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1. Introduction 

The significance of virgin olive oil (VOO), hinged to its many virtues in both gastronomy 
and health, is nowadays undeniable. Their protective effects are attributed to its high 
content of monounsaturated fatty acids and to the presence of some minor components, 
which add up to 2% of the weight. Among its several minor constituents, polar phenolic 
compounds, usually characterized as polyphenols, have become the subject of intensive 
research because of their biological activities, their influence on the organoleptic properties 
of VOO and their contribution to its oxidative stability (Bendini et al., 2007).  

The phenolic fraction of VOO consists of a heterogeneous mixture of compounds belonging 
to several families with varying chemical structures. A brief description of the main classes 
of phenolic compounds contained in VOO is given below: 

- Phenolic acids. There are two main series of these acids, depending on the carbon 
skeleton: benzoic acids (C6-C1: 3-hydroxybenzoic, p-hydroxybenzoic, protocatechuic, 
gentisic, vanillic, syringic and gallic acids) and cinnamic acids (C6-C3: o-coumaric, p-
coumaric, caffeic, ferulic and sinapic acids).  

- Phenolic alcohols. The two most important in VOO are hydroxytyrosol (Hyty) and 
tyrosol (Ty), although two Hyty derivatives, its acetate and its glucoside, can be also 
found. Hyty and Ty only differ in a hydroxyl group in the meta position. 

- Secoiridoids. They are present exclusively in plants of the Olearaceae family. The olives 
mainly contain the polar oleuropein (Ol) and ligstroside (Lig) glycosides. Ol is the ester 
of elenolic acid (EA) with Hyty, and Lig is the ester of EA with Ty. Ol and Lig aglycones 
(Ol Agl and Lig Agl, respectively) are formed by removal of the glucose moiety from 
glycosides by endogenous β-glucosidases during ripening, oil extraction and storage. 

- Lignans. (+)-1-Pinoresinol, (+)-1-hydroxypinoresinol and (+)-1-acetoxypinoresinol are 
the most reported compounds in olive oil.  

- Flavonoids. The main flavonoids present in VOO are apigenin and luteolin, which are 
originated from their corresponding glucosides present in the drupe. 

The qualitative and quantitative composition of VOO hydrophilic phenols is strongly 
affected by the agronomic and technological conditions of production (Servili et al., 2004). 
Among agronomic parameters, the cultivar, the fruit ripening degree, the agronomic 
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techniques used and the pedoclimatic conditions are the aspects more extensively studied 
(Tovar et al., 2001; Uceda et al., 1999). Moreover, by modulating technology, it is possible to 
some extent to optimize the transfer of some polar minor constituents into the oil or reduce 
their level (Boskou, 2009). The influence of variety, extraction system, ripening degree and 
storage in the polyphenolic content of a VOO has been extensively discussed in the 
literature (Boskou, 2009; Uceda et al., 1999). 

Wide ranges of total polar phenols concentration have been reported in olive oils (50-1000 
mg/kg), although the most usual value is found between 100-350 mg/kg (Boskou et al., 
2006). In general, the most abundant phenolic compounds in VOO are aglycones deriving 
from secoiridoids. Trying to establish levels of individual phenols, Servili & Montedoro 
(2002) calculated average values of 7 phenolic compounds from a considerable number of 
samples of industrial olive oils. They concluded that Hyty and Ty were found only in trace 
amounts (less than 10 mg/kg oil) and the most abundant phenols were decarboxylated Ol 
Agl (63-840 mg/kg), Ol Agl (85–310 mg/kg), and decarboxylated Lig Agl (15-33 mg/kg). 
Brenes et al. (2002) published values ranging from 3-67 mg/kg for 1-acetoxypinoresinol, and 
from 19-41 mg/kg for pinoresinol in 5 Spanish olive oils, data that can be completed with 
the researches carried out by Romero et al. (2002) and Tovar et al. (2001). Levels of luteolin 
have been found to be around 10 mg/kg in some Spanish olive oils (Brenes et al., 1999) or 
ranging between 0.2-7 mg/kg for Greek oils (Murkovic et al., 2004). Carrasco-Pancorbo et al. 
(2006) developed a method to quantify 14 individual phenols belonging to different families 
in 7 Spanish extra-virgin olive oils (EVOOs). They also quantified them, finding the 
following contents (mg/kg): simple phenols: 6.8-11.5; complex phenols: 70.5-799.5; lignans: 
0.81-20.6; and flavonoids: 1.4-8.6.  

