, 
1997; Banchereau and Steinman, 1998; Austyn, 1998; Satthaporn and Eremin, 2001; Dzionek 
et al., 2000; Webb et al., 2005; McKenna et al., 2005; Lommatzsch et al., 2007, 2010; 
GeurtsvanKessel and Lambrecht, 2008; von Garnier and Nicod, 2009). Because DCs have the 
ability to induce a primary immune response in resting naïve T-lymphocytes and play a role 
in the maintenance of B-cell function and antigen memory (recall) responses (e.g. Webb et 
al., 2005; Bessa et al., 2009), they were called ‘professional antigen presenting cells’ by, e.g., 
Lipscomb and Masten (2002) and Liu (2005). To better assess incoming antigens for possible 
threat, mature DCs particularly occur in tissues that interface between the external- and the 
internal environments and are therefore greatly exposed to microbial pathogens, harmful 
particulates, and injurious gases. These include the skin, where the cells are called 
Langerhan’s cells [named after Paul Langerhan (1847-1888), a German physician, who first 
described them in the late 19th Century], the inner lining of the nose, the lungs, the stomach, 
and the intestines (e.g. Satthaporn and Eremin, 2001; Sallusto and Lanzavecchia, 2002; von 
Garnier and Nicod, 2009). Notable exceptions are the complete absence of the DCs in the 
cornea and the central nervous system (e.g. Steinman, 1991). DCs are a major source of 
many cytokines, e.g., interferon-┙ (IFN-┙) and the inflammatory protein MIP1g: both of 
these molecular factors are important in effecting primary immune response (e.g. Zhou and 
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Tedder, 1995; Devergne, 1996). In the different sites where they are located, DCs 
differentiate and become active in acquiring and processing antigens. The subsequent 
presentation on the host cell surface is associated with the major histocompatibility 
molecules (e.g. Meyer and Mack, 2003).  

The DCs are found in immature form in blood (e.g. Dzionek et al., 2000) (Fig. 35) and once 
they are activated, they migrate to the lymph nodes where they interact with the T- and B-
cells to initiate acquired immune response. In the lung, DCs exist in many subpopulations 
that are fine-tuned to different roles that maintain immune homeostasis. Infectious and 
inflammatory conditions can profoundly change functions, with steady-state DC subsets 
resulting in recruitment of inflammatory type DCs (e.g. Geurtsvankessel and Lambrecht, 
2008) which exert specific functions that can be associated with distinct expression of 
endocytotic receptors and cell-surface molecules, and the topographical location in the lung. 
During DC trafficking into the lung, blood DCs are preferentially recruited over blood 
monocytes (Klinke, 2006): for short-lived antigens, lung epithelial DCs that are derived from 
blood DCs exhibit a 62.5% increase in antigen density compared to those derived from the 
blood monocytes. The cells (DCs) are located within the bronchial epithelium and the 
pulmonary interstitium where they impinge on the innate immune system. CD11c-positive 
DCs are widely distributed in the alveolar region of the lung, with most of them displaying 
an immature phenotype (Gonzalez-Juarrero and Orme, 2001): the cells are capable of 
phagocytosing live Mycobacterium tuberculosis bacteria, leading to secretion of interleukin-12 
(IL-12) and stimulation of CD4-T cells to produce gamma interferon (IFN-┛). In steady-state 
(homeostatic) conditions, fine balance exists between the various functions of lung’s DC 
populations, a feature necessary for the maintaintence of immune homeostasis in the lung 
(GeurtsvanKessel and Lambrecht, 2008). On identification and internalization of pathogens, 
DCs move to the draining lymph nodes of the lung to instigate specific cellular and humoral 
immune responses. Extensive network of bone marrow-derived DCs exist in the mucosa of 
the nose and the large conducting airways, the alveolar lumen, and the connective tissue 
surrounding the blood vessels and the pleura (Holt et al., 1988, 1994; Schon-Hegrad et al., 
1991; van Haarst et al., 1994; Lambrecht et al., 1998; Gonzalez-Juarrero and Orme, 2001; von 
Garnier and Nicod, 2009). The migration of the airway DCs in response to an immunogenic 
stimulus is rapid (e.g. Havenith et al., 1993; Xia et al., 1995): within 12 hours, the lung 
derived DCs can be found in the T-cell area of draining mediastinal lymph nodes of the 
lung. Inflammatory diseases of the human lung are associated with the different phenotypes 
and the process of the recruitment of the airway DCs (Lommatzsch et al., 2007, 2010; 
Geurtsvankessel and Lambrecht, 2008; Vassallo et al., 2010). Regulation of galectin-3 in the 
lungs may represent one of the multiple potential mechanisms by which galectins contribute 
to modulation of the innate and acquired immune responses (Maldonado et al., 2011). 

