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1. Introduction 

For some time behavioural and ecological studies have suggested that sex steroid hormones 
regulate several immune processes in fish. For example, the immunocompetence handicap 
hypothesis relates the heritability of parasite resistance with secondary sexual ornaments, 
which are determined and maintained by androgens. Such ornaments are probably a good 
indicator to potential mates of genetic resistance to infections (Dijkstra et al., 2007; Roberts et 
al., 2004). Among vertebrates, the prevalence and intensity of parasitic infections is higher in 
males than females (Klein, 2004). Some fish species show altered sex steroid hormones levels 
upon parasite infection. The main alterations recorded upon infection are decreases in 
androgen, estrogen and vitelogenin serum levels (Hecker & Karbe, 2005). For example, 
during an infective period of vibriosis, silver seabream showed gradually increasing 
testosterone serum levels, whereas serum estradiol levels significantly decreased at an early 
stage of infection and remained low until death. This process coincided with increasing 
macrophages phagocytic activity (Deane et al., 2001). Such field studies prompted 
immunologists to try to establish how sex steroid hormones are able to alter the functions of 
the circulating leukocytes. In fish, most existing information on reproductive-immune 
interactions deals with the modulation of immune responses by circulating hormones, 
including cortisol, growth hormone, prolactin and reproductive hormones and some 
proopiomelanocortin-derived peptides (Engelsma et al., 2002; Harris & Bird, 2000). Although 
the exact effect of these endocrine mediators depends on the species, in general, they are 
known to modulate immune responses by integrating the activities of all the systems. In this 
way they help to adapt the organism to its environment (Lutton & Callard, 2006).  
From a reproductive biology point of view, the leukocytes located in mammalian gonads 
orchestrate important reproductive physiology processes, including gametogenesis and 
steroidogenesis. A long time has passed since leukocytes were first described in the gonad 
of teleosts. Since them, several types of leukocytes have been described in the testis of 
different teleost species using light and electron microscopy. Moreover, differences in the 
number and localization of leukocytes within the testis have also been observed during the 
different stages of the reproductive cycle (Besseau & Faliex, 1994; Billard, 1983; Bruslé-Sicard 
& Fourcault, 1997; Lo Nostro, 2004; Scott & Sumpter, 1989). Thus, in the gametogenic 
activity and spawning stages some macrophages have been described in the interstitial 
tissue of the rainbow trout testis (Loir et al., 1995), whereas in the post-spawning stage a 
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high population of phagocyte cells has been described in several teleost fish (Henderson, 
1962; Loir et al., 1995; Scott & Sumpter, 1989; Shrestha & Khanna, 1976). Although 
macrophages, granulocytes and lymphocytes have been described in the testis of some 
sparid fish, only macrophages have been shown to be phagocytic cells (Besseau & Faliex, 
1994; Bruslé-Sicard & Fourcault, 1997; Micale et al., 1987).   
The gilthead seabream (Sparus aurata L.) is a protandrous hermaphrodite seasonal breeding 
teleost with a bisexual gonad (Figure 1) that offers an interesting model for studying 
immune-reproductive interactions. This is because the remodelling events of the gonad, 
especially during the post-spawning and testicular involution stages, compromise the 
immune system. The specimens undergo sex change during the second or third year of life, 
depending on the natural environment of the populations studied (Lasserre, 1972). Our 
previous studies performed in the western Mediterranean area demonstrated that gilthead 
seabream are males during the first and second reproductive cycles although their gonads 
possess a non-developed ovarian area separated from the testicular area by connective 
tissue (Chaves-Pozo et al., 2005a; Liarte et al., 2007). The reproductive cycle of males is 
divided into four gonad stages: gametogenic activity, spawning, post-spawning and resting. 
Resting is replaced by a testicular involution stage when the fish are ready to undergo sex 
change (Chaves-Pozo et al., 2005a; Liarte et al., 2007). 
 

 
Fig. 1. Section of the gonad of gilthead seabream (Sparus aurata L.) during the male phase. 
The bisexual gonad is formed of a testis and an ovary separated by a thin layer of connective 
tissue. The testis is constituted by seminiferous tubules which are in the initial stage of 
spermatogenesis and the ovary is occupied with pre-vitellogenic ovocytes. T, testis; Ov, 
ovary; CT, connective tissue. (Mallory trichromic) Magnification x 10.  
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During the first reproductive cycle, 11-ketotestosterone and testosterone, the main 
androgens in fish, play different and specific roles in the testicular physiology as they peak 
at different stages of the reproductive cycle. Moreover, the profiles of testosterone serum 
levels during the second reproductive cycle demonstrated that this androgen is not essential 
to the testicular regression process that occurs during this cycle. In contrast, changes in 17-
estradiol serum levels suggest that this hormone orchestrates the testicular regression 
process during both reproductive cycles. Moreover, the data suggest that there is a 
threshold level of 17-estradiol that determines the initiation of ovarian development during 
the second reproductive cycle without promoting complete feminization (Chaves-Pozo et 
al., 2008a). 
 