Intake of olive oil in the Mediterranean countries is estimated to be 30–50 g/day, based on 
the per capita olive oil consumption of 10–20 kg/year in Greece, Italy and Spain (Boskou, 
2000; Food and Agricultural Organization, 2000). A daily consumption of 50 g olive oil with 
a concentration of 180 mg/kg of phenols would result in an estimated intake of about 9 mg 
of olive oil phenols per day (de la Torre, 2008; Vissers et al., 2004), of which at least 1 mg is 
derived from free Hyty and Ty, and 8 mg are related to their elenolic esters and also to Ol 
Agl and Lig Agl (de la Torre, 2008). Some other estimations have been made. For the Greek 
population (Dilis & Trichopolou, 2009), the daily per-capita intake is about 17 mg. Vissers et 
al. (2004) estimated that about 1 mg of the phenol intake per day (6 mmol) is derived from 
Hyty and Ty, about 8 mg (23 mmol) from the aglycones, and so the total phenol intake 
would be about 29 mmol. 

2. Bioavailability of olive oil polyphenols 

Accumulating evidence suggests that VOO may have health benefits; it can be considered as 
an example of a functional food containing a variety of components that may contribute to 
its overall therapeutic characteristics (Stark & Madar, 2002; Visioli & Bernardini, 2011). To 
explore and determine the mechanisms of action of olive oil polyphenols and their role in 
disease prevention, understanding the factors that constrain their release from the olive oil, 
their extent of absorption, and their fate in the organism is crucial. These issues can be 
described under the term bioavailability, borrowed from the field of pharmacology, redefined 
as “that fraction of an oral dose, either parent compound or active metabolite, from a 
particular preparation that reaches the systemic circulation” (Stahl et al., 2002). To simplify 
this definition, D'Archivio et al. (2010) explained that it simply means how much of the 
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ingested amount of polyphenols is able to exert its beneficial effects in the target tissues. It is 
important to realize that the most abundant phenolic compounds in our diet are not 
necessarily those that have the best bioavailability profile, either because they have a lower 
intrinsic activity or because they are poorly absorbed from the intestine, highly metabolized, 
or rapidly eliminated. In addition, the metabolites that are found in blood and target organs, 
resulting from digestive or hepatic activity, may differ from the native compounds in terms 
of biological activity (Manach et al., 2004).  

Although the information concerning the bioavailability of most olive oil polyphenols is 
limited, intensive research has been carried out in the past decade. This fact is reflected in 
the number of reviews published since 2002 (Corona et al., 2009; Covas et al., 2009; de la 
Torre, 2008; Fitó et al., 2007; Tuck & Hayball, 2002; Visioli et al., 2002; Vissers et al., 2004). To 
address the bioavailability of olive oil phenolic compounds, we have reviewed in vitro and 
in vivo (both animal and human) studies on the absorption, transport, metabolism and 
excretion of olive oil phenolic compounds. 

2.1 Absorption and disposition 

Direct evidence on bioavailability of olive oil phenolic compounds has been obtained by 
measuring the concentration of the polyphenols and their metabolites in biological fluids, 
mostly plasma and urine, after ingestion of pure compounds or of olive oil, either pure or 
enriched with the phenolics under study. The majority of research regarding the 
bioavailability of olive oil polyphenols has been focused on three major phenolics: Hyty, Ty 
and Ol, as can be seen in Tables 1 and 2. 