The classical morphology of the DCs, i.e., that of having numerous membranous processes 
(projections) that extend out of the main cell body (Fig. 35), makes them highly motile. Also, 
it endows them with very large surface-to-volume ratio that permits them to contact and 
therefore adeptly sample (sense) vast parts of the surrounding environment. DCs contain 
abundant antigen processing organelles that include endosomes, lysosomes, and special 
granules. From their distinctive projections, the designation ‘dendritic cell’ was coined by 
Steinman and Cohn (1973) since the cells (DCs) resemble the dendrites of the neurones, 
although DCs are not associated with the nervous system and by extension the neuronal 
dendrites.  
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Fig. 35. Dendritic cells from the peripheral blood (arrows) showing cytoplasmic extensions 
(stars) that the cells use to move and sense the surrounding environment. Nu, nucleus. 
Courtesy of Dr. S.G. Kiama, University Nairobi, Kenya. Fig. 36: A pulmonary intravascular 
macrophage (arrow) in the lung of the rock dove, Columba livia, attached to the vascular 
endothelial cell (dashed circle). EC, endothelial cell; Er, erythrocyte; asterisk, basement 
membrane; arrow heads, mitochondria; IC, interstitial cells. Scale bars: Fig. 35, 15 μm;  
36, 10 μm.  

Depending on species, DCs are classified into myeloid DCs (mDCs) and plasmacytoid DCs 
(pDCs) (e.g. McKenna et al., 2005; Geurtsvankessel and Lambrecht, 2008; von Garnier and 
Nicod, 2009). The former are more common and are divided into an mDC-1 subpopulation 
which is the foremost stimulator of T-cells and the mDC-2 which are involved in wound 
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healing. Both groups of cells secrete IL-12 (interleukin-12) and express TLR-2 and TLR-4 

receptors (e.g. Sallusto and Lanzavecchia, 2002). The pDCs resemble plasma cells but have 
certain features similar to the mDCs (Vanbervliet et al., 2003; Liu, 2005): they can produce 
large amounts of interferon-┙. The functional specialization and the degree of maturation of 
the DCs are determined by the tissue environment and the tissue cells that DCs directly 
interact with (Wu and Liu, 2007). In the airways, DCs sense incoming airborne antigens by 
extending their dendrites through the epithelial cells that line the airway lumen (e.g. 
Jahnsen et al., 2006; Holt et al., 2008). Under normal (healthy = steady-state) conditions, in 
the alveolar space, 80% of the cells are PSMs, with the remainder comprising of T-cells and 
DCs (von Garnier et al., 2005). In the respiratory tract, resident DCs are deemed to be 
immature (von Garnier and Nicod, 2009). This signifies that the cells have optimal capacity 
of detecting, capturing, and processing inhaled antigens but have a low capacity of 
stimulating T-cells. In contrast to the B and T-lymphocytes, DCs have retained many of the 
pattern recognition receptors and are thus uniquely capable of sensing stimuli such as tissue 
damage, necrosis, and bacterial and viral infection (Webb et al., 2005; Klinke, 2006). The 
capacity of the lung’s DCs to influence specific CD-4 and CD-8 T-lymphocytes makes them 
suitable candidates for vaccine development strategies for treating and preventing 
conditions and diseases such as allograft rejection responses, allergy, and asthma, as well as 
autoimmune diseases and cancers (Fong and Engelman, 2000; Syme and Gluck, 2001; 
Sharma et al., 2003; Schott and Seissler, 2003; Decker et al., 2006; Sbiera et al., 2008). 

6. Pleural macrophages (PlMs) 

The PlMs are one of the pulmonary macrophage cell lineages that have been least studied 
(e.g. Brain 1992). Lehnert (1992) suggested that PlMs originate from peripheral blood 
monocytes that migrate across the mesothelial lining of the pleura. Meuret et al. (1980), 
Zlotnik et al. (1982) and Sestini et al. (1984) observed that PlMs were more morphologically 
similar to the peritoneal macrophages than to the PSMs. This may be attributed to the 
prevailing similarities and differences in the prevailing microenvironments (Brain, 1992) like 
the variation in the PO2 (Brain 1988). Frankenberger et al. (2000) noted that PlMs are a 
unique kind of tissue macrophage. Under normal physiological conditions, the pleural 
cavity is in a state of negative (subatmospheric) pressure: low oxygen (O2) tension (PO2) 
prevails in it. Pleural O2 exposure induces oxidative injury and aggravates latent systemic 
inflammatory response (Tsukioka et al., 2007). Resident PlMs sense perturbations in the 
local environment and initiate neutrophil infiltration (Cailheir et al., 2006). The drugs 
carrageenan and tetracycline prompt dramatic increase in PlMs (e.g. Sahn and Potts, 1978; 
Ackerman et al., 1980; Strange et al., 1989; Baumann et al., 1993) by recruiting monocytes 
from the peripheral circulation (Antony et al., 1985). In vivo experiments have demonstrated 
tumoricidal- (Basic et al., 1979; Nagashima et al., 1987), phagocytic- (Meuret et al., 1980; 
Zlotnik et al., 1982; Zlotnik and Crowle, 1982), and antimicrobial activities of the PlMs 
(Meuret et al., 1980; Hammerstrom, 1980; Zlotnik and Crowle, 1982). Compared to PSMs, 
the cells (PlMs) release prostaglandins E-1 and E-2 and respond differently to various 
cytokines (Sestini et al., 1984; Nagashima et al., 1987).  

Agostini et al. (1972) suggested that PlMs may function as roller bearings that allow smooth 
movement between the parietal- and the visceral pleura. The PlMs seem to be functionally 
important in both health and disease (Zlotnik et al., 1982; Zlotnik and Crowle, 1982). 
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Morphologically, a normal resident PlM has prominent intermediate intracytoplasmic 
filaments and numerous microvilli that may be involved in the adherence to the pleural 
surfaces (Baumann et al., 1993). From assessment of the uptake of latex beads, the 
phagocytic capacity of the PlMs is lower than that of the bronchoalveolar mononuclear 
phagocytes (BAMP) (that comprise of the BMs and the PSMs) and when cultured together 
with autologous pulmonary interstitial DCs, PlMs exert a more potent ability to stimulate T-
cell proliferation than the BAMPs (Gjomarkaj et al., 1999). Compared to the BAMPs, PlMs 
are less portent bactericidal and fungicidal cells (Gjomarkaj et al., 1999): functionally and 
phenotypically PlMs are different from the BAMPs and are similar to the peritoneal 
macrophages. PlMs play an important role in cell-mediated immune reactions in the pleural 
space (Gjomarkaj et al., 1999). Compared to the blood monocytes, PlMs seem to represent a 
cell-type intermediate between the regular CD-14(++) monocytes and the CD-14(+)CD-16(+) 
subset (Frankenberger et al., 2000). PlMs perform efficient Fc-receptor-mediated 
phagocytosis of antibody-coated sheep red blood cells and can inhibit apoptosis of 
malignant cells (Kaczmarek et al., 2008). 