 
Fig. 2. Sections of the testis of gilthead seabream in the spermatogenesis (a), spawning (b), 
post-spawning (c) and resting (d) stages immunostained with a monoclonal antibody 
specific to gilthead seabream acidophilic granulocytes (Sepulcre et al., 2002). Acidophilic 
granulocytes (arrows) are seen in the blood vessels (a) during spermatogenesis, in the lumen 
of the tubules between the spermatozoa (b) and in the seminal epithelium in contact with 
germ cells (c) during spawning and post-spawning and in the interstitial tissue (d) during 
resting. Magnification x 400.  
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Few studies have dealt with the presence of leukocytes in the gonad of teleosts, their functions 
and the molecular pathways that regulate them. However, our studies in recent years have 
suggested that sex hormones might be key regulators of leukocyte functions in the gonad. For 
example, a massive infiltration of leukocytes, mainly acidophilic granulocytes (Figure 2), is 
orchestrated by gonadal factors including sex steroid hormones during post-spawning and 
testicular involution stages (Chaves-Pozo et al., 2003, 2005a, 2005b, 2007). The immune cells are 
produced in the head-kidney, the main haematopoietic organ in fish. However, when the 
acidophilic granulocytes infiltrate the testis, they show heavily impaired reactive oxygen 
intermediate production and phagocytic activity (hardly 1% of the testicular acidophilic 
granulocytes are able to phagocytise) (Figure 3) while the production of interleukin-1 (IL-1┚) 
is sharply induced (Chaves-Pozo et al., 2003, 2005b, 2008a).  
 

 
Fig. 3. An electron micrograph showing a testicular acidophilic granulocyte with the  
typical ultrastructure of acidophilic granulocytes and two phagosomes containing Vibro 
anguillarum cells (Va). Magnification x 5000. 

Interestingly, it is the gonad itself which actively regulates the presence of these immune 
cells in the testis by stimulating their extravasation from the blood (Chaves-Pozo et al., 
2005b). Moreover, 17-estradiol and testosterone seem to be related with the infiltration of 
acidophilic granulocytes and probably with the magnitude of the infiltration since both 
hormones peak when the infiltration of these cells into the gonad occurred (Chaves-Pozo et 
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al., 2008a). Moreover, the infiltration of acidophilic granulocytes was correlated with an 
increase in the expression of gonadal aromatase, the enzyme that transforms testosterone to 
17┚-estradiol. Such expression was seen to remain high during the period that acidophilic 
granulocytes are present in the gonad (Chaves-Pozo et al., 2005a, 2008b; Liarte et al., 2007). 
Moreover, experimentally induced increases of 17-estradiol serum levels in 
spermatogenically active males triggered the migration of acidophilic granulocytes to the 
gonad in a way that resembles an inflammatory process (Chaves-Pozo et al., 2007). In the 
adult gilthead seabream gonad, macrophages and lymphocytes have also been observed in 
the interstitial tissue (Chaves-Pozo et al., 2008a; Liarte et al., 2007). However, the number of 
testicular macrophages remains steady throughout the reproductive cycle when the 
specimens are males, while no data related to lymphocytes are available (Chaves-Pozo et al., 
2008a). Acidophilic granulocytes and B lymphocytes (Figure 4) also infiltrated the gonad 
and were located in the interstitial tissue and among the spermatozoa when fish were 
treated with an estrogenic endocrine disruptor, 17-ethynilestradiol. This pharmaceutical 
compound, used for oral contraceptives and hormone replacement therapy, has a 
widespread presence in the aquatic environment (Ternes et al., 1999) and may reach 
concentrations of 0.5 to 62 ng/l in European seawage and surface waters (Hinteman et al., 
2006; Johnson et al., 2005; Kuch and Ballschmiter, 2000).  
 
 

  
Fig. 4. Sections of the gilthead seabream testis in the spermatogenesis stage of specimens 
control (a) and specimens treated with 5 µg of 17-ethynilestradiol/g food (b) 
immunostained with a specific anti-gilthead seabream IgM serum. B lymphocytes can be 
seen in the interstitial tissue of the testis, the numbers slightly increasing after 17-
ethynilestradiol treatment. Magnification x 200.  