After ingestion, olive oil polyphenols can be partially modified in the acidic environment of 
the stomach. The effect of such environment on aglycone secoiridoids has been examined in 
vitro by incubating the compounds at 37 ºC in simulated gastric pH conditions and during 
normal physiological time frames (Corona et al., 2006; Pinto et al., 2011). Although 
hydrolysis takes place releasing free phenolic alcohols, a significant amount remains intact 
and thus, enters the small intestine unmodified. Ol Agl and its dialdehydic form, however, 
are likely not absorbed as such in the small intestine; the major metabolites detected using 
the perfused rat intestine model were the glucuronide conjugates of the reduced form of 
both compounds (Pinto et al., 2011).   

Manna et al. (2000) carried out studies on the transport kinetics of radiolabeled Hyty using 
differentiated Caco-2 cells. The only metabolite found in the culture medium was the 
methylated derivative (i.e. homovanillic alcohol - HVAlc). They also demonstrated that 
Hyty was transported across the membrane of the human enterocytes by a bidirectional 
passive diffusion mechanism. Caco-2/TC7 cell monolayers have been used to study the 
metabolism of other olive oil polyphenols, such as Ty, p-coumaric acid, pinoresinol, luteolin 
(Soler et al., 2010) and Hyty acetate (Mateos et al., 2011). Results showed that the methylated 
conjugates are the main metabolites and that the acetylation of Hyty significantly increases 
its transport across the small intestinal epithelial cell barrier, enhancing the delivery of Hyty 
to the enterocytes.  

To study the potential hepatic metabolism of olive oil phenols, human hepatoma HepG2 
cells were incubated for 2 and 18 h with Ty, Hyty and Hyty acetate (Mateos et al., 2005). 
Extensive uptake and metabolism of Hyty and Hyty acetate were observed, with scarce 
metabolism of Ty. Hyty acetate was converted into free Hyty and then metabolized; 

www.intechopen.com



 
Olive Oil – Constituents, Quality, Health Properties and Bioconversions 

 

336 

Tested 
Phenol 

Model 
systema 

 Methods  Metabolites 
Detected 

Study Outcome  Ref. 

[14C] Hyty Caco-2 cell 
monolayers 

Transport kinetics: 
incubation with increasing 
concentrations (50-500 μM) 
at 37 and 4 ºC for 2 min. 
Transepithelial transport: 
incubation with 100 μM 
Hyty, glucose and mannitol

HVAlc Hyty transport occurs via a 
passive diffusion mechanism, 
bidirectionally and in a dose-
dependent manner. Hyty is 
quantitatively absorbed  in the 
intestine 

Manna 
et al., 
2000 

Ol glycoside Isolated rat 
intestine 

In situ intestinal perfusion 
technique: infusion of 
aqueous solution (1 mM, 50 
μl/min) at 37 ºC during 40 
min in both iso-osmotic and 
hypotonic luminal 
conditions

Ol in aqueous solution can be 
absorbed, albeit poorly, from 
isolated perfused rat intestine.  
The Papp of Ol in hypotonic 
conditions is significantly 
higher  

Edge-
combe 
et al., 
2000 

Hyty, Ty, 
Hyty-Ac 

Hepatoma 
HepG2 cells

Cell uptake and metabolism 
of phenols: incubation with 
100 μM at 37 ºC for 2 and 18 h 

Hyty mono-gluc 
and methyl-gluc, 
HVA, Ty gluc, 
Hyty-Ac mono-
gluc 

Extensive uptake and hepatic 
metabolism of Hyty and Hyty-
Ac with scarce metabolism of 
Ty; main derivatives formed: 
glucuronidated and methylated 
conjugates

Mateos 
et al., 
2005 

Hyty, Ty, Ol  Caco-2 cell 
monolayers 
and rat 
segments of 
jejunum and 
ileum 

Hyty and Ty gluc, 
HVAlc, Hyty 
glutathionylated 

Hyty and Ty were transferred 
across the cell monolayers and 
rat segments of intestine and 
were subjected to classic phase 
I/II biotransformation. No 
absorption of Ol

Corona 
et al., 
2006 

Hyty, Ty,  
p-coumaric 
acid, 
pinoresinol, 
luteolin 

Caco-2/TC7 
cell 
monolayers 

Phenols metabolism: 
incubation with 40, 50 and 
100 μM at 37 ºC for 1, 6 and 
24 h. Transport experiments 
in the AP, cellular and BL 
compartments: AP loading 
of phenol at 100 μM 

Hyty: methyl, 
sulfate, methyl-
sulfate. Ty: methyl, 
sulfate. p-Coumaric 
acid: disulfate, 
methyl. Pinoresinol:  
gluc, sulfate. 
Luteolin: gluc,  
methyl, methyl-
gluc,

Limited intestinal metabolism.   
 Major metabolites:  methylated 
conjugates. Time-dependent 
efflux of various free and 
conjugated forms, showing 
preferential AP to BL transport 
after 24 h of incubation 

Soler et 
al., 
2010 

Hyty,  
Hyty-Ac 

Caco-2/TC7 
cell 
monolayers 

Metabolism experiments 
and transport experiments 
in the AP and BL 
compartments: incubation 
with 50 μM at 37 ºC for 1, 2 
and 4 h 

Hyty: HVAlc. Hyty-
Ac: Hyty, HVAlc, 
mono-gluc.  

Hyty-Ac is better absorbed 
than free Hyty and serves to 
enhance delivery of Hyty to the 
enterocytes for subsequent 
metabolism and BL efflux) 

Mateos 
et al., 
2011 

Ol Agl, 
dialdehydic 
form of  
Ol Agl 

Human 
Caco-2 cell 
monolayers 
and isolated 
lumen of rat 
intestine 
(jejunum 
and ileum)

Transport experiments using 
Caco-2 cells: incubation with 
50, 100 and 200 μM at 37 ºC 
for 2 h; AP loading. 
Transport experiments using 
rat intestine: perfusion of 
methanol solution  (100 μM) 
at 37 ºC during 80 min

Hyty, HVAlc, Hyty 
and HVAlc gluc, 
gluc conjugates of 
the reduced forms 
of tested 
compounds  
 

Caco-2 cells expressed limited 
metabolic activity. Major 
metabolites using the perfused 
rat intestine model: gluc of the 
reduce forms. Secoiridoids in 
the parental form were little 
absorbed in the small intestine 

Pinto 
et al., 
2011 

a Caco-2 cells: model system of the human intestinal epithelium; HepG2 cells: model system of the 
human liver; TC7 cells: spontaneously differentiating clone derived from the original Caco-2 cell 
population.  
Abbreviations: AP: apical; BL: basolateral; gluc: glucuronide; Hyty: hydroxytyrosol; Hyty-Ac: 
hydroxytyrosol acetate; HVA: homovanillic acid; HVAlc homovanillic alcohol; Ol: oleuropein; Ol Agl: 
oleuropein aglycone; Papp: apparent permeability coefficient; Ty: tyrosol. 

Table 1. In vitro studies carried out with olive oil polyphenols. 
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glucurono- and methyl-, but no sulfo-conjugates, were found. Olive oil phenols are 
metabolized by the liver as well, as suggested by these results. 

The colonic metabolism of olive oil polyphenols is scarcely reported. Corona et al. (2006) 
demonstrated that secoiridoids, which appear not to be absorbed in the small intestine, 
suffer bacterial catabolism in the large intestine with Ol undergoing rapid degradation by 
the colonic microflora producing Hyty as the major end product.  

It is essential to establish whether olive oil phenolics are absorbed in the intestine in vivo and 
how they are distributed in the organism. Table 1 shows the in vivo bioavailability studies of 
olive oil polyphenols carried out so far. For practical reasons, rats are used as the model of 
choice for in vivo studies. Bai et al. (1998) studied the absorption and pharmacokinetics of 
Hyty in rats, finding that the absorption of Hyty after the ingestion of a single dose is very 
fast. The metabolic fate of Hyty and Ty in rats has been also evaluated by administration of 
the radiolabeled polyphenols. Hyty appