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1. Introduction 

To be useful, industrial robots must meet positioning accuracy requirements for their given 
applications. Most industrial robots can return repeatedly to the same location in space quite 
precisely; they typically meet published repeatability specifications on the order of 0.5 mm. 
On the other hand, most industrial robots cannot move as precisely to a specified (x, y, z) 
position in space; they typically meet published accuracy specifications roughly an order of 
magnitude higher (typically 10 mm or worse) (Owens, 1994).  

In many cases, published repeatability specifications meet positioning accuracy needs in 

industrial robot applications such as spot welding, spray painting, and assembly. However, 

published positioning accuracy specifications often do not meet industry needs, when using 

off-line programming rather than manual teaching methods. As a result, to meet application 

positioning accuracy requirements, most robot users turn to off-line calibration to bring 

positioning accuracy close to robot repeatability levels (Owens, 1994). Off-line calibration 

generally consists of the following five steps: 

1. Move the robot into several poses (positions and orientations).  

2. Measure and record the precise 3D workspace coordinates of the robot tool center 

point (TCP) at each pose. 

3. Read and record the corresponding position of the robot, from the robot controller, at 

each pose. 

4. Use the differences between measured 3D workspace coordinates and corresponding 

positions read from the robot controller to correct the parameters in the kinematic 

model used by the controller to position the robot. 

5. During robot operation, use the corrected kinematic model to compute adjusted 

positions in space and then command the robot to move to the adjusted positions 

(which causes the robot to move to the actual desired positions). 

The number of calibration poses used and the corresponding link positions for each pose 

must be selected to provide the information needed to accurately compute the kinematic 

model parameters (Robinson, Orzechowski, James, & Smith, 1997). For example, Owens 

(1994) used 25 different poses, while Rocadas and McMaster (1997) used 50 different poses.  

To measure pose positions precisely enough to complete off-line calibration, robot manufacturers 

generally use expensive measurement devices, such as theodolites, coordinate measurement 

machines, or laser tracking systems (Mayer & Parker, 1994; Nakamura, Itaya, Yamamoto, & 

Source: Industrial Robotics: Programming, Simulation and Applicationl, ISBN 3-86611-286-6, pp. 702, ARS/plV, Germany, December 2006, Edited by: Low Kin Huat
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Koyama, 1995; Owens, 1994). Such systems generally cannot be used for recalibrating robots in 

factory environments, due to cost and space limitations. However, recalibration may be needed 

after robot repair, collisions with the workpiece or other objects in the workspace environment, or 

over time as encoders or servo systems drift (Owens, 1994).  

As a result, prior research offers many low-cost systems for calibrating robots off-line within 

factory environments. Low-cost methods for measuring robot position during calibration 

include cables (Owens, 1994), cameras (van Albada, Lagerberg, & Visser, 1994), dial gauges 

(Xu & Mills, 1999), and trigger probes with constraint planes (Zhong & Lewis, 1995). 

After off-line calibration, industrial robots, run open-loop without additional control or 

intervention, have met the in-process accuracy needs of most current industrial applications 

(spot welding, material handling, workpiece handling, and assembly).  

When open-loop use of robots has not met a given industrial application’s needs, closed-

loop control or passive compliance has been used. For example, for arc welding, laser-based 

vision systems have been used to locate and track welding seams (Agapakis, Katz, 

Friedman, & Epstein, 1990). For assembly, passive compliance devices, such as remote 

center compliance (RCC) devices, have been used to align components for mating 

(Bruyninckx et al., 2001; Boubekri & Sherif, 1990). 

However, on-line sources of robot position error have been largely ignored. Collisions with the 

workpiece or other objects in the workplace environment, encoder errors, or servo drift can cause 

robot position to drift out of specification, leading to product faults, scrap, machine damage, and 

additional costs. Without in-process monitoring, in-process robot position errors are generally not 

detected until product faults are detected during product inspection. 

Generally, sensors and methods used for calibrating robots cannot be used for in-process 

monitoring, because the mechanisms interfere with in-process robot operation (e.g., cable 

measuring systems, pointers, and calibration plates) or do not work well during in-process 

operations.  Thus, typically, the only counter measures currently used to prevent in-process 

errors are regularly scheduled robot recalibration or production line stops when product 

faults are detected in inspection. However, detecting product faults after they occur is 

costly. Regular calibration, when not needed, is also expensive. Shop-floor recalibration of a 

single robot can take up to six hours or more (Owens, 1994). The wasted manpower time 

spent is an unnecessary excess cost. 

To achieve greater operational efficiencies, new non-invasive, non-contact methods for 

monitoring in-process robot position are needed (Caccavale & Walker, 1997). Early work 

focused on using model-based methods, with existing built-in robot joint position and 

velocity sensors, to detect errors with respect to ideal dynamic observer or parameter 

estimation models (Caccavale & Walker, 1997). However, modeling accuracy, sensor 

characteristics, computational loads, and response times can limit the sensitivity and 

usefulness of model-based methods (Visinsky et al., 1994). 