Testosterone administration in vivo modulates particular components of the physiological 
response of professional phagocytes such as respiratory burst, but does not alter their 
phagocytic activity. Testosterone is also able to regulate the gene expression profile of 
immune related molecules in head-kidney and other immune competent organs. This effect 
is characterized by a strong pro-inflammatory activation in the first week, after which it 
changes into an anti-inflammatory response (Águila et al., 2010).  
These observations which, taken together, suggest that the presence of immune cells and 
cytokines in the gonad guarantees and modulates the reproductive functions (Figure 5), 
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prompted us to investigate the role of 17-estradiol and testosterone in immune cell 
functions and in the regulation of the inflammatory response.  
In this context, we studied the effects of estrogens and androgens on the immune system 
responses, bringing together the views of both immunologists and reproductive biologists. 
An in vitro approach was used to determine which types of leukocytes are able to respond to 
sex steroid hormones.  
 

 
 

Fig. 5. Molecules involved in the mobilisation of acidophilic granulocytes from the head-
kidney to the testis, as deduced from our in vivo and in vitro data (Chaves-Pozo et al., 2003, 
2005 a,b, 2007, 2008a,b,c; Cabas et al., 2010). Although further studies are needed, the data 
clearly identify estrogens (17-estradiol and 17-ethynilestradiol) as key modulators of this 
process. MMP, matrix metalloproteinase; ROIs, reactive oxygen intermediates; E2, 17-
estradiol; EE2, 17-ethynilestradiol; CCL4, CC chemokine-like 4 ; IL, interleukin; TNF, 
tumour necrosis factor ; E-selectin, leukocyte adhesion molecule E-selectin; TGF1, 
transforming growth factor ┚1; TGF┚1R, transforming growth factor ┚1 receptor; 11KT, 11-
ketotestosterone; cyp19a, P450 aromatase. 
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2. Sex steroid hormones as regulators of the immune response 

In mammals, androgens and estrogens exert their main long-term effects on cell growth, cell 
differentiation and cell functions through intracellular androgen receptors (AR) and 
estrogen receptors (ER), ER┙ and ER┚, respectively, all of which belong to the nuclear 
receptor superfamily (Evans & Bergeron, 1988). These AR and ER are ligand-inducible 
transcription factors that cause the activation or repression of genes (Beato & Klug, 2000; 
Kumar & Tindall, 1998). In different mammalian models, the preponderance of ER gene 
over the ER gene is accepted as being one of the mechanism that control the effects of 17-
estradiol on the immune system (Straub, 2007). The main effect of estrogens on the immune 
response involve enhancing the immune/inflammatory response by activating the nuclear 
factor B (NFkB) signalling pathway (Cutolo et al., 2004) and stimulating the secretion of 
tumor necrosis factor (TNF) (Janele et al., 2006). Furthermore, using ER knock-out mice, 
researchers have shown that ER participates in the stimulation of interleukin (IL)-10 and 
immunoglobulin (Ig) M production. In accordance with these roles, a number of 
epidemiological studies have highlighted the relationship between plasma estrogen levels, 
IL production, and autoimmune disorders linked to some diseases (Cutolo et al., 2006). 
However, 17-estradiol also has an inhibitory effect on bone resorption and the suppression 
of inflammation in several animal models of chronic inflammatory diseases (Straub, 2007). 
Unlike estrogens, androgens are thought to be exclusively immunosuppressive in mammals. 
For example, androgens have a negative effect on the expression of inflammatory cytokines, 
increase apoptosis in human monocytes/macrophages, and inhibit lymphocyte proliferation 
(Cutolo & Straub, 2009; Cutolo et al., 2005; Lehmann et al., 1988).  
In teleosts, the large number of different species and the genome duplications that have 
occurred during their phylogeny make it very difficult to assess the number of AR and ER 
existing in each specie. Depending on the species studied, three or four different ER genes 
have been described. Thus, in some species (gilthead seabream, atlantic croaker, zebrafish, 
goldfish) one ER┙ and two ER┚ have been cloned, while in others (rainbow trout and 
Spinibarbus denticulatus) two ER┙ and two ER┚ were found (Iwanowicz & Ottinger, 2009; 
Nagler et al., 2007). In order to determine whether immune tissues are potential targets for 
estrogens, several studies have looked at the expression of ER in immune tissues. In 
immature and mature male and female channel catfish, for example, ER┙ is expressed in 
spleen, blood and head-kidney, while ER┚ is only expressed in spleen (Xia et al., 2000). ER┚ 
is expressed in the spleen and head-kidney of male and female common solea (Caviola et al., 
2007). In the gilthead seabream, in vitro long term treatment of head-kidney leukocytes with 
17-estradiol revealed a suppressive effect on the production of reactive oxygen 
intermediates and the Vibrio anguillarum DNA (VaDNA)-stimulated production of IL-1┚ 
(Chaves-Pozo et al., 2003). However, short term treatment with higher concentrations of 
17-estradiol inhibited the phagocytic capability, while the percentage of phagocytic cells 
and the VaDNA-stimulated production of reactive oxygen intermediates and cell migration 
activity remained steady (Liarte et al., 2011b). In the case of AR, most vertebrates are 
believed to have one active form of nuclear AR with high specificity for the androgen 5┙-
dihydrotestosterone, whereas there appear to be two subtypes of AR in some teleosts, AR┙ 
and AR┚. These are differentially expressed in tissues and show high affinity for both 
testosterone and 11┚-hidroxytestosterone (review in Rempel & Schlenk, 2008). However, 
little is known about the expression of these AR in fish immune tissues, although in 
mammalian models AR are present in liver, spleen and thymus (Butts et al., 2011).  

