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Intraplate Seismicity and Seismic Hazard:  
The Gulf of Bothnia Area in Northern 

 Europe Revisited 

Päivi Mäntyniemi 
Institute of Seismology, University of Helsinki 

Finland 

1. Introduction 

Intraplate seismicity is a challenging subject to study, because earthquake observations 
accumulate slowly in plate interiors. It is known that great earthquakes can occur in these 
regions and that shallow earthquakes may break the surface, but examples are limited to a 
dozen or so. This has obvious implications to seismic hazard and risk. England & Jackson 
(2011) pointed out that the unanticipated earthquakes in continental interiors have claimed 
more human lives than earthquakes at plate boundaries in the past 120 years. 
The present investigation deals with intraplate seismicity of the Fennoscandian (Baltic) shield 
in northern Europe. The seismicity of the region has been discussed by several authors over 
the years (e.g., Bungum et al., 1986; Gregersen et al., 1991). The investigation focuses on the 
Gulf of Bothnia bordered by Finland to the east and Sweden to the west (Fig. 1). The Gulf of 
Bothnia has long been recognized as one area of enhanced seismicity in the region; even the 
oldest seismicity maps based on written documentary records show how earthquakes occur 
on its coasts. It is a seismicity area in miniature: the current seismograph networks register 
relatively frequent micro-earthquake activity down to magnitude below 0, while the largest 
observed earthquakes had magnitude above 4. It is not clear whether magnitude 5 has been 
exceeded during the last three centuries, the time span of the available seismicity record, 
because the largest earthquakes occurred during the non-instrumental era and their 
magnitudes are affected by uncertainties. The first short-period seismographs suited for the 
registration of local earthquakes were installed in the study area in the latter half of the 1950s. 
All earthquake information prior to that time is defined as historical.  
Emphasis is laid on the historical data in this study. Many of the largest earthquakes known 

occurred adjacent to the Gulf of Bothnia, but only those in 1883, 1888 and 1898 have been 

subjected to a more detailed analysis (Mäntyniemi, 2005, 2008). New macroseismic maps are 

presented for earthquakes of 27 November 1757, 14 July 1765, 13 October 1780, 26 May 1907, 

31 December 1908, and 9 March 1909. Many previously unknown reports of these 

earthquakes were brought to light, when scanning the contemporary press. In addition, 

attention is paid to the location of the largest historical earthquakes. They are compared 

with recent instrumental records and reviewed against the seismo-tectonic setting. Evidence 

for larger earthquakes is analyzed using historical data. The potential for larger earthquakes 

in the area and implications for seismic hazard are discussed. 
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Fig. 1. Study area and place names mentioned in the text. Black dots denote towns. The light 

purple line in the north denotes the present-day state border between Sweden and Finland. 

2. Seismicity features 

Earthquake activity along plate boundaries is driven by tectonic forces. The study area 
undergoes postglacial uplift with a maximum uplift rate of about 10 mm/yr centered in the 
northern Gulf of Bothnia (e.g., Kakkuri, 1997). The uplift of land from the sea has been 
documented in Finland and Sweden for more than three centuries, so it appeared reasonable 
to explain the observed earthquake activity by land uplift, as many early geoscientists did. 
The advent of focal mechanism studies and stress observations provided arguments in favor 
of ridge-push from the mid Atlantic, because the NW-SE compression dominates in the 
region. Therefore the first-order stresses are generally attributed to forces at plate margins, 
the nearest plate margin being the mid-Atlantic ridge. The role of postglacial uplift in 
present seismicity remains an open question. Fjeldskaar et al. (2000) modeled the isostatic 
movements related to deglaciation and uplift. They concluded that, although the modeling 
fits the overall observations well, there are areas of misfit between them and the isostatic 
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uplift model. The misfit was interpreted to reflect a tectonic component of the uplift. The 
Swedish east coast with the center northeast of the Gulf of Bothnia was one area of 
computed misfit. Also local features, such as sediment loading and topography, may affect 
the rupture of individual earthquakes, or different combinations of several factors. 

