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Revisions to Code Provisions for Site Effects 
and Soil-Structure Interaction in Mexico 
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1Instituto Mexicano de Tecnología del Agua 

2Instituto de Investigaciones Eléctricas 
 México 

1. Introduction 

The seismic hazard in Mexico has been re-evaluated recently and now we can estimate the 
maximum acceleration on rock for any given site in the country. This is the starting point for 
constructing site-specific earthquake design spectra that explicitly include the effects of soil 
dynamic amplification (site effects). The effects of soil-structure interaction (SSI) can be 
accounted for in two stages: first in the elastic design spectrum, considering the enlargement 
of the period and the increase in damping; and then in the strength reduction factor, taking 
into consideration the global ductility reduction. 
Site effects refer to the dynamic amplification of ground motion due to the local 
geotechnical characteristics of the subsoil. These effects are reflected in the seismic design 
coefficients specified by building codes in terms of site- and structure-response 
amplification factors. The SSI effects, on the other hand, refer to the modification of the 
foundation motion with respect to the free-field ground motion due to the flexibility of 
the supporting soil. In building codes, however, these effects are generally accounted for 
modifying the dynamic properties (natural period and damping ratio) of the original 
structure and evaluating the response of the modified structure to the prescribed free-
field motion specified by a design spectrum. 
A new approach to determine earthquake design spectra including site and SSI effects has 
been incorporated in the CFE Seismic Design Code (MDOC), a model design code in Mexico 
(Tena-Colunga et al., 2009). The previous version of the MDOC was published by the 
Federal Electricity Commission in 1993, so an in-depth review was mandatory in order to 
update the code for 2008. In the absence of state seismic codes, the MDOC is legally used in 
the entire nation for earthquake design of different structure types. The MDOC provides 
expressions to determine earthquake design spectra at any location in the country, which 
makes unnecessary the use of conventional zoning maps. These spectra, which have realistic 
shape and size for elastic response, are then reduced by two separate factors to account for 
the nonlinear structural behavior and overstrength. 

2. Site effects 

It is well recognized that seismic hazard varies significantly throughout the country and 
that it cannot be described in detail by means of regional spectra for different types of soil. 
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Thus, it is necessary to construct site-specific earthquake design spectra, which depend 
mainly on the proximity from the place to the tectonic sources and on the local subsoil 
conditions. In the seismic behavior of structures, several response factors associated with 
the source, the wave’s path, the site and the structure itself are involved. In order to 
simplify the problem, a design earthquake motion at the bedrock is specified by the 
MDOC, in such a way that the effects of source and wave’s path are considered implicitly. 
In this way, it only remains to account for the site and SSI effects on the structural 
response. To do this, the simplified reference model shown in fig. 1 is used. This is formed 
by a modal oscillator placed on a rigid foundation that is embedded into an equivalent 
stratum with elastic bedrock. 
 

 

Fig. 1. Simplified reference model to account for site effects and SSI. 

For the analyses presented here, a soft soil site (UAPP) located in the city of Puebla with 

dominant period Ts=1.25 s, soil/bedrock impedance ratio ps=ρsVs/ρoVo=0.2, Poisson’s ratio 

s=0.4 and hysteretic damping ratio s=0.05 has been considered. The value of the site period 

corresponds to a shear-wave velocity Vs=80 m/s and stratum thickness Hs=25 m. 

Based on the considered model, a new approach to specify earthquake design spectra for 

arbitrary locations in Mexico has been developed. These spectra realistically represent the 

levels of strength and displacement demands that would take place in single elastic 

structures during the design earthquake motion. It is evident that the multi-degree-of-

freedom effects in real buildings are not accounted for. 

2.1 Acceleration design spectrum 
In the MDOC, the seismic hazard was re-evaluated with the use of both deterministic and 

probabilistic approaches, using spectral attenuation relations developed specifically for the 

different seismic sources affecting Mexico. The map of fig. 2 shows the nationwide 

distribution of peak rock acceleration, ag, for design of standard occupancy structures. This 

map was produced with a computer program developed for this purpose. The approach 

proposed to construct elastic design spectra is based on the value of this ground-motion 

parameter. Next, site- and structure-response factors are developed to account for the peak 

dynamic amplification of soil and structure responses, respectively. The nonlinear soil 
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behavior is considered with two additional factors, one for the site period shift and other for 

the site response reduction, using soil properties (shear modulus and damping ratio) 

consistent with the shear strain. 

 

10 500

Aceleración máxima cm/s
2

 

Fig. 2. Distribution of peak rock acceleration in Mexico for design of standard occupancy 
structures. 

With these general ideas in mind, the following steps have to be taken to construct site-
specific earthquake design spectra: 
1. Compute the distance factor as Fd=ag/500, which is equal to unity near the subduction 

seismic source. This parameter expresses not only the seismic-wave attenuation with 
distance, but also the filtering of the high-frequency components of the earthquake 
excitation. 

2. From geotechnical information of the site soil profile, compute the dominant soil period 
as follows: 
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where Gn and n are the shear modulus and mass density of the nth layer of thickness hn; 
wo=0 at the bedrock and 
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is a static approximation for the fundamental mode of vibration. With Ts known, the 

effective shear-wave velocity Vs=4Hs/Ts is computed over the depth Hs=hn This novel 
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procedure is found to give more accurate results than those obtained by using the average 

shear-wave velocity of the surficial soils, which ignores the layer sequence in the soil profile. 

 

 

Fig. 3. Contours of Fs derived from site response analysis (dashed line) and by linear 

interpolation of data in table 1 (solid line). 

3. Assuming linear soil behavior, the site-response amplification factor Fs=ao/ag is 

obtained. The values for this factor are based on site response analysis, using the input 

power spectrum of the rock excitation (Park, 1995) and through application of the 

random vibration theory (Boore & Joyner, 1984) to predict peak responses. The 

theoretical results are shown in fig. 3 and the discrete values specified by the MDOC are 

tabulated in table1 as a function of   s s dT T F  and the impedance ratio ps between soil 

and bedrock. 

 

   sT  

  ps 
0.00 0.05 0.10 0.20 0.50 1.00 2.00 3.00 

1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.625 1.00 1.08 1.23 1.12 1.00 1.00 1.00 1.00 

0.250 1.00 1.18 1.98 1.60 1.40 1.12 1.00 1.00 

0.125 1.00 1.20 2.64 2.01 1.69 1.32 1.00 1.00 

0.000 1.00 1.22 4.51 3.17 2.38 1.75 1.19 1.00 

Table 1. Values of the site amplification factor Fs. 
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4. Depending on the level of shaking, soil/rock impedance ratio and soil type, the 

following factors are used to account for the nonlinear soil behavior: 

 

    
 


ˆ1 (1 ) , if 1.5
1.5

ˆ ,  if 1.5

d s
n s

d
n

d
n s

T
F T s

F

F T s

 (3) 

 
    Fd 
  ps  

0.00 0.10 0.20 0.30 0.40 0.50 0.75 1.00 

1.000 1.00 0.97 0.93 0.90 0.86 0.83 0.75 0.71 
0.625 1.00 0.95 0.91 0.89 0.85 0.82 0.71 0.68 
0.250 1.00 0.93 0.87 0.82 0.77 0.73 0.63 0.56 
0.125 1.00 0.92 0.84 0.75 0.67 0.64 0.58 0.53 
0.000 1.00 0.90 0.78 0.66 0.58 0.54 0.53 0.50 

Table 2. Values of the nonlinear factor ˆ d
nF  for sands and gravels. 

 
    Fd 

  ps 
0.00 0.10 0.20 0.30 0.40 0.50 0.75 1.00 

1.000 1.00 0.98 0.95 0.91 0.87 0.85 0.79 0.75 
0.625 1.00 0.97 0.94 0.93 0.90 0.88 0.81 0.79 
0.250 1.00 0.96 0.93 0.91 0.87 0.85 0.77 0.74 
0.125 1.00 0.93 0.85 0.76 0.70 0.67 0.61 0.56 
0.000 1.00 0.82 0.63 0.46 0.36 0.32 0.31 0.28 

Table 3. Values of the nonlinear factor ˆ d
nF  for clays and cohesive soils. 

 

    
 


ˆ1 (1 ) , if 1.5
1.5

ˆ ,  if 1.5

s s
n s

s
n

s
n s

T
F T s

F

F T s

 (4) 

where the values of  ˆ d
nF  and ˆ s

nF  are listed in tables 2-3 and 4-5, respectively. While d
nF  

expresses the site response reduction due to an increase in damping, 1 s
nF  expresses the site 

period shift due to a decrease in stiffness. Note that these factors tend to unity for very short 

site period, corresponding to hard rock conditions. 
 

    Fd 
  ps 

0.00 0.10 0.20 0.30 0.40 0.50 0.75 1.00 

1.000 1.00 0.99 0.98 0.97 0.96 0.95 0.95 0.95 
0.625 1.00 0.98 0.97 0.93 0.90 0.89 0.89 0.89 
0.250 1.00 0.97 0.93 0.86 0.81 0.79 0.79 0.79 
0.125 1.00 0.97 0.92 0.85 0.80 0.78 0.78 0.78 
0.000 1.00 0.97 0.92 0.85 0.80 0.78 0.78 0.78 

Table 4. Values of the nonlinear factor ˆ s
nF  for sands and gravels. 
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    Fd 

  ps  
0.00 0.10 0.20 0.30 0.40 0.50 0.75 1.00 

1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.625 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 

0.250 1.00 0.99 0.98 0.96 0.94 0.93 0.93 0.93 

0.125 1.00 0.98 0.95 0.90 0.86 0.84 0.84 0.84 

0.000 1.00 0.95 0.88 0.77 0.69 0.67 0.66 0.66 

Table 5. Values of the nonlinear factor ˆ s
nF  for clays and cohesive soils. 

5. The peak soil acceleration is obtained from the peak rock acceleration multiplied by the 

site and nonlinear factors, as follows: 

  d
o n s ga F F a  (5) 

 

 

Fig. 4. Contours of Fr derived from site-structure response analyses (dashed line) and by 

linear interpolation of data in table 6 (solid line). 

6. The seismic coefficient that defines the plateau height of the design spectrum is given 

by 

  r oc F a  (6) 

where Fr is the structure-response amplification factor. The values for this factor are based 

on the random vibration analysis of a single oscillator subjected to a base excitation passed 

through the site soil profile. The theoretical results are shown in fig. 4 and the discrete 

values specified by the MDOC are listed in table 6 as a function of Ts and ps. As the distance 

factor has little influence on these results, it has been ignored. 
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   sT  

  ps 
0.00 0.05 0.10 0.20 0.50 1.00 2.00 3.00 

1.000 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 

0.625 2.50 3.80 3.74 3.57 3.26 2.81 2.56 2.51 

0.250 2.50 4.36 4.41 4.27 3.45 2.85 2.59 2.53 

0.125 2.50 4.74 4.91 4.90 3.70 3.06 2.75 2.65 

0.000 2.50 5.27 5.66 6.02 4.81 4.05 3.58 3.40 

Table 6. Values of the structural amplification factor Fr. 

7. The lower and upper periods of the flat part of the design spectrum are given by 

  0.35 0.1s
a s

n

T
T s

F
 (7) 

  1.2 0.6s
b s

n

T
T s

F
 (8) 

These expressions are intended to cover not only the peak structural response at the first 

soil period, but also that at the second one (≈Ts/3). The upper period is taken 20% 

greater than the site period to account for differences between the computed and actual 

values of Ts. 

8. In terms of the natural vibration period Te and viscous damping ratio e, the 

acceleration design spectrum has the following basic representation: 
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where    2(1 )( )c c ep k k T T , with   2.3 1.6 0.2sk T , and 
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where   0.45(0.05 )o e . In the specification of the design spectrum, a nominal damping 

value of 5% is considered. To account for the supplemental damping due to SSI or 

mechanical damping devices, the reduction factor β has been introduced. This tends to unity 

for long-period ordinates, which are independent of the damping value. 
 

 

Fig. 5. Acceleration, response and design spectra for site UAPP considering two values of 
damping. 

Following the procedure described above, site-dependent elastic design spectra can be 

constructed, the shape and size of which are based on the knowledge of peak rock 

acceleration, site-source distance, dominant soil period and soil/bedrock impedance ratio. 

For site UAPP, the ensuing spectra for 5 and 10% of damping are shown in fig. 5, along with 

the corresponding response spectra for the 15 June 1999 Tehuacán earthquake recorded at 

this site and scaled to the peak rock acceleration specified by the MDOC, without any 

change in the frequency content and duration characteristics. This normal faulting 

earthquake of magnitude Mw=7.0 occurred inland 125 km from the city of Puebla. Here, it is 

used as the input control motion at the ground surface. 

2.2 Displacement design spectrum 
The spectral shapes for Te<Tc have been in use for many years in Mexican building codes. 
For Te>Tc, however, a new descending branch is proposed in order to have a better 
description of the displacement design spectrum Sd. Specifically, the limit of this spectrum 
for very long period must tend to the peak ground displacement Dmax. In view of the 
relationship between spectral displacement and acceleration, 

 



2

24
eT

Sd Sa  (12) 

this long-period limit can only be achieved if the acceleration design spectrum decays at least 

as fast as 2
eT . For a slower decay, the displacement design spectrum tends incorrectly to 
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infinity as the structure period increases. As can be seen in fig. 6, the observed spectral 

displacements at site UAPP are well represented by the code spectral displacements. It is 

interesting to note that values of Sd larger than Dmax can occur for natural vibration periods 

nearby the site period. 
 

 

Fig. 6. Displacement, response and design spectra for site UAPP considering two values of 
damping. 

When k<1, the peak spectral displacement occurs at Te=Tc and is given by 

 



24

max o b c

g
Sd cT T  (13) 

If k≥1, the peak spectral displacement occurs at Te= and converges to the peak ground 

displacement given by 

 



24

max b c

g
D kcT T  (14) 

From eqns. 13 and 14, it can be found that 

 


 max

max o

D
k

Sd
 (15) 

Notice that parameter k has a physical meaning. It represents the ratio of peak ground 
displacement to peak spectral displacement for 5% of damping. The code values for this 
parameter cover a wide variety of site conditions, from hard rock (k=1.5) to very soft soils 
(k=0.2). 

3. Soil-structure interaction 

The design approach used in most current codes to take the SSI effects into account has not 

changed over the years: a replacement oscillator represented by the effective period and 
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damping of the system. The most extensive efforts in this direction were made by Veletsos 

(1977) and his coworkers. Indeed, their studies form the basis of the SSI provisions currently 

in use in the US building codes. Although this approach does not account for the ductile 

capacity of the structure, it has been implemented in many codes in the world for the 

convenience of using standard fixed-base spectra in combination with the effective period 

and damping of the system. Nevertheless, seismic regulations that allow reductions in the 

design base shear by ductility and SSI separately should be taken with caution. This 

deficiency has been recognized in the last revision to the SSI procedures in the NEHRP 

design provisions (Stewart et al., 2003). In the MDOC, the SSI effects are expressed by a shift 

in the fundamental period Te, an increase in the damping ratio e and a reduction in the 

ductility factor Qe, as a function of the foundation flexibility HeTs/HsTe. If a design spectrum 

is specified for a given site, then the earthquake loads and displacements can be computed 

by entering with the effective period 
eT , damping e  and ductility 

eQ , just as though the 

structure were fixed at the base. 

3.1 Effective period and damping 

For elastic conditions, the system’s period and damping are defined as the natural period 

and damping ratio of a replacement oscillator whose resonant harmonic response is equal to 

that of the SSI system. Introducing some permissible simplifications, the following 

expressions can be obtained (Avilés & Pérez-Rocha, 1996): 

    1 22 2 2( )e e h rT T T T  (16) 

 
  
 

  
 


  

3 2 2

3 2 2 2 21 2 1 2
e h h r r

e e
e h e r e

T T T

T T T
 (17) 

where  1 22 ( )h e hT M K  and 1 222 ( ( ) )r e e rT M H e K   are the natural periods 

associated with the rigid-body translation and rocking of the structure with mass Me, 

whereas   
h h e hC T K  and   

r r e rC T K  are the damping ratios of the soil for the 

translational and rocking modes of the foundation. The terms Kh,Kr and Ch,Cr are the 

frequency-dependent springs and dampers by which the soil is replaced for the two 

vibration modes of the foundation. The springs account for the stiffness and inertia of the 

soil, whereas the dampers for the energy dissipation by hysteretic behavior and wave 

radiation in the soil. 

The SSI effects on the period and damping are shown in fig. 7 for high-rise (He/r=5) and low-

rise (He/r=2) structures with embedded foundation (e/r=1) in a soil deposit (Hs/r=5). The 

system period increases with respect to the fixed-base period as the foundation flexibility 

increases, especially for the high-rise structure. While the system damping increases for the 

low-rise structure, it may be smaller than the fixed-base damping for the high-rise structure. 

The damping reduction due to an increased structural response is particularly important for 

tall buildings, which are more effectively excited by rocking of the foundation. In the 

MDOC, the value of e  cannot be taken less than 0.05, the nominal damping value implicit 

in the design spectrum. 
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Fig. 7. Effect of SSI on the fundamental period and damping ratio of high- and low-rise 
structures on flexible foundation. 

3.2 Effective ductility 
To take the nonlinear structural behavior into account, an equivalent ductility factor is 
needed to be defined. By equating the maximum plastic deformation of an elastoplastic 
replacement oscillator with that developed in the SSI system under monotonic loading, the 
system ductility is found as (Avilés & Pérez-Rocha, 2003) 

   


2

2
1 ( 1) e

e e
e

T
Q Q

T
 (18) 

 

 

Fig. 8. Effect of SSI on the ductility factor of high- and low-rise structures on flexible 
foundation. 
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As shown in fig. 8, the global ductility of the system 
eQ  reduces with respect to the 

allowable ductility of the structure Qe as the foundation flexibility increases. The influence 

of the structure slenderness is relatively less important. Although the foundation 

flexibility reduces the ductility factor, the capacity of structural ductility remains 

unchanged. This apparent paradox stems from the fact that the response of the 

replacement oscillator includes not only the displacement of the structure itself, but a 

rigid-body motion of the foundation as well. It is the presence of this motion that reduces 

the ductility factor. 
 

 
 

Fig. 9. Analogy between the SSI system and a replacement oscillator. 

From the analogy between the SSI system and a replacement oscillator excited by the same 

base motion, see fig. 9, it is found that their yield resistance and peak displacement are 

interrelated by 

  
y yV V  (19) 

 
2

2
e e

ee

T Q
Sd Sd

QT
 

  (20) 

The difference between the relative inelastic displacement Sd  and the total inelastic 

displacement Sd  is due to the contribution by the translation and rocking of the foundation. 

Furthermore, the elastic displacement developed in the replacement oscillator results from 

the flexibilities of both the structure and foundation. 

For a specific case with HeTs/HsTe=1.33, fig. 10 shows strength spectra obtained with this 

approach using the input control motion. Base-shear coefficients with (  
y y eC V M g ) and 

without ( y y eC V M g ) SSI are plotted against the fixed-base period. For Qe=1, the strength 

spectrum with SSI shifts toward shorter periods and is a bit less amplified than the strength 
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spectrum without SSI. For Qe=4, the resonant peaks associated with the first and second 

vibration modes of the soil tend to disappear. 
 
 
 
 

 
 
 
 

Fig. 10. Strength spectra with and without SSI for elastic and inelastic behavior. 

3.3 Strength-reduction factor 
For code-designed structures, it is common practice to make use of a strength-reduction 

factor for estimating inelastic design spectra by reducing elastic design spectra. For a given 

earthquake, this factor is defined as the ratio between the strength required to have elastic 

behavior and the strength required for the allowable ductility. The shape of this factor has 

been extensively studied for the fixed-base condition, using recorded motions and 
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theoretical considerations. In particular, Ordaz and Pérez-Rocha (1998) observed that it 

depends on the ratio of the elastic displacement spectrum to the peak ground displacement 

as follows: 

 
 

      
 

1 2
( , )

1 ( 1) e e
e e

max

Sd T
Q Q

D
 (21) 

It is apparent that period and damping dependency of eQ  is implicit in Sd. A simplified 

version of eqn. 21 implemented in the MDOC is the following: 
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where    2(1 )( )b b ep k k T T . In developing eqn. 22, the following considerations were 

made: For simplicity, it was decided to have a linear variation between  (0) 1eQ  and 

 ( )e b maxQ T Q , with    1 ( 1)max e max maxQ Q Sd D  being the maximum value can be 

reached. The shape of  ( )e e bQ T T  results from replacing the corresponding displacement 

spectrum in eqn. 21. For very long period, β=1 and pb=k and hence eQ  tends to Qe, as 

dictated by theory. 

The fixed-base reduction rule given by eqn. 21 is more general than others reported in the 

literature, because its period and damping dependence is properly controlled by the actual 

shape of the elastic displacement spectrum, and not by a smoothed shape obtained 

empirically. This rule may be readily implemented for flexible-base structures by merely 

replacing the terms  1eQ  by   2 2( 1)e e eQ T T  (from eqn. 18) and Sd  by 2 2( )e eT T Sd  (from 

eqn. 20), with which we have 
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The shapes of factors eQ  and  eQ  are displayed in fig. 11, along with the results given by the 

equal displacement rule (Veletsos & Newmark, 1960). Contrarily to what happens in many 

building codes, in this proposal the values of eQ  can be larger than the ductile capacity Qe 

when k<1 corresponding to soft soil sites. This behavior due to site effects is counteracted by 

SSI. The reason is that SSI tends to shift the structure period to the long-period spectral 

region, for which the equal displacement rule is applied. Although the representation is not 

perfect, the proposed reduction rule reproduces satisfactorily the general trends observed 

for the input control motion. 
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Fig. 11. Strength-reduction factors with and without SSI obtained from code provisions 
(MDOC and EDR) versus observations. 

3.4 Design strength 
In view of what has been discussed previously, the required base-shear coefficients with and 

without SSI can be computed as follows: 
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The elastic acceleration spectra Sa  and Sa are used to emphasize the fact that the former 

should be evaluated for 
eT  and e , and the latter for Te and e. Notice that the overstrength 

reduction factor R is independent of SSI. Strength design spectra with and without SSI are 

exhibited in fig. 12, along with strength response spectra for the input control motion. It is 

clear that the latter spectra are safely covered by the former in the whole period range. 

Nevertheless, the conservatism inherent in smoothed design spectra overshadows some 
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important changes by SSI, as those happening in the spectral region between the first and 

second soil periods. 
 

 

Fig. 12. Design and response strength spectra with and without SSI for elastic and inelastic 
behavior. 

The use of the recommended SSI provisions will increase or decrease the design earthquake 

forces with respect to the fixed-base values, depending on the dynamic properties of the 
structure and soil and the characteristics of the earthquake excitation. The lateral 
displacements will undergo additional changes due to the contribution by the translation 

and rocking of the foundation. This latter motion may be particularly significant for tall 
buildings. 

A convenient factor to account for modifications of the structural response due to SSI is given 

by the ratio  
y y y yV V C C . The results shown in fig. 13 for this SSI factor, derived from the 

strength design spectra of fig. 12, illustrate the following points: The increments in the base 

shear are less important than the reductions. While the greater increments arise in nonlinear 

systems (Qe=4), the greater reductions arise in linear systems (Qe=1). The SSI factor can be used 

to modify the response quantities computed for the structure assumed to be fixed at the base. 

In the MDOC, the value of 
y yV V  cannot be taken less than 0.7, nor greater than 1.2. It is seen, 

however, that the calculated reduction can be considerably larger than 30%. 
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Fig. 13. Variation of the SSI factor for elastic and inelastic behavior. 

Finally, the maximum displacement of the flexible-base structure relative to the ground can 
be determined as 

  
 

     
 


 2( )

y y y
max max e

y h r

V V V
H e

V K K
 (26) 

where   ( )max y e eV K Q  is the maximum displacement of the fixed-base structure, with eK  

being the lateral structural stiffness. 

4. Conclusions 

The site effects and SSI provisions described in this work have been incorporated in the 2008 
MDOC seismic design code used in Mexico. A simplified model of the soil and structure 
that forms the basis of current design practice was investigated. A new approach for 

constructing site-specific earthquake design spectra was devised, which reflects some 
research advances made on site response and SSI. The approach is based on the peak rock 
acceleration determined with a computer program developed for this purpose. Improved 

site- and structure-response factors to account for the peak dynamic amplification of soil 
and structure responses were developed. The nonlinear soil behavior was considered with 
two additional factors, one for the site period shift and other for the site response reduction. 
These factors should be computed using soil properties consistent with the shear strain. To 

account for the nonlinear structural behavior, a known site-dependent strength reduction 
factor properly adjusted to include SSI was implemented. The SSI effects were expressed by 
a shift in the fundamental period and an increase in the damping ratio for the elastic 

condition, as well as a reduction in the nominal ductility factor. It was shown that the 
independent reduction of the design base shear by ductility and SSI is unsuitable, especially 
for very ductile structures. It is expected that with these improvements to code provisions, 
the earthquake response of code-designed structures will be assessed more accurately. 
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