www.intechopen.com



 
Sex Steroids 

 

206 

There is increasing evidence supporting the transcription-independent non-genomic actions 
of steroid hormones, including testosterone and 17-estradiol (Christ et al., 1997; Falkenstein 
et al., 2000). For example, mammalian mast cells, T and B cells and macrophages shows 
membrane AR and membrane ER (Benten et al., 1998, 2001, 2002; Zaitsu et al., 2007). A 
membrane ER (Pang et al., 2008) and a membrane AR (review in Thomas et al., 2006) have 
recently been cloned and characterized in atlantic croaker, although nothing is known about 
membrane AR in fish immune tissues. The complexity of the way in which sex steroid 
hormones act in fish through membrane and intracellular receptors, as well as the 
complexity of the systemic and gonadal immune responses and the several cell types 
involved, prompted researchers to characterize sex steroid hormone receptors and the 
effects of their ligands in purified immune cells and cell lines. However, since each cell type 
has its own response pattern these issues will be dealt with separately.  

2.1 Macrophages 

Macrophages are ubiquitous cells that play a central role in the innate immune response 
through the secretion of inflammatory cytokines, such as IL-1 and TNF, the production of 
cytotoxic reactive oxygen intermediates, and the secretion of leukostatic factors and other 
regulatory molecules. They are also important accessory cells for many other immune 
responses. In addition, during development, these cells are thought to have a trophic role 
through their remodelling capabilities and ability to produce cytokines. Interestingly, 
whereas a similar pattern of functioning has been demonstrated for macrophages in 
different tissues (Guillemin & Brew, 2004; Laskin et al., 2001; Stout & Suttles, 2004), 
testicular macrophages and their functions are largely determined by the local environment 
(Hedger, 1997, 2002), including not only cytokines and chemokines, but also steroid 
hormones. In mammals, it has been known for many years that ER are expressed in 
monocytes (Cunningham & Gilkeson). However, their response to estrogens and the 
predominance of ER┙ or ER┚ expression appear to be dependent on their stage of 
differentiation. For example, Mor et al. (2003) demonstrated that monocytes express more 
ER┚ and macrophages express more ER┙. The behaviour of 17-estradiol functions in 
mammalian macrophages  has been described as double-edge-sword (depending on 17-
estradiol concentration). Thus, lower 17-estradiol concentrations stimulated IL-1 
production, whereas higher concentrations inhibited lipopolysaccharide (LPS)-induced 
TNF production. This dichotomous effect of 17-estradiol on IL-1 and TNF┙ at high and 
low concentrations is most probably due to inhibition of NF-B at high concentrations 
(review in Straub, 2007).  
Gilthead seabream macrophages constitutively express only the ER gene, although 
stimulation with VaDNA drastically up-regulates the expression of ER, ER1 and ER2 
genes, suggesting that the immune system is able to increase its sensitivity to 17-estradiol 
during development of the immune response (Liarte et al., 2011b). In long-term leukocyte 
cell lines of monocytes/macrophages from channel catfish, the expression of both ER┙ and 
ER┚ has been described (Iwanowicz & Ottinger, 2009). Although evidence conclusively 
demonstrates that fish leukocytes express ER genes, the literature in this respect does not 
deal with the possible differential roles of the two ER genes (ER1 and ER2) present in 
fish. Our data in the gilthead seabream demonstrate for the first time that ER1 and ER2 
are differentially regulated in macrophages. Thus, ER1 gene expression is only induced by 
VaDNA and its VaDNA-induced expression is slightly increased by 17-estradiol, in 
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contrast to ER2 gene whose expression is induced by both stimuli, which, moreover, have a 
synergic effect on ER2 gene expression (Liarte et al., 2011b).  
The biological effect of 17-estradiol on fish head-kidney macrophages is mainly anti-
inflammatory, although controversial data were observed depending on whether the studies 
were in vivo or in vitro. Intra-peritoneal injections of 17-estradiol in common carp inhibit 
phagocytosis and the production of reactive oxygen intermediates and reactive nitrogen 
intermediates by head-kidney macrophages in a dose-dependent manner (Watanuki et al., 
2002). However, upon in vitro treatment, these head-kidney macrophages only showed 
impaired phagocytic capability (Yamaguchi et al., 2001) and, in goldfish macrophages, 17-
estradiol inhibited the percentage of phagocytic cells (Wang & Belosevic, 1995). In the 
European flounder, microarray studies have revealed that 17-estradiol suppresses immune 
system-related transcripts in liver (Williams et al., 2007). In rainbow trout, 17-estradiol 
repressed the acute phase immune response genes (Tilton et al., 2006), as occurs in 
mammalian macrophages (Kramer & Wray, 2002). However, in gilthead seabream 
macrophages, 17-estradiol up-regulates some genes coding for key immune molecules, 
including inflammatory and anti-inflammatory molecules, innate immune receptors, 
molecules related to leukocyte infiltration, matrix metalloproteinases (MMP) and the anti-
viral molecule Myxovirus (influenza) resistance protein (Mx). Moreover, the soluble factors 
produced by those 17-estradiol-stimulated macrophages modify the immune functions of 
head-kidney leukocytes (Liarte et al., 2011b), suggesting that the soluble factors produced by 
testicular macrophages in response to 17-estradiol contribute by blocking the phagocytic 
activity of testicular acidophilic granulocytes (Chaves-Pozo et al., 2005b). A suppression 
subtractive library was constructed to isolate and identify mRNA species up-regulated by a 
supra-physiological dose of 17-estradiol (50 ng/ml) to macrophages. Interestingly, this 
showed that 4% of up-regulated genes are related with the immune response, 6% with the 
stimulus response and 0.5% with physiological interactions between different organism 
categories, all of them probably involved in the interaction of immune cells with the 
immune stimulus. Although the number of identified genes within these categories was 
relatively low, other well-represented subcategories such as these related with biological 
regulation could contain genes whose functions may influence the behaviour of 
macrophages and thus affect their ability to respond to an immunological challenge upon 
exposure to estrogens (Liarte et al., 2011a; Xia & Yue, 2010).   
Although less data are available for AR than for ER in mammalian species, several studies 
have demonstrated that testosterone alters macrophage functions in a complex manner, 
since it has both pro-inflammatory and anti-inflammatory effects. For example, wound 
healing is impaired in males, especially the elderly, which has been directly linked to a pro-
inflammatory action of testosterone on tissue macrophages in the skin (Ashcroft & Mills, 
2002). Moreover, castration increased macrophage-mediated damage at sites of injury in the 
skin, suggesting an anti-inflammatory role for testosterone (Ashcroft & Mills, 2002). 
Testosterone also inhibits inducible nitric oxide synthase and nitric oxide production in a 
mouse macrophage cell line (Friedl et al., 2000). The expression of AR in microglia, the brain 
macrophage, increases after injury and indicates that the innate immune cells of the brain 
may be modulated by androgens (García-Ovejero et al., 2002). Other data indicate that 5┙-
dihydrotestosterone acts as an anti-inflammatory agent and depresses both nitric oxide and 
TNF┙ production in a dose-dependent fashion. However, testosterone treatment of 
microglia and peritoneal macrophages increased supernatant nitrite levels, suggesting a 
pro-inflammatory effect (Brown & Angel, 2005). 
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In fish, the data obtained show that androgens are also able to modulate the immune system 
responses. In common carp, intraperitoneal injections of 11-ketotestosterone inhibit 
phagocytosis and the production of reactive oxygen intermediates and reactive nitrogen 
intermediates by head-kidney macrophages in a dose-dependent manner (Watanuki et al., 
2002). However, in vitro studies with head-kidney macrophages have demonstrated that this 
hormone inhibits phagocytosis and the production of reactive nitrogen intermediates and 
has no effect on the production of reactive oxygen intermediates (Yamaguchi et al., 2001). 
Interestingly, although gilthead seabream macrophages do not express the AR at a level 
detectable by real time polymerase chain reaction, both testosterone and 11-ketotestosterone 
up-regulated different immune genes, such as immune receptors and pro-inflammatory 
cytokines, and down-regulated the anti-inflammatory cytokine, transforming growth factor 
(TGF) ┚ (Águila et al., 2011). Taking into account the complexity of sex steroid hormone 
signalling through intracellular and membrane receptors and sex steroid hormone 
conversion through transformation in other derivatives (such as reduced derivatives or even 
17-estradiol) and bearing in mind that both testosterone and 11-ketotestosterone alter the 
macrophage gene expression and functions analyzed, it can not be discounted that 
macrophages convert testosterone into 11-ketotestosterone or another molecule capable of 
signalling through other receptors in this cell type. In this sense, mammalian macrophages 
lack AR but are able to respond to androgens through a membrane AR that triggers a Ca2+ 
influx (Benten et al., 2004). Moreover, mammalian testicular macrophages have a 
steroidogenic capability as they are able to produce and secrete 25-hydroxycholesterol, 
which affects Leydig cell steroidogenesis (Hales, 2002). In light of the above, further studies 
are needed to complete our understanding of the effect of androgens on fish innate 
immunity and macrophages. 

2.2 Acidophilic granulocytes 

The acidoplilic granulocytes of gilthead seabream display some functions similar to human 
neutrophils despite their opposite staining pattern. In brief, they are the most abundant 
circulating granulocytes and are recruited from the head-kidney to the site of inflammation 
(Chaves-Pozo et al., 2004, 2005c), where they attach themselves to, internalize and kill 
bacteria through the production of reactive oxygen intermediates (Chaves-Pozo et al., 2004, 
2005c; Meseguer et al., 1994; Sepulcre et al., 2002). However, they also show a 
monocyte/macrophage-like behaviour as they are able to specifically target a tissue and 
respond to physiological stimuli by displaying modified functions, as do the 
monocytes/macrophages of mammals (Chaves-Pozo et al., 2005c; Stout & Suttles, 2004). In 
fact, gilthead seabream acidophilic granulocytes infiltrate the testis in a way that resembles 
an inflammatory process triggered by physiological stimuli, and their main activities are 
strongly inhibited by the testicular microenvironment in order to preserve reproductive 
functions (Chaves-Pozo et al., 2005b). Previous data showed that 17-estradiol is related in 
vivo with the mobilization of acidophilic granulocytes from the head-kidney to the gonad 
and probably with the degree of this infiltration (Chaves-Pozo et al., 2007, 2008a). 
Interestingly, neither testicular nor head-kidney acidophilic granulocytes express any of the 
ER known in the gilthead seabream (Pinto et al., 2006; Liarte et al., 2011b). However, studies 
performed with conditioned medium from 17-estradiol-treated macrophages suggest that 
some, but not all, the acidophilic granulocyte functions modified by the testicular 
microenvironment might be regulated by the factors produced by 17-estradiol-treated 
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macrophages (Liarte et al., 2011b). In this sense, there is evidence that suggests a pro-
inflammatory role for 17-estradiol in the gilthead seabream, since it is able to stimulate in 
vivo specific leukocyte migration and promote acidophilic granulocytes infiltration into the 
gonad (Chaves-Pozo et al., 2007). However, in vitro, 17-estradiol failed to promote 
chemiotaxis in purified acidophilic granulocytes, although it is produced a positive 
migration of leukocytes when head-kidney suspensions were exposed to 17-estradiol 
(Liarte et al., 2011b). 
In so far as androgens are concerned, acidophilic granulocytes constitutively express AR, the 
expression of which is modified by 11-ketotestosterone and testosterone, but only when the 
cells are co-stimulated with VaDNA (Águila et al., 2011). The effects of 11-ketotestosterone 
and testosterone on acidophilic granulocytes differ: while testosterone increased, 11-
ketotestosterone decreased the expression of IL-1 and toll-like receptors (TLRs), although 
both up-regulated the VaDNA-induced expression of IL-1┚ (Águila et al., 2010).  

2.3 Lymphocytes 

T and B lymphocytes are the acknowledged cellular pillars of adaptative immunity. T cells 
are primarily responsible for cell-mediated immunity, while B lymphocytes are responsible 
for humoral immunity, but, in conjunction with other cell types, both mediate effective 
adaptive immunity (Pancer & Cooper, 2006). Recently, in long-term leukocyte cell lines of T-
cells and B-cells from channel catfish, the differential expression of ER┙ and ER┚ was 
described. Thus, ER┙ is expressed in both cell types, while only T-cells express ER┚2 
(Iwanowicz & Ottinger, 2009). In the gilthead seabream, lymphocytes only express the ER 
gene (Liarte et al., 2011b). In mammals, however, B lymphocytes express both ER and ER 
genes, while there is debate as to whether or not T cells contain classical nuclear ER (Benten 
et al., 1998; Harkonen & Vaananen, 2006). In vitro functional assays demonstrated that 17-
estradiol stimulates lymphocyte proliferation (Cook et al., 1994). 
To determine whether fish lymphocytes respond to androgens, the classical chemical 
characterization of AR was performed in salmonid lymphocytes (Slater et al., 1995). In these 
species, 11-ketotestosterone inhibits lymphocyte proliferation, while testosterone reduces 
the number of antibody-producing cells and acts with cortisol to produce a greater 
inhibitory effect (Cook et al., 1994; Slater & Schreck, 1993).  

2.4 Endothelial cells 

Leukocyte recruitment is an early and pivotal event in any inflammatory response. Since 
gilthead seabream acidophilic granulocytes are recruited from the blood stream into the 
testis in a process that might be orchestrated by 17-estradiol (Chaves-Pozo et al., 2005b, 
2007, 2008a), we investigated the role of the endothelium in this process. Leukocyte-
endothelial interactions are a special case of cell sorting, in which the endothelium 
discriminates between circulating leukocytes in order to select cells for transmigration into 
surrounding tissue (Ebnet et al., 1996a). Endothelial cells play a singular role in this process, 
receiving information from the underlying tissue and transforming it into information that 
can be read rapidly by the passing leukocytes (Ebnet et al., 1996b). Accumulated evidence 
on mammalian models of cardiovascular disease points to the prominent role of estrogens in 
the ability of endothelial cells to trigger inflammation and participate in the leukocyte 
infiltration process (Nilsson, 2007; Straub, 2007). In mammals, endothelial cells 
constitutively express both ER┙ and ER┚, although ER┙ plays a prominent role in the 
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vascular physiology (Ihionkhan et al., 2002; Straub, 2007). Gilthead seabream endothelial 
cells constitutively express ER and ER1 but not ER2 (Liarte et al., 2011c). However, few 
studies have been carried out into the effect of 17-estradiol on endothelial cell physiology 
in fish. In the Japanese eel, 17-estradiol stimulated the production of vascular endothelial 
cell growth factor in endothelial cells (Huang et al., 2006). In the gilthead seabream 
endothelial cell cultures, 17-estradiol induced the expression of genes coding for 
chemokines, adhesion molecules and MMPs, which agrees with previous studies that 
demonstrated that 17-estradiol promotes acidophilic granulocyte infiltration into the testis 
(Chaves-Pozo et al., 2007). These effects contrast with that which occurs in mammals, where 
17-estradiol inhibits in vivo the migration of leukocytes into inflamed areas and exerts 
tissue-protective activities through the down-regulation of adhesion molecules and the 
proforms of MMPs (Straub, 2007). On the other hand, 17-estradiol did not affect the 
expression in endothelial cells of the genes encoding major pro-inflammatory cytokines, 
such as IL-1┚, IL-6 and TNF┙, which may prevent the detrimental effects of 17-estradiol-
induced inflammation through leukocyte recruitment (Liarte et al., 2011c).  
Little is known about androgens and their receptors in fish endothelial cells. There are very 
recent studies that suggest that androgens influence fish endothelial cell physiology, 
although further effort is needed to really understand how androgens affect endothelial cells 
and their molecular pathways. Trout testicular endothelial cells possess AR, as located by 
immunocytochemistry (Galas et al., 2009). In the gilthead seabream, recent studies 
determined that testosterone up-regulated TNF┙, cyclooxigenase 2 (Cox2) and IL-1┚, and 
down-regulated TGF┚ and aromatase (the enzyme that transforms testosterone into 17-
estradiol) gene expression (Águila et al., 2011).  

3. Effects of endocrine disruptors on the immune response 

In several species, the affinity for ER of several agonists, including natural estrogens like 
17-estradiol, estrone or estriol, and estrogenic disruptor compounds, like 17┙-
ethynilestradiol or diethylstilbestrol, has been tested. The different types of ER show 
differential binding preferences for ligands and their expression patterns are tissue-
dependant (Iwanowicz & Ottinger, 2009). Taking into account that ER and AR are widely 
distributed in immune tissues, including the spleen, liver and anterior kidney (Lynn et al., 
2008; Shved et al., 2009; Slater et al., 1995; Todo et al., 1999), the study of endocrine disruptor 
compounds as potential aquatic pollutants has taken on some importance for fish 
immunologists. Several anatomical and morphological changes were observed in lymphoid 
tissues following exposure to xenoestrogens and xenoandrogens. Spleno-somatic and 
hepato-somatic indices and thymus volume are affected by exposure to sex-steroids 
(androgens and estrogens) or to their related endocrine disruptor compounds (Grinwis et 
al., 2009; Kurtz et al., 2007; Tellez-Banuelos et al., 2009; van Ginneken et al., 2009). In the 
gilthead seabream the dietary intake of 17┙-ethynilestradiol promotes the up-regulation of 
several genes related with leukocyte recruitment (e.g. E-selectin (sele), the CC chemokine-
like 4 (CCL4), TNF┙ and IL-8). Moreover, the heavy chain of IgM and IgT genes has also 
been seen to be up-regulated (Cabas et al., 2011). An increase in the spleno-somatic index 
was also recorded. 
Surprisingly, in vitro 17┙-ethynilestradiol treatment of gilthead seabream endothelial cells 
dramatically reduces the expression of chemokines, adhesion molecules and MMPs in 
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VaDNA-activated endothelial cells unlike in 17┚-estradiol-treated endothelial cells (see 
point 2.4). Although, the differential expression profile in stimulated 17-ethynilestradiol-
treated endothelial cells, compared with 17-estradiol-treated endothelial cells, indicates 
that this compound would be able to impair the recruitment and activation of fish 
leukocytes, other molecular pathways might promote an inflammatory process in the gonad 
in vivo, as described by Cabas et al. (2011). These data show the complex effect of endocrine 
disruptor compounds on immune functions and the need to deepen our knowledge of their 
molecular action mechanism. As also occurs in mammals, 17-estradiol, but not 17┙-
ethynilestradiol, significantly enhances nitric oxide production in gilthead seabream 
endothelial cells, indicating that some estrogens regulate nitric oxide production by 
endothelial cells from fish to mammals (Arnal et al., 1996; Liarte et al., 2011c; Nilsson, 2007). 
As far as we know, most studies on this topic have dealt with the effects of estrogenic and 
anti-androgenic disruptor compounds on reproductive functions. It is known that these 
disruptor compounds mainly affect several enzymes in the steroidogenic pathway, such as 
20┚-hydroxysteroid deshydrogenase, 17┚- hydroxysteroid deshydrogenase and 11┚-
hydroxysteroid deshydrogenase, aromatase and 5┙-reductase (Rempel & Schlenk, 2008). 
Further studies are needed into androgenic disruptor compounds as well as into estrogenic, 
anti-androgenic and androgenic disruptor compound mixtures to better understand how 
chemically and pharmaceutically polluted water might affect the reproductive and immune 
function of fish. Future studies and analyses along these times are being undertaken in our 
laboratory.  

4. Conclusion 

It is known that both estrogens and androgens modulate the fish immune response, 
although the molecular mechanisms by which they act are not completely understood. In 

vivo and in vitro analyses have demonstrated that gilthead seabream leukocyte 
(macrophages, acidophilic granulocytes and lymphocytes) express intracellular AR and/or 
ER, whose expression pattern upon stimulation depend on the cell type and the stimuli in 
question. Estrogens and androgens compromise the immune response, affecting cell types 
other than leukocytes. Thus, endothelial cells are involved in the leukocyte trafficking that 
occurs during the inflammatory process and their activities are also modulated by sex 
steroids. A wide variety of chemicals discharged from industrial and municipal sources has 
been reported to disrupt the endocrine system of animals via the food chain and 
contaminated water. Some of these contaminants have a widespread presence in the aquatic 
environment. Although, current knowledge concerning the sensitivity of marine fish to 
estrogenic and androgenic chemical in the environment is limited, we have seen that the 
most widespread (estrogenic) disruptor compound drastically affects leukocyte trafficking 
and recruitment into tissues. The short time of exposure (3 hours) used in our in vitro 

experiments suggests that, together with ER and AR activation, some transcription-
independent non-genomic actions might be acting on sex steroid hormones-stimulated 
leukocytes. Taking all this into account, further effort will focus on the cloning and 
characterization of membrane AR and ER, their expression pattern in immune cells and the 
molecular characterization of the way of which estrogenic and androgenic compounds 
disrupt the molecular signalling pathways of intracellular and membrane androgen and 
estrogen receptors. 
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