2.1 Historical seismicity 
Many towns were founded around the Gulf of Bothnia during the reign of king Gustavus II 
Adolphus of Sweden in 1611-1632. This increased the chances of documentation, and 
earthquakes felt on the shores of the Gulf of Bothnia are known since the 1700s. The oldest 
reports can be found in scientific essays and contemporary newspapers. They tend to be 
brief and sparse, so the historical method needs to be modified for observations stemming 
from the 1700s and most of the 1800s (Mäntyniemi et al., 2011). Local geologists started to 
use macroseismic questionnaires systematically in the 1880s. 
The area of interest is quite challenging for macroseismic analyses, because it is crossed by 
sea, and also by a state border for more than two centuries. A crucial question in historical 
seismology is whether a paucity of observations in a given area in a given time interval 
results from an absence of earthquakes or earthquake reports. It is unclear how much 
earthquake reporting in the area was affected by the detachment of Finland from Sweden in 
1809, when the Gulf of Bothnia became a border area. Interesting earthquake occurrences 
were reported in the latter half of the 1700s. After the separation, felt earthquake reports east 
of the Gulf of Bothnia ceased to be included in Swedish newspapers. Anyway, it is 
important to collect and display what is available, because not all available documentation 
on the effects of historical earthquakes has been used to date and macroseismic maps do not 
exist for every interesting earthquake in the area. Previously disregarded earthquake reports 
have been discovered in the contemporary press in particular. Below new macroseismic 
maps are presented for a selection of earthquakes felt on both coasts of the Gulf of Bothnia 
in the 1700s and 1900s. The maps consist of macroseismic data points (MDPs) that illustrate 
where effects of earthshaking were reported and indicate the strength of the effects, i.e. 
seismic intensity, when the available information is adequate. 

2.1.1 Earthquakes in the latter half of the 1700s 
An earthquake was felt at the bottom of the Gulf of Bothnia on 27 November 1757 between 6 
and 7 am local time (Fig. 2). Reports about the felt effects have survived in local history and 
lore (cf. Sidenbladh, 1908; Renqvist, 1930). The use of oral accounts or reminiscences of 
earthquakes, not untypical of the study area, is discussed by Mäntyniemi et al. (2011). One 
macroseismic data point is uncertain. It may be related to another earthquake. However, the 
time of observation matches this earthquake except for the year (1752 instead of 1757). The 
time of day and time of year are considered the most reliable criteria of a genuine 
eyewitness report of an earthquake (Mäntyniemi et al., 2011). 
Figure 3 shows the information available for the earthquake on the evening of 14 July 1765 
(at about 9 pm local time). It is based on four letters from the surrounding provinces 
published in newspaper Inrikes Tidningar (“Domestic news”) between 29 July and 23 
September 1765. The intensity 1 (not felt) observation relies on a reminiscence published in 
the same newspaper on 6 November 1780. Only one observation is available for the 
earthquake on the morning of 13 October 1780, a situation sometimes encountered in 
historical seismology (Fig. 4). The assigned intensity is on the slightly damaging level, since 
fractured ovens were reported. The same town has sustained this kind of damages during 
other earthquakes as well (Mäntyniemi, 2007).  
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Fig. 2. A macroseismic map on the earthquake of 27 November 1757 between 6 and 7 am 
local time. Filled circles denote intensities given on the European Macroseismic Scale 
(Grünthal, 1998). The letter H stands for heard, F for felt. It is not certain whether the 
intensity point accompanied by a question mark belongs to this earthquake. 

 

 

Fig. 3. A macroseismic map on the earthquake of 14 July 1765 at about 9 pm local time. 
Numbers are intensities given on the European Macroseismic Scale (Grünthal, 1998). At the 
time of the earthquake all area shown was Swedish territory. 
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Fig. 4. A macroseismic map on the earthquake of 13 October 1780 at about 6:20 am local 
time. Filled circles denote intensities given on the European Macroseismic Scale (Grünthal, 
1998). At the time of the earthquake all area shown was Swedish territory. 

2.1.2 Earthquakes in the early 1900s 
Swedish geologists and the Geographical Society of Finland were responsible for collecting 

felt reports of earthquakes in the study area in the first half of the 1900s. However, the 

activities were carried out parallel to each other and, as a rule, the outputs were not 

combined. There is usually little uncertainty about the timing of the observations in this 

century, so the chance of confusing different earthquakes with each other is rather low. 

Sahlström (1911) described observations regarding the earthquake of 26 May 1907 (at about 
11:33 am Swedish time) and draw the area of perceptibility. Later Renqvist (1930) reported 
that the event was felt in the archipelago and some locations east of the Gulf. Previously 
disregarded place names were found in the contemporary press in the present study. The 
new area of perceptibility is thus larger than that of Sahlström (1911). There are rather few 
classification criteria available at the lowest intensity values and thus the range of intensities 
is narrow (Fig. 5). 
Sahlström (1911) named three communes where the earthquake of 31 December 1908 (at 
about 10:20 pm Swedish time) was felt west of the Gulf of Bothnia and outlined the 
respective area of perceptibility. Sederholm (1909, p. 65) reported that the event was felt on 
the eastern shore as well. More precise place names were uncovered in the contemporary 
press. They expanded the area of perceptibility westward; information about the eastern 
coast could not be augmented. The reports are not very detailed, so seismic intensity can be 
assessed only for a few places (Fig. 6). The reporting may have been overshadowed by the 
earthquake catastrophe in Messina, Sicily three days earlier, as news of the devastation there 
started to pour in at the beginning of the year 1909. The reportages were often accompanied 
by figures, which was not common for news coverage at that time.  
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Fig. 5. A macroseismic map on the earthquake of 26 May 1907 at about 11:33 am Swedish 
time. Numbers are intensities on the European Macroseismic Scale (Grünthal, 1998). The 
letter H stands for heard, F for felt. 

 

 

Fig. 6. A macroseismic map on the earthquake of 31 December 1908. Intensities are given on 
the European Macroseismic Scale (Grünthal, 1998). The earthquake was reportedly felt 
along the eastern coast (dashed area), but no specific locations can be named there. 
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The earthquake of 9 March 1909 was the largest event in the Gulf of Bothnia area in the 
1900s (Fig. 7). The questionnaire data were presented and discussed by Sahlström (1911) for 
Sweden and by Rosberg (1912) for Finland. Both authors provided a map for the respective 
territory, but they were never combined. Båth (1956) gave the first parameters, including a 
magnitude estimate equal to 5, whereas Ahjos and Uski (1992) provided a macroseismic 
magnitude 4.6 for this event. 
The contemporary press contained some letters from dwellers in the affected area, but most 
news were general descriptions of a given location. The newspaper reports were sometimes 
quite processed, providing the strength of earthquake effects relative to another location rather 
than the actual effects. The new map is thus based on the individual observations given on 
questionnaires and letters and the résumés prepared by unknown newspaper editors. 
However, the press provided helpful information in addition to the questionnaire data. The 
earthquake occurred at night (at about 1:20 am Swedish time), so information about the extent 
to which people were awakened was available. It is sometimes difficult to tell whether people 
were awakened by the accompanying earthquake sounds rather than actual  
 

 

Fig. 7. Felt observations for the earthquake of 9 March 1909, the largest in the Gulf of 
Bothnia area in the 1900s. Filled circles show the villages and towns from where written 
documentary data are available. Numbers are seismic intensities on the European 
Macroseismic Scale (Grünthal, 1998).  
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ground shaking. Both shaking and sounds were often observed, whereas the heard-only 
observations tend to be located on the outskirts of the area of perceptibility (Fig. 7). 
Estimation of epicenters for non-instrumental earthquakes relies on rather straightforward 
assumptions of symmetry  no strong dependency of ground motion on azimuth is 
assumed in the Gulf of Bothnia area until otherwise shown  and the proximity of the 
epicenter to the strongest effects. Symmetry assumptions may be hampered by the sea and 
incomplete area of perceptibility. It is commonly assumed that the strongest effects become 
included, in press reports in particular, as the possible damage is always a matter of 
concern. Since the density of population was low northward and inland of the Gulf in the 
early centuries, however, episodic strong ground motion could have been missed there. If 
reported, foreshocks and aftershocks may give insight into the location of the main shock. 

2.2 Instrumental seismicity 
Seven earthquakes of magnitude 3 or above occurred in the vicinity of the Gulf of Bothnia 
between 2001 and 2010 (Fig. 8). The largest had magnitude 3.5, the second largest magnitude  

 

 

Fig. 8. Instrumental seismicity in the Gulf of Bothnia area between 2001 and 2010. 
Magnitude scale is ML. Data: Institute of Seismology, University of Helsinki. 
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3.4. Two occurred at the bottom of the Gulf nearby Swedish Luleå, three close to 

Skellefteå, including the largest earthquake. Its coordinates were given as (21.32 E, 64.49 

N). It was felt distinctly on the eastern coast including Vaasa and Kokkola (Fig. 1). One 

of the seven M>3 earthquakes occurred offshore in the narrowest part of the Gulf 

between Swedish Umeå and Finnish Vaasa, and one further southward on the western 

coast.  

The estimated depths of M>3 events ranged between 6 and 19 km. The depth distribution of 

all earthquakes during this decade was wider, since the deepest micro-earthquakes were 

located at a depth of about 40 km. Many of the deepest quakes occurred along the seismicity 

trend that extends from the bottom of the Gulf northward. 

Good-quality instrumental locations discern between onshore and offshore earthquakes. 

Moreover, the improved location accuracy means that the fuzzy clouds of micro-

earthquakes sharpen up: the previously more or less continuous earthquake activity 

along the western coast of the Gulf of Bothnia south of latitude 64 N seems to be 

concentrated in smaller clusters. The most pronounced clusters can be found in the 

northern part of the Gulf. Very frequent micro-earthquake activity occurs in the vicinity 

of the town of Skellefteå, where it seems to be divided into two main clusters. The 

earthquake activity nearby Luleå is more diffuse with epicenters both inland and 

beneath the sea. Thus, the spatial distribution of earthquakes in the vicinity of the Gulf of 

Bothnia suggests that the probability of earthquake occurrence is not equal over the  

area. 

2.3 Comparisons 
The time span of the available earthquake catalogue, about three centuries, is too short 

for fundamental changes in the local stress field that constrains the occurring seismicity 

rates. Therefore similarities between the historical and instrumental data can be 

anticipated. Indeed, seismicity maps relying on observations stemming from the 1700s 

show how earthquakes occur along the coasts of the Gulf of Bothnia, a feature that 

accords with instrumental data. The historical catalogue includes several low-magnitude 

events (M<3) that may actually be relatively well known because of the proximity of 

epicenters to population centers. The main criterion for a near-by earthquake is the 

accompanying sound, which is heard in the vicinity of the epicenter and attributed to the 

seismic P wave (Tosi et al., 2000). However, the historical catalogue is incomplete at the 

lowest magnitudes and may also contain other types of events such as weather-related 

noise.  

On the other hand, the longer non-instrumental catalogue may include rare events that did 

not occur during the brief instrumental era. Rare events are, for instance, earthquakes at 

unusual sites (e.g., sites not anticipated on the basis of more recent instrumental locations) 

and large earthquakes that occur far more seldom than small ones. The obvious difficulty is 

to tell whether an incompletely known historical area of perceptibility is evidence for a rare 

earthquake occurrence. A report describing felt effects may belong to a local or distant 

earthquake; a sparse report may not include any clue as to the type of ground motion (low 

or high frequency). The events that occurred outside the study area constitute one category 

of rare events. A distant offshore earthquake may be hard or impossible to recognize from 

the seismicity record (e.g., Musson, 2008). It is known from the historical seismicity record 
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that earthquakes with epicenters away from the Gulf of Bothnia area have been felt around 

it. An example is the Lurøy earthquake of 31 August 1819, located on the coast of northern 

Norway (e.g., Muir Wood, 1988).  

The narrowest part of the Gulf of Bothnia from Umeå to Vaasa spans about 80 km. The Gulf 
gets wider towards north; it is about 160 km from Piteå to Raahe (Fig.1). The most frequent 
micro-earthquakes are not felt over very long distances, so an earthquake felt both on the 
eastern and western coast of the Gulf is noteworthy. This can be used as a handy rule of 
thumb for detecting a rare event, rare meaning larger than usual. An earthquake occurring 
on the northernmost western coast has to be above M3, possibly closer to M3.5, in order to 
be felt on the eastern coast. It has to be borne in mind, however, that the historical felt 
observations may also be explained by an offshore event.  
The earthquakes of 27 November 1757 (Fig. 2) and 13 October 1780 (Fig. 4) may be examples 

of repeated seismic activity at the bottom of the Gulf of Bothnia. This feature accords well 

with the instrumental data. An earthquake in the vicinity of Luleå would explain the 

distribution of felt observations shown in Fig. 2. However, other options can easily be 

constructed around a small number of felt observations. The population centers were small 

at that time, the density of population particularly low outside the coastal areas and river 

valleys, and the native Lapp people nomads, so occasional ground motion in the area may 

have easily been missed. Size estimates are obviously prone to error when the area of 

perceptibility is incomplete known. Since these earthquake observations were accompanied 

by sounds, however, they are assumed to be local events. 

The earthquakes of 14 July 1765 (Fig. 3) and 31 December 1908 (Fig. 6) may be related to 

seismic activity in the vicinity of Skellefteå on the western coast. A more recent earthquake 

occurred there on 15 June 2010. Its magnitude was estimated at ML3.5, and it was felt 

distinctly on the eastern coast as well. The earthquakes of 26 May 1907 (Fig. 5) and 9 March 

1909 (Fig. 7) may be related to seismicity southward from the other examples, possibly 

closer to Umeå. These historical earthquakes seem to support the notion that seismicity in 

the area has preferred locations.  

3. Seismo-tectonic setting 

All earthquakes occur on faults, but within the continental interiors the networks of faults 
may be less well defined than on plate boundaries. A tectonic model for the 
Paleoproterozoic evolution of the Fennoscandian shield was presented by Lahtinen et al. 
(2005), based on petrological, geochronological, potential-field, deep seismic reflection and 
refraction, and geoelectric data. Major crustal-scale boundaries were inferred from 
lineaments on magnetic, electromagnetic, and Bouguer anomaly maps, where seismic 
reflection and refraction data were lacking (Fig. 9).  
The Gulf of Bothnia is situated in the central part of the Fennoscandian shield, composed 

of Paleoproterozoic rocks. The central part is often referred to as the Svecofennian 

domain. Identified major boundaries in the area include the Baltic-Bothnian megashear 

that extends from the bottom of the Gulf towards north (Berthelsen and Marker, 1986) 

and the Piteå-Raahe shear zone crossing its northern part (place names in Fig.1). The 

Hassela shear zone crosses the southernmost Gulf. Paleoproterozoic units in Sweden 

include the Skellefte district in the vicinity of the town of Skellefteå, and the Bothnian 

basin.  
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Fig. 9. Major aeromagnetic and Bouguer anomaly lineaments in the Fennoscandian shield. 

Continuous green lines denote magnetic lineaments, dotted green lines magnetic and 

Bouguer lineaments. Continuous black lines denote Bouguer lineaments, and dotted black 

lines Bouguer lineaments associated with shear zone at surface. Red lines denote mapped 

postglacial faults (from Lahtinen et al., 2005). The lineaments are shown on a simplified 

geological map. Igneous rocks and gneisses (denoted by light yellow) and supracrustal 

rocks (light green) are Archean rocks in the east. Supracrustal rocks of different ages (light 

and bright turquoise), the granulite belt (light blue), igneous rocks of different ages (light 

brown and pink), mafic intrusive rocks (spots of dark green), as well as granite and 

migmatite (reddish) are Paleoproterozoic rocks. The rapakivi granite association (purple) is 

Mesoproterozoic. The Caledonian orogenic belt (grey) and alkaline intrusions (bright 

purple) are Phanerozoic. Geology according to Koistinen et al. (2001). 
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4. Seismic hazard: how large magnitudes, where and when? 

Seismic hazard assessment is confined to the location, time and maximum size of future 

earthquakes. Insufficient knowledge of ground motion is a secondary problem, if 

maximum magnitudes remain low. On many segments along plate boundaries, the 

location of the hazard is known with some probability, so the earthquake time constitutes 

the main concern. In contrast, in plate interiors even the locations may be poorly 

understood.  

It is often assumed that the locations of small earthquakes are important indicators of the 

locations of future large earthquakes. Applying this scheme of things to the present study 

area means that the clusters of micro-earthquakes, discernible on the instrumental seismicity 

map (Fig. 8), should be looked at as sites where the hazard lies. As discussed in subchapter 

2.3, there is some evidence of larger-than-usual earthquakes (at least M>3) that are located 

within the clusters, such as the earthquake of 15 June 2010 nearby Skellefteå. The historical 

epicenters cannot be pinpointed very accurately, but it is probable that the earthquakes of 14 

July 1765 and 31 December 1908 are examples of repeat of M>3 events there. They have been 

given magnitudes of 3.9 and 3.7, respectively (Båth, 1956; Wahlström, 1990). These values 

were estimated using less information than presented in Figs. 3 and 6. However, the changes 

in the radius perceptibility affect the macroseismic magnitude slowly, because the 

dependency is logarithmic. The changes probably disappear within the magnitude 

uncertainty. 

Determining the spatial distribution of the largest (M>4) earthquakes in the study area is 

hampered by uncertainties. When relying on the assumptions that the strongest earthquake 

effects, as well as foreshocks and aftershocks, occur in the vicinity of the epicenter, some of 

the largest historical earthquakes are located within or close to the clusters. For instance, 

Mäntyniemi (2008) proposed that the earthquake of 4 November 1898 may have occurred 

within the northern extension of the seismicity around the Gulf of Bothnia, which runs 

parallel to the Baltic-Bothnian megashear.  

Båth (1956) gave the epicenter of the 9 March 1909 earthquake as (21.6 E, 64.0 N), with 

uncertainty in the range of 0.2-1.0 degrees (borders exclusive). This location is slightly 

offshore; Ahjos and Uski (1992) moved the epicenter eastward to (22.0 E, 64.0 N), which is 

clearly offshore. The previously unknown newspaper reports contain some remarks about 

small quakes preceding the main shock. If emphasis is placed on the foreshocks, the 

earthquake epicenter is shifted inland, to around longitude 19 E, while the latitude 

remains about the same. The distribution of felt effects shown in Fig. 7 could be explained 

by an inland epicenter: the westward portion of the area of perceptibility is larger than 

that eastward. There is no clear cluster of the strongest seismic intensities, which may 

indicate that the earthquake did not occur close to the ground surface. However, the 

modified epicenter is within one area of the largest seismic intensities. The modified 

epicenter seems to coincide with a crustal-scale boundary such as a magnetic lineament or 

a shear zone (Fig. 9), but the exact location remains uncertain. The possible connection to 

the enhanced seismicity around the postglacial fault north of the modified epicenter is 

unclear. 

Magnitude 4 was not exceeded in the vicinity of the study area in seventy-four years until 

the Solberg earthquake of 29 September 1983. Kim et al. (1985) estimated its magnitude at 
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ML=4.1, depth at 39 km, and located the epicenter near (17.5 E, 63.8N). This location is 

distant from the most pronounced micro-earthquake clusters; the Solberg earthquake did 

not occur where small quakes are frequent. Also instrumental locations are affected by 

uncertainties, but it is possible that the epicenter coincides with a mapped shear zone that 

commences (or ends) in the Skellefteå area. 

Average recurrence time is somewhat conceptual in the case of M>4 earthquakes in the 

study area. There was a rather remarkable temporal cluster of these events in the late 1800s 

and early 1900s. It came to an end in 1909, and was followed only by the Solberg earthquake 

in 1983. The significance of this time variation of seismicity increases as more time passes 

and magnitudes remain low. Except for the 1909 earthquake, whose area of perceptibility 

totally covers that of the 1907 earthquake, the few available cases of M>4 occurred at 

different sites; the respective areas of perceptibility overlap scantily or partially. The seismic 

potential for M>4 earthquakes seems to be distributed widely over the area. It can be 

speculated whether earthquakes in this category will be repeated at the same sites in the 

future. 

The seismicity in the study area follows the Gutenberg-Richter magnitude-frequency 

relationship with a large number of tiny earthquakes and a tiny number of “large” 

earthquakes. Earthquakes larger than shown by the short historical record could possibly 

occur. The discussion of the maximum magnitude in the area tends to be somewhat twofold. 

Great earthquakes (M>7 or above) have been associated to some of the mapped postglacial 

faults, especially in the north and north-west (Fig. 9). They have been dated to be less than 

10 Ka old and have been explained by changes in the stress field due to deglaciation after 

the last glaciation. It is difficult to argue convincingly about the upper limit of magnitude in 

the current tectonic regime. However, it is known from areas of stable continental crust that 

earthquakes exceeding the largest observed magnitude have occurred. Such an example is 

known from east of Svalbard, northern Europe, where an M6.2 earthquake occurred on 21 

February 2008. 

5. Conclusion 

The intraplate seismicity in the Gulf of Bothnia area, northern Europe exhibits enhanced 

micro-earthquake activity. The most pronounced clusters of micro-earthquakes are 

situated in places where several shear zones meet, for instance in the vicinity of the 

town of Skellefteå on the western coast. Earthquakes of M>3 have occurred within the 

clusters during the brief instrumental era, during the most recent decade as well, but 

earthquakes above magnitude 3.5 appear rare. Macroseismic maps of earthquakes felt 

on both the eastern and western shore of the Gulf are a practical means of detecting 

unusually large earthquakes. New maps making use of previously disregarded 

newspaper reports were prepared for a selection of earthquakes in the late 1700s and 

early 1900s. Some of the investigated earthquakes are interpreted to be repeat events 

within the clusters. For instance, the earthquakes of 14 July 1765 and 31 December 1908 

are associated with the Skellefteå cluster. Their magnitude estimates are probably in the 

range 3.5-3.9. The earthquakes of 27 November 1757 and 13 October 1780 are regarded 

as local events at the bottom of the Gulf, where the pattern of instrumental seismicity is 

rather diffuse.  
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The few known earthquakes of magnitude M>4 stem mostly from the non-instrumental era. 

Some of the respective locations possibly coincide with the enhanced seismicity trends, but 

at least one M>4 earthquake occurred where small earthquakes are not that frequent. The 

location uncertainty precludes associating the historical epicenters with smaller structural 

features than crustal-scale boundaries, such as postglacial faults. It appears that the clusters 

of micro-earthquakes should not be looked at as the only sites where large earthquakes may 

occur in the area in the future.  
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