7. Pulmonary intravascular macrophages (PIVMs) 

For the reasons that the PIMs are lacking in the lungs of most laboratory animals (e.g. 
Warner and Brain 1990; Warner, 1996; Brain et al., 1999) and since they are relatively less 
accessible for experimentation, the cells have not been as well-studied as the PSMs. 
Regarding their secretory, endolytic, and functional properties, PIVMs are a relatively newly 
identified constituent of the mononuclear phagocyte system. To date, for still unclear 
reasons, PIVMs have been reported mainly in the domestic mammals, especially in 
ruminant species like cattle, horse, goat, sheep, and pigs (e.g. Rybicka et al., 1974; Warner 
and Brain, 1984; Atwal and Saldanha, 1985; Wheeldon and Hansen-Flaschen, 1986; Warner 
et al., 1986; Winkler, 1988, 1989; Atwal et al., 1989, 1992; Warner and Brain, 1990; Longworth 
et al., 1994; Warner, 1996; Parbhakar et al., 2005; Molina and Brain, 2007) and in birds (Maina 
and Cowley, 1998) (Fig. 36). It is uncertain whether PIVMs occur in the human lung: while 
the cells were reported by Dehring and Wismar (1989), a comprehensive morphometric 
study of the human lung by Zeltner et al. (1987) didn’t report macrophage or macrophage-
like cells in the pulmonary capillaries. Particle uptake studies suggested that PIVMs may not 
exist in the human lung (e.g. Brain et al., 1999). 

The PIVMs have distinctive morphological features of differentiated macrophages like 
irregular shape, a bean-shaped nucleus, abundant lysosomal bodies, numerous 
mitochondria, profuse rough endoplasmic reticulum, fuzzy glycocalyx, phagosomes, and 
pseudopods (e.g. Wheeldon and Hansen-Flaschen, 1986; Warner et al., 1986; Winkler and 
Cheville, 1985, 1987). They have an electron dense coat that appears to be predominantly 
lipoproteinaceous in nature (Atwal et al., 1989). PIVMs form membrane adhesion complexes 
with the endothelial cells (Warner et al., 1986; Winkler and Cheville, 1987) and tend to attach 
onto the thicker parts of the BGB (Winkler, 1988; Winkler and Cheville, 1987), probably 
minimizing interference with gas exchange (by thickening the BGB) which occurs mostly 
across the thin parts. Moreover, it is possible that the thicker parts of the BGB provide better 
support than the thinner ones, preventing the cells from being easily dislodged by flowing 
blood. PIVMs are large in size (20 to 80 μm in diameter), are closely apposed to the 
endothelium of the pulmonary blood capillaries (Wheeldon and Hansen-Flaschen, 1986; 
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Brain et al., 1999), and are abundantly endowed with organelles like vesicles, endosomes, 
and Golgi apparatus (e.g. Atwal et al., 1992) (Fig. 36). The PIVMs form an important part of 
the defence of the vertebrate lung. In the pig, perinatally, in a process that is completed by 
the 7th day of birth, blood monocytes colonize the lung, replicate within the blood 
capillaries, and attach to the endothelium by intercellular junctions as they differentiate 
(Winkler and Cheville, 1985). By actively synthesizing, storing, and secreting vasoactive 
substances, PIVMs stimulate biosynthetic pathways that lead to secretion of inflammatory 
mediators which compound certain disease processes (e.g. Brain, 1986; Kelly, 1990). They 
actively remove particles, bacteria, and endotoxins from circulating blood (Wheeldon and 
Hansen-Flaschen, 1986; Warner and Brain, 1986; Warner et al., 1986; Winkler, 1989; Brain et 
al., 1999). While in dogs, laboratory animals, and human beings, clearance of bacteria and 
particulates from blood occurs mainly in the Kupffer cells of the liver and the splenic 
macrophages, in calves, sheep, goats, cats, and pigs, the process is performed by the PIVMs 
(e.g. Warner et al., 1987; Winkler, 1988; Brain et al., 1999). In the sheep lung, PIVMs form 
15.3% of the intravascular volume, attach onto 7.1% of the endothelial surface, and have 15.9 
m2 of their free surface available for contact with blood (Warner et al., 1986). Even in normal 
(steady-state) sheep lungs, there are more macrophages in their vast pulmonary blood 
vessels than on their alveolar surface and compared to the PSMs the PIVMs are relatively 
more actively phagocytic (Warner et al., 1986). In the deer, PIVMs are more than twice the 
number of PSMs but PIVMs are much smaller (47.625m2) than the PSMs (101.260m2) 
(Carrasco et al., 1996).  

The PIVMs have been implicated in the vascular inflammation that results in 
lipopolysaccharide (LPS)-induced lung inflammation and endotoxemia in the horse 
(Aharonson-Raz and Singh, 2010), rat (Gill et al., 2008), and sheep (Warner et al., 1986, 1987) 
and with the oedema that occurs in the horse after infection with the African horse sickness 
virus (Carrasco et al., 1999). While in the newborn pig clearance of blood-borne bacteria (as 
well as carbon) is only ~10% of the injected dose (Mouton et al., 1963), in pigs of 15 to 20 kg 
body mass (~20-month old), 75% of intravenously infused bacteria (depending on species of 
bacteria) are cleared in the lungs (Wismar et al., 1984; Dehring et al., 1983). PIVMs play a 
significant role in regulating pulmonary blood flow, i.e., hemodynamics (e.g. Winkler 1989): 
stimulation of phagocytosis causes the PIVMs to increase in size thus narrowing or blocking 
the lumina of blood vessels (Winkler and Cheville, 1985). In pigs as well as calves and sheep, 
this increases resistance to blood flow, leading to pulmonary hypertension (Tucker et al., 
1975; Atwal et al., 1989) and pulmonary oedema (Niehaus et al., 1980). Bovine PIVMs 
contain TNF-┙ (tumour necrotic factor) and their depletion significantly inhibits 
accumulation of inflammatory cells and pathology in acute lung disease in calves (Singh et 
al., 2004). In ruminants, PIVMs are involved in lipid metabolism and are the major source of 
vasoactive substances which significantly influence the dynamics of pulmonary circulation 
and surfactant turn over in the type-2 cells (Atwal et al., 1989).  

8. Conclusion and future directions  

Although substantial progress has been made in understanding the physical and functional 
phenotypes of macrophages in the lung, the knowledge remains scanty. This is evinced by 
lack of significant breakthroughs in the management and treatment of diseases like acute 
respiratory distress syndrome (ARDS). Furthermore, the specific functions performed by the 
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different pulmonary macrophage lineages and the manner in which these cells communicate 
remain unclear.  

Animals have evolved in close association with microorganisms some of which are harmful: 
intense selective pressure by the pathogens on the animal hosts and vice-versa has and 
continues to happen. In a critical encounter, when a pathogen contacts a host, a struggle 
between it and the host ensues. The outcome is infection and blatant disease or the pathogen 
is neutralized and eliminated. Successful microbial pathogens have been adept in 
developing means and strategies of evading the host defences while successful hosts have 
developed novel defence systems. Understanding the underpinnings behind the evolution 
of microbial pathogenicity and the intricate ways that animals counteract pathogens is vital 
in designing strategies of controlling microbial infection and stopping disease progression. 
Few other organs in the body are as well- and strategically protected as the lung: a cellular 
defence arsenal exists. From outside to inside are the pleural-, the intravascular, the 
interstitial-, and the surface (free) macrophages and along the airways (bronchi) are the 
bronchial macrophages, the dendritic cells, and the epithelial cells. This intricate level of 
protection has mainly developed because of the vast respiratory surface area that is 
constantly ventilated with air (which depending on locality contains harmful particulates 
and pathogenic microorganisms) and the fact that the lung is the only organ in the body 
which is perfused by the entire cardiac output, a feature that places it at greater risk from 
blood borne injurious agents. The biology of phagocytes and antigen presenting cells should 
provide insights on the pathogenesis of pulmonary diseases and may explain why some 
diseases, including the zoonotic ones, affect certain animal species and groups and not 
others. Important as it is, the area of comparative immunology offers much to be 
investigated. 
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