As an alternative, optical methods, with external sensors, such as laser systems, cameras, or 

machine vision systems, have also been proposed (e.g., Dungern & Schmidt, 1986). 

However, optical systems can also suffer from severe limitations. Laser and optical sensors 

can be difficult to place, since their optical paths to robot end effectors are easily blocked by 

workpieces or parts of the robot. In addition, smoke or sparks from welding, or fluids in 

other manufacturing processes, can interfere with proper laser and optical sensor operation. 
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2. Purpose 

To overcome the limitations of optical position monitoring methods, the investigator 
developed a simple, low-cost method for detecting in-process robot position errors, which 
uses a low-cost Doppler motion detector unit placed at one or more critical robot work 
positions. The small detector can be easily located near critical work positions. Detector 
position and line of sight are not critical, since the detector measures and generates electrical 
signals due to large-scale robot motion, rather than precise robot end effector position.  
Motion signals from the motion detector unit (MDU) are monitored as a time series, and 
statistical quality control methods indicate when robot position drift or other process faults 
occur. When faults are detected, signals can be generated to halt the robot and trigger 
alarms. Alarms signal the need for robot service or recalibration. Halting the robot at the 
earliest sign of possible position errors can help prevent product faults, scrap, machine 
damage, and additional costs.  
The method may be more robust, in industrial environments, than optical condition monitoring 
methods, since radar signals can penetrate smoke, light, and other optical contaminants. 

3. Experimental Setup 

Figure 1 shows the experimental setup used to develop and test the proposed position 
error detection method. A Seiko D-TRAN RT-2000 robot was used for testing. The 
Seiko robot has a cylindrical configuration with four axes R (radial), T (rotational), Z 
(vertical), and A (gripper rotation).  

 
Fig. 1. Experimental setup. 

Table 1 shows published repeatability and resolution specifications for each of the four 
robot axes. Robot reach in the R direction is 597 mm (23.5 in), maximum rotation about the 

T-axis is ± 145 degrees, stroke in the Z direction is 120 mm (4.72 in), and maximum rotation 

about the A-axis is ± 145 degrees.  
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The given robot controller stores a single calibration constant related to the fully extended length 
of the robot R axis. To calibrate the robot, the user must attach a rigid fixture, which has a precise 
length, to the robot and reset a stored calibration constant. Subsequently, on power-up the robot 
must be homed to recalibrate the robot TCP to the zero location of the workspace coordinate 
system. Homing moves the robot in each of the four axes to fixed limit switches and, thus, 
recalibrates the robot’s internal servo encoders for the power-on position of the TCP zero point. 
Other commercial industrial robots use similar means to re-adjust the TCP to an accurate zero 
location. For example, Motoman, Inc. uses a special fixture (ToolSight) containing three LED 
sensors to re-center their welding robots (Forcinio, 1999). 

Axis Repeatability Resolution 

R ± 0.025 mm (0.001 in) 0.025 mm (0.001 in) 

T ± 0.025 mm (0.001 in) 0.003 deg 

Z ± 0.025 mm (0.001 in) 0.012 mm (0.0005 in) 

A ± 0.025 mm (0.001 in) 0.005 deg 

Table 1. Seiko D-TRAN RT-2000 repeatability and accuracy specifications. 

For the experiments conducted, after robot homing, the robot was commanded to move from 
home position to a test point in the robot workspace coordinate system. As shown in Figure 2, a 
dial gauge, with a scale in English units, was used to accurately measure relative robot positions 
around the given test position. Figure 2 also shows the sensor circuit, composed of a Doppler 
radar motion detector and a low-pass filter, which was developed for measuring robot motion. 
The Doppler radar motion detector used was a model MDU 1620 Motion Detector Unit from 
Microwave Solutions (http://www.microwave-solutions.com). 

 
Fig. 2. Sensor circuit. 

The MDU 1620 is an X-band (10.525 GHz) microwave transceiver that uses the Doppler shift 
phenomenon to “sense” motion (Microwave Solutions, 2002). The MDU 1620 Motion 
Detector Unit produces an intermediate frequency (IF) output signal with frequency 
proportional to the velocity of the moving object.  IF output signal amplitude varies as a 
complex function of the size and reflectivity of the sensed object and the object’s distance 
from the MDU (Microwave Solutions, 2002). 
An Omega DaqP-308 data collection system was used to sample the output signal from the Doppler 
motion detector/low-pass filter combination. After each command issued to move the robot from 

www.intechopen.com



A Non-Contact Method for Detecting On-Line Industrial Robot Position Errors 377 

home position to the test position, the output signal from the Doppler motion detector/low-pass 
filter combination was measured for 4 seconds with a 0.1 msec sampling period (10 kHz sampling 
frequency). As a result, according to the Nyquist Theorem, the sampled data can be used to 
reconstruct frequency components up to 5 kHz in the original signal (Swanson, 2000).  
To prevent aliasing during sampling, an electronic filter was used to band-limit the output signal 
from the Doppler radar motion detector before sampling, as shown in Figure 3. The low-pass filter 
uses an amplifier stage to increase motion detector output signal level, a fourth-order low-pass 
filter stage to band limit the measured signal and to eliminate high-frequency noise, and a final 
amplifier stage to match the output of the filter to the input range of the data collection system.  

 
Fig. 3. Electronic filter. 

 
Fig. 4. Magnitude of electronic filter frequency response. 

Figure 4 shows the theoretical frequency response of the filter. To meet the Nyquist 
sampling criterion, Swanson (2000) recommends using a band-limiting filter with an upper 
cut-off frequency which is roughly 0.4 times the sampling frequency. Thus, filter 
components were chosen such that the cut-off frequency of the fourth-order low-pass filter 
is 3.39 kHz (Millman & Halkias, 1972).  
Captured data was analyzed using MathWorks Matlab (Version 6.5.0.1924 Release 13) 
and SAS JMP 5.  
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Five experiments were run to develop and test the proposed method for detecting on-line robot 

position errors in a single axis direction. Future studies will consider multi-axis robot position 

errors. Experiments 1 and 2 were run to verify that the robot used for testing met the 

manufacturer’s published repeatability and resolution specifications, to verify that a dial gauge 

could be used to precisely measure robot position, and to characterize the drift characteristics of 

the robot over an extended period of cycling. Experiment 3 was run to develop a measure of robot 

position from sensor signals and to determine the precision of the sensor signal measure for robot 

moves to a single test position. Experiment 4 was run to establish a linear regression relationship 

between the robot position measure, which was developed in Experiment 3, and actual (induced) 

robot position errors. Experiment 5 was run to develop a robot position error detection model, 

from Experiment 3 and Experiment 4 results, and to test the prediction model for random robot 

moves about a single test position. The same experimental setup was used for all five experiments. 

The results of each experiment were used to adjust subsequent experiments, if needed. Since an 

incremental methodology was used, intermediate conclusions are reported with results from each 

experiment. Final conclusions are reported in the conclusions section at the end of the paper. 

4. Experiment 1 

The objectives of Experiment 1 were to:  

1. Experimentally verify the repeatability of the Seiko D-TRAN RT-2000 robot used for 

testing,  

2. Experimentally verify that a dial gauge can be used to precisely measure robot 

position, and 

3. Experimentally determine if there is significant drift in the robot during cycling. 

The method used to experimentally determine robot repeatability and drift characteristics 

consisted of five steps: 

1. Command the robot to move to a test position 20 times,  

2. Measure the position of the robot using a dial gauge,  

3. Cycle the robot, between the workspace origin and the test position, for 3 hours,  

4. Command the robot to move to the test position 20 times. 

5. Measure the position of the robot using a dial gauge. 

To simplify experimental setup and testing, the robot was moved to minimum Z-axis 

position, fully extended in the R-axis direction, and then commanded to move cyclically, in 

the T-axis direction only, between home position and a test point. The test point selected 

was with the robot at minimum Z-axis position, fully extended in the R-axis direction, and 

rotated to the 90-degree T-axis position. Minimum Z-axis position was selected to minimize 

distance between the sensor and the end effector, at the given test point. The fully-extended 

R-axis position was chosen to increase the potential for position errors, since, for the given 

robot, position accuracy decreases with distance from the workspace origin (Seiko, 1986). 

The 90-degree T-axis position was chosen so that the sensor could be mounted on the same 

table as the robot, to minimize potential sensor measurement errors due to robot vibrations.  

Table 2 shows robot position dial gauge measurements taken at the test position before and 

after cycling the robot for 3 hours. Step 0, in Table 2, indicates the initial position to which 

the dial gauge was set, with the robot resting at the correct test position.  

A one-way analysis of variance between the two groups of data shows that there is evidence of a 

statistically significant difference between the two group means (α = 0.05, p-value < 0.001). 
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Step Before Cycling (inches) After Cycling (inches) 

0 0.501 -
1 0.503 0.501 
2 0.503 0.502 
3 0.502 0.501 

4 0.503 0.501 
5 0.503 0.501 
6 0.503 0.501 
7 0.502 0.502 
8 0.503 0.503 
9 0.502 0.501 

10 0.502 0.502 
11 0.502 0.502 
12 0.503 0.502 
13 0.502 0.502 
14 0.503 0.501 
15 0.502 0.502 

16 0.503 0.501 
17 0.503 0.502 
18 0.502 0.501 
19 0.502 0.501 
20 0.502 0.502 

Table 2. Robot position dial gauge measurements for Experiment 1. 

The mean for the Before Cycling group is 0.50243 inches (with a 95% confidence interval of 

0.50216 – 0.50270 inches), and the mean for the After Cycling group is 0.501550 inches (with 

a 95% confidence interval of 0.50127 – 0.50183 inches). The difference between the two 

means is 0.00088 inches. With 95% confidence, a reasonable value for the difference between 

means lies between 0.00050 and 0.00126 inches. For the given robot, a reasonable value for 

the difference between robot position means, before and after 3 hours of cycling, lies 

between 0.00050 and 0.00126 inches. Experiment 1 results indicate that: 

1. The robot appears to meet Seiko’s published repeatability specification (0.025 mm or 

0.001 inch), for measurements taken at a single time instance (before cycling or after 

cycling). 

2. The dial gauge can be used to measure robot position precisely, (within 

approximately the robot repeatability specification). 

3. There is evidence that the robot may drift slightly with extended cycling (3 hours). 

The upper limit of the 95% confidence interval for the difference between before 

cycling and after cycling means (0.00126 inches) is greater that the robot repeatability 

specification (0.001 inch), indicating that, with 95% confidence, a drift of 0.00026 

inches beyond the robot repeatability specification could occur. As a result, an online 

method for detecting position errors might be useful for the given robot.  

Since the time needed to induce a position error by cycling was relatively long, and since the 

magnitude of the error measured for Experiment 1 was relatively small compared to the 

robot repeatability specification, for Experiments 2-5, robot position errors were simulated 

by commanding the robot to move to positions slightly away from the test position. 
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5. Experiment 2 

The objective of Experiment 2 was to: 

1. Experimentally verify that the dial gauge could accurately detect single-axis robot 

position errors, for the given robot. 

The method used to experimentally verify that the dial gauge could accurately detect single-

axis position errors consisted of two steps: 

1. Command the robot to move to the test position +/- 0.03 T-axis degrees, in 0.003 

degree increments (the robot’s T-axis accuracy specification is 0.003 degrees, which 

corresponds to 0.001 inches at the given test position). 

2. Measure the position of the robot using the dial gauge. 

Table 3 shows the 21 positions about the test point to which the Seiko D-TRAN RT-2000 

robot was commanded to move (values in millimeters), as well as the corresponding dial 

gauge measurements (in inches). Note that the robot takes position commands as (x, y, z) 

Cartesian coordinate values, with (x, y, z) values in millimeters. 

An analysis of variance shows evidence of a statistically significant relationship between 

dial gauge measurements and degree values (α = 0.05, p-value < 0.0001).  

Step Position X Y Dial Gauge 

1 -89.970 0.313 -597.056 0.488 
2 -89.973 0.281 -597.056 0.490 

3 -89.976 0.250 -597.056 0.492 
4 -89.979 0.219 -597.056 0.492 
5 -89.982 0.188 -597.056 0.494 
6 -89.985 0.156 -597.056 0.495 
7 -89.988 0.125 -597.056 0.497 
8 -89.991 0.094 -597.056 0.499 

9 -89.994 0.063 -597.056 0.500 
10 -89.997 0.031 -597.056 0.501 
11 -90.000 0.000 -597.056 0.502 
12 -90.003 -0.031 -597.056 0.504 
13 -90.006 -0.063 -597.056 0.506 
14 -90.009 -0.094 -597.056 0.507 

15 -90.012 -0.123 -597.056 0.508 
16 -90.015 -0.156 -597.056 0.509 
17 -90.018 -0.188 -597.056 0.511 
18 -90.021 -0.219 -597.056 0.513 
19 -90.024 -0.250 -597.055 0.514 
20 -90.027 -0.281 -597.055 0.515 

21 -90.030 -0.313 -597.055 0.516 
Table 3. Robot position dial gauge measurements for Experiment 2. 
Equation 1 gives the equation of the least squares line shown in Figure 5: 

 Predicted dial gauge value = -41.69 – 0.4688 * Robot position (1) 

The model explains 99.74% of the variability in dial gauge measurements. Random 
measurement errors or other unexplained factors account for only a small amount of the 
observed variability in the data. 
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Experiment 2 results indicate that: 
1. The Seiko D-TRAN RT-2000 robot appears to meet the published T-axis resolution 

specification (0.003 degrees). In other words, the robot can be accurately commanded 
to positions that differ by as little as 0.003 degrees. 

2. The dial gauge can be used to detect given robot position errors to approximately the 
T-axis resolution specification. 

Based upon Experiment 2 results, the given experimental setup was used for the remaining 
planned experiments. 
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Fig. 5. Dial gauge measurements (inches) vs. robot T-axis position (degrees). 

6. Experiment 3 

The objectives of Experiment 3 were to: 
1. Develop a measure from sensor signal samples for determining robot position, 
2. Determine how well the sensor signal measure represents robot position,  
3. Establish a mean signal to represent the robot moving to the correct test position, and 
4. Calibrate the sensor for robot motions without position errors. 

The method used to experimentally achieve Experiment 3 objectives consisted of seven steps: 
1. Cycle the robot 20 times between home position and the nominal test position. 
2. Measure robot position with the dial gauge. 
3. Measure the sensor signal as the robot moves between home and the nominal test 

position. Sample the sensor signal at 0.1 msec intervals. 
4. Average the values of the 20 sensor signals at each sampling time step to find the 

mean sensor signal value at each sampling time step. 
5. Compute a root sum of squares error measure for each of the 20 sensor signals by 

summing squared error for each time sample with respect to the mean sensor signal 
value at each sampling time sample. 

6. Compare standard deviation of the root sum of squares error measure for the 20 
sensor signals to standard deviation of the 20 dial gauge readings. 

7. Use the mean sensor signal and the standard deviation of the root sum of squares 
error measure as a sensor calibration standard for proper robot motion. 

Figure 6 shows three representative sensor calibration signals, ci and the mean calibration signal cm.  
Figure 7 shows an expanded view of Figure 6 in the region near 2.5 seconds. The signals in 
Figures 6 and 7 were filtered, in Matlab, to remove any DC bias. The mean value of each 
signal was computed and subtracted from each of the signal’s sample values.  
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Fig.  6. Calibration signals and calibration mean. 

 
Fig. 7. Expanded view of Figure 6 near 2.5 seconds. 
A frequency spectrum computed for calibration signal c10 shows that the sensor output 
signals for robot motion between home position and the test position are band limited to 
frequencies less than approximately 25 Hz. Therefore, the sampling period (0.1 msec) was 
more than adequate for accurately capturing signal content without aliasing. 
To meet Experiment 3 objectives, each of the 20 filtered calibration signals were represented 
as an array of real numbers 
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As a measure of individual signal variation with respect to the mean of all 20 signals, a root-
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The 10,001 samples between 2.5 and 3.5 seconds were used, rather than all 40,000 samples, to 

reduce computation time and to improve signal-to-noise ratio. Table 4 shows the 20 
i

RSSc  

measurements and the 20 corresponding dial gauge measurements taken for Experiment 3. 
An analysis of variance indicates that there is no statistically significant relationship 

between  iRSSc  and dial gauge measurements (α = 0.05, p-value = 0.5462). The analysis of 

variance indicates that, with 95% confidence, variation in both measures is probably due to 

random measurement error. Mean for the 20 iRSSc  is 2.98, and standard deviation for the 20 

iRSSc  is 2.01. Mean for the 20 dial gauge measurement is 0.50015, and standard deviation 

for the 20 dial gauge measurements is 0.00049.  
Experiment 3 results indicate that: 

1. The dial gauge is a more precise method for measuring robot position at the given 
test point. 

2. However, if the sample of 20 calibration signals accurately represents the population 
of all sensor signals produced by the robot moving to the given test position, the 

i
RSSc  measure developed may be usable for non-invasive non-contact in-process 

robot position error detection, using statistical X  control chart techniques.  

For the 
i

RSSc  measure to be useable as an X  chart quality measure, when errors occur, 

individual iRSSc  measures, on average, must lie at least three standard deviations from the 

mean for the 20 sensor calibration signals (9.01 or larger) (Besterfield, 2001). 

Signal 
iRSSc  Dial Gauge 

c1 11.2241 0.500 

c2 3.2244 0.499 

c3 2.7502 0.500 

c4 3.2171 0.500 

c5 2.9028 0.500 

c6 2.3334 0.500 

c7 1.9100 0.500 

c8 1.3153 0.501 

c9 1.9060 0.500 

c10 2.4277 0.500 

c11 2.1314 0.500 

c12 1.9294 0.500 

c13 2.1702 0.501 

c14 2.5620 0.500 

c15 2.5384 0.500 

c16 3.0110 0.501 

c17 2.9737 0.501 

c18 3.3289 0.500 

c19 2.7221 0.500 

c20 2.9593 0.500 

Table 4. Error measures for calibration signals. 
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7. Experiment 4 

The objectives of Experiment 4 were to: 
1. Determine the feasibility of using sensor signals to detect in-process robot position 

errors, and 
2. Experimentally establish a relationship between position errors and sensor signals. 

The method used to achieve Experiment 4 objectives consisted of three steps: 
1. Command the robot to move from the home position +/- 0.03 T-axis degrees to the 

test position +/- 0.03 T-axis degrees, in 0.003 degree increments (the robot’s T-axis 
accuracy specification is 0.003 degrees). 

2. Measure the position of the robot using a dial gauge. 
3. Simultaneously measure the signal (ei) generated by the sensor. 

The robot was commanded to move from offset positions about the home position to 
offset positions about the test position to simulate on-line position errors that would 
occur due to collisions with the workpiece or other objects in the workplace 
environment, encoder errors, or servo drift. 
Data collected from Experiment 3 and Experiment 4 was analyzed using statistical methods 
to establish a relationship between position errors and sensor signals. The resulting 
relationship was then used to detect or predict on-line robot position errors (Experiment 5).  
The robot was commanded to move incrementally to 21 positions about, and including, the 
test position. For Experiment 4, due to the time required to collect and process collected data 
by hand, a single replication of the experiment was conducted. However, to determine the 
repeatability of Experiment 4 measurements, for Experiment 5, the robot was commanded to 
move to the same 21 positions, but in random, rather than incremental, order. 
Figure 8 shows three representative sensor error signals, ei and the mean sensor calibration 
signal cm. Figure 9 shows an expanded view of Figure 8 in the region near 2.5 seconds. Table 
5 shows the 21 positions from which the robot was commanded to move, the 21 positions to 
which the robot was commanded to move, and the corresponding final robot workspace x-
coordinate values to which the robot was commanded to move.  The final robot workspace 
y-coordinate values were the same for all 21 positions to which the robot was commanded to 
move (-597.056 mm). Table 5 also shows the 21 resulting iRSSe  measurements and the 21 
corresponding dial gauge measurements for Experiment 4.  

 
Fig. 8. Error signals and calibration mean. 
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Fig. 9. Expanded view of Figure 8 near 2.5 seconds. 

Signal From To x-coordinate 
iRSSe  Dial Gauge 

e1 0.030 -89.970 0.313 24.1117 0.487 

e2 0.027 -89.973 0.281 24.0249 0.489 

e3 0.024 -89.976 0.250 23.7619 0.489 

e4 0.021 -89.979 0.219 23.5060 0.491 

e5 0.018 -89.982 0.188 22.8818 0.493 

e6 0.015 -89.985 0.156 21.1411 0.494 

e7 0.012 -89.988 0.125 20.9980 0.496 

e8 0.009 -89.991 0.094 20.6291 0.497 

e9 0.006 -89.994 0.063 21.6124 0.498 

e10 0.003 -89.997 0.031 21.0818 0.500 

e11 0.000 -90.000 0.000 5.6112 0.501 

e12 -0.003 -90.003 -0.031 20.9378 0.503 

e13 -0.006 -90.006 -0.063 19.1932 0.504 

e14 -0.009 -90.009 -0.094 20.5077 0.506 

e15 -0.012 -90.012 -0.123 17.2669 0.507 

e16 -0.015 -90.015 -0.156 17.1234 0.508 

e17 -0.018 -90.018 -0.188 16.9160 0.509 

e18 -0.021 -90.021 -0.219 16.6139 0.511 

e19 -0.024 -90.024 -0.250 16.0514 0.512 

e20 -0.027 -90.027 -0.281 15.0220 0.514 

e21 -0.030 -90.030 -0.313 13.9787 0.516 

Table 5.  iRSSe  and dial gauge measurements for Experiment 4. 

Figure 10 shows the 21 iRSSe  measurements plotted as a function of the 21 corresponding 

final robot workspace x-coordinate values to which the robot was commanded to move. 

Figure 10 also shows the iRSSe  error detection limit established in Experiment 3 (9.01). 

iRSSe  measurements were calculated using the procedure described for Experiment 3: 
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Fig. 11. 

i
RSSe  vs. robot workspace x-coordinate values for position errors. 

 ( ) ( )[ ]∑
=

−=

35000

25000

2

n

mii ncneRSSe  (5) 

Figure 9 shows that sensor signals for both positive and negative final robot workspace x-
coordinate values lag the calibration mean cm, whereas e11, the signal generated when the robot 
moves without offset from the home and test positions, closely matches the calibration mean. Both 
positive and negative final robot workspace x-coordinate values may lead to signals that lag the 
calibration mean because the generated sensor signals depend on both the distance between the 
sensor and the moving robot arm and the velocity of the moving robot arm. 
Figure 10 shows that the 

i
RSSe  measures calculated for any of the offset robot motions 

exceed the single-point error limit established in Experiment 3. The method detects any 
induced robot position errors, to the repeatability specification of the robot. In addition, by 
excluding the point in Figure 10 corresponding to e11, the non-error condition signal, an 
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analysis of variance shows evidence of a statistically significant relationship between iRSSe  

measurements and commanded final x-coordinate values (α = 0.05, p-value < 0.0001). 
Equation 6 gives the equation of the least squares line shown in Figure 11: 

 Predicted iRSSe  = 19.87 + 15.31 * x-coordinate (6) 

The model explains 93.21% of the variability in iRSSe  measurements. Random 

measurement errors or other unexplained factors account for only a small amount of the 

observed variability in the data. 

Experiment 4 results indicate that: 

1. Sensor signals can be used to detect single-axis on-line robot position errors at robot 

repeatability levels. 

2. There is evidence of a statistically significant relationship between the error 

measure developed and actual robot position error. The relationship might 

allow not only detecting robot position errors, but also determining the 

directions and magnitudes of errors. 

The original intention of the study was to develop a low-cost robust method for simply 

detecting on-line robot position errors. Results show that the proposed method can 

detect on-line position errors with 100% accuracy at robot repeatability levels. In 

addition, the linear relationship between the error measure developed and actual robot 

position error indicates that the method may provide additional capabilities, beyond 

position error detection. 

In future studies, the proposed method can be improved by fully automating the data 

collection and analysis process and repeating the Experiment 3 process. In addition, the 

unexpected advanced error detection capabilitites of the method can be improved by 

replicating the Experiment 4 process to help reduce the effects unexplained variability on 

the linear error prediction model. 

8. Experiment 5 

The objective of Experiment 5 was to: 

1. Test the robot position error detection model developed in Experiment 4. 

The method used to test the error detection model consisted of six steps: 

1. Command the robot to move from the home position +/- 0.03 T-axis degrees to 

the test position +/- 0.03 T-axis degrees, in 0.003 degree increments, and in 

random order. 

2. For each move, measure the position of the robot using a dial gauge. 

3. Simultaneously measure the signal (ri) generated by the sensor. 

4. Calculate the error detection measure ( iRSSr ) for the given sensor signal. 

5. For each output signal, use the developed error detection model to predict whether 

or not the robot was in an error condition.  

6. Compare error detection model predictions to actual robot positions to determine the 

system’s capability for detecting position errors. 

Table 6 shows the 21 positions from which the robot was commanded to move, the 21 

positions to which the robot was commanded to move, and the corresponding final robot 
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workspace x-coordinate values to which the robot was commanded to move. The final robot 

workspace y-coordinate values were the same for all 21 positions to which the robot was 

commanded to move (-597.056 mm).  

Signal From 
(Degrees) 

To 
(Degrees) 

X-Coordinate 
(Mm) 

iRSSr  Dial Gauge 
(Inches) 

r1 -0.030 -90.030 -0.313 15.5917 0.515 

r2 0.000 -90.000 0.000 6.9508 0.502 

r3 -0.027 -90.027 -0.281 15.8215 0.514 

r4 -0.015 -90.015 -0.156 19.4724 0.508 

r5 -0.024 -90.024 -0.250 16.5845 0.513 

r6 0.018 -89.982 0.188 25.6551 0.493 

r7 0.021 -89.979 0.219 25.6022 0.491 

r8 0.027 -89.973 0.281 26.9904 0.489 

r9 -0.021 -90.021 -0.219 18.4504 0.511 

r10 -0.018 -90.018 -0.188 18.2697 0.510 

r11 0.006 -89.994 0.063 22.2440 0.498 

r12 0.012 -89.988 0.125 23.5641 0.496 

r13 0.030 -89.970 0.313 27.1052 0.488 

r14 0.024 -89.976 0.250 25.5870 0.491 

r15 -0.003 -90.003 -0.031 22.8124 0.504 

r16 0.009 -89.991 0.094 23.5282 0.498 

r17 -0.009 -90.009 -0.094 20.8457 0.506 

r18 -0.012 -90.012 -0.123 20.3149 0.506 

r19 -0.006 -90.006 -0.063 22.2316 0.504 

r20 0.015 -89.985 0.156 24.6732 0.494 

r21 0.003 -89.997 0.031 23.0340 0.501 

Table 6. iRSSr  and dial gauge measurements for Experiment 5. 
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Fig. 12. RSSri vs. robot workspace x-coordinate values. 
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Table 6 also shows the 21 resulting iRSSr  measurements and the 21 corresponding dial 

gauge measurements for Experiment 5. 

Figure 12 shows the 21 iRSSr  measurements plotted as a function of the 21 corresponding 

final robot workspace x-coordinate values to which the robot was commanded to move. 

Figure 12 also shows the iRSSe  error detection limit established in Experiment 3 (9.01). 

iRSSr  measurements were calculated using the procedure described for Experiment 3: 

 ( ) ( )[ ]∑
=

−=

35000

25000

2

n

mii ncnrRSSr
 (7) 

From Experiment 3 results, the error detection model predicts a robot position error for any 
RSSri value greater than 9.01. In addition, from Equation 6, 

 coordinate- x* 15.31  19.87 +=iRSSr   (8) 

Therefore, the x-coordinate of the final robot position can be predicted: 

 Predicted i

i
RSSr

RSSr
*0.0653-1.298  

15.31

19.87 
coordinate-x +=

−
=   (9) 

Finally, from the x-coordinate prediction, the direction and magnitude of the single-axis 

robot position error can also be predicted. Negative x-coordinate values indicate that the 

robot moved past the desired position; positive values indicate that the robot did not reach 

the desired position (with respect to the home position). The difference between the 

predicted and desired x-coordinate indicates the magnitude of the position error. For 

Experiment 5, the desired x-coordinate is always zero. Therefore, the value of the predicted 

x-coordinate indicates the magnitude of the position error.  

Table 7 shows commanded (actual) and predicted x-coordinate values for Experiment 5. 

Table 7 also shows actual errors and predicted errors, whether or not the direction (sign) of 

the predicted error is correct, and the difference between the predicted error magnitude and 

the actual (induced) error magnitude (errors due to the prediction model). 

Experiment 5 results show that: 

1. The robot position error detection model developed in Experiment 4 predicts 

Experiment 5 errors with 100% accuracy, error direction with 81% accuracy, and 

error magnitude to within 0.223 mm. 

Experiment 5 results indicate that the method developed can reliably identify robot 

position errors at robot repeatability levels. The method can also, to some degree, 

identify the direction of an error relative to the desired (commanded) position and the 

magnitude of the error.  

In future studies, in addition to improvements recommended in Experiment 4 results, the 

proposed method can be improved by using standard X control chart techniques, including 

subgroup sampling and averaging. Using standard X control chart techniques could reduce 

random variation between prediction model and in-process measurements and, thereby, 

improve the accuracy and reliability of all three aspects of error detection and identification 

(error detection, error direction, and error magnitude). 
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Signal Actual x-
coordinate (mm)

Predicted x-
coordinate (mm)

Actual 
Error 

Predicted 
Error 

Sign 
Correct

Model 
Error (mm) 

r1 -0.313 -0.2794 Yes Yes Yes 0.034 

r2 0.000 0.0000 No No Yes 0.000 

r3 -0.281 -0.2644 Yes Yes Yes 0.017 

r4 -0.156 -0.0260 Yes Yes Yes 0.130 

r5 -0.250 -0.2146 Yes Yes Yes 0.035 

r6 0.188 0.3779 Yes Yes Yes 0.190 

r7 0.219 0.3744 Yes Yes Yes 0.155 

r8 0.281 0.4651 Yes Yes Yes 0.184 

r9 -0.219 -0.0927 Yes Yes Yes 0.126 

r10 -0.188 -0.1045 Yes Yes Yes 0.084 

r11 0.063 0.1551 Yes Yes Yes 0.092 

r12 0.125 0.2413 Yes Yes Yes 0.116 

r13 0.313 0.4726 Yes Yes Yes 0.160 

r14 0.250 0.3734 Yes Yes Yes 0.123 

r15 -0.031 0.1922 Yes Yes No 0.223 

r16 0.094 0.2389 Yes Yes Yes 0.145 

r17 -0.094 0.0637 Yes Yes No 0.158 

r18 -0.123 0.0291 Yes Yes No 0.152 

r19 -0.063 0.1543 Yes Yes No 0.217 

r20 0.156 0.3137 Yes Yes Yes 0.158 

r21 0.031 0.2067 Yes Yes Yes 0.176 

Table 7. Predicted vs. actual errors. 

9. Conclusions 

The investigator developed an non-invasive non-contact method for detecting on-line 
industrial robot position errors. The method uses a low-cost sensor to detect single-axis 
position errors. The sensor, composed of a low-cost microwave Doppler radar detector and 
a low-pass filter, converts robot motion into electronic signals that are A/D converted and 
processed using a computer.  
Computer processing reduces captured signals into root-sum-of-squares error measures, 
with respect to a mean sensor calibration signal. Root-sum-of-squares error measures are 
compared to a threshold value that indicates, statistically, a 99.7% probability that an on-line 
position error has occurred. The threshold value can be adjusted to meet different 
application needs.  
For the prototype constructed, and the experiments run, the sensor detected position errors with 
100% accuracy, error direction with 81% accuracy, and error magnitude to within 0.223 mm. 
The proposed method offers a low-cost non-invasive non-contact means for detecting on-
line in-process robot position errors. Accurate in-process robot position error detection 
indicates the need for corrective action: robot homing, recalibration, or repair.  
The proposed method offers advantages over other possible methods. The sensor 
developed uses a microwave Doppler radar detector, which is generally less expensive 
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and/or more robust in industrial environments than optical sensors, such as laser 
tracking systems or cameras. The proposed method is generally more practical for in-
process error detection than contact devices used for robot recalibration, such as cable 
systems, trigger probes, or dial gauges.  
The proposed method may eliminate the need for regularly scheduled robot homing or 
recalibration, thus improving productivity. At the same time, the proposed method 
identifies error conditions when they exist, reducing scrap, which also lowers costs and 
improves productivity. 
Future proposed enhancements include: 

1. Improving sensor design, 
2. Improving sensor placement, 
3. Detecting multi-axis position errors by choosing different sensor placement strategies 

or by using multiple sensors at a given position, 
4. Fully automating the data collection and analysis process,  
5. Using control chart techniques to improve error detection capabilities, particularly 

advanced error direction and error magnitude prediction capabilities, and 
6. Considering different methods for removing DC bias from sensor signals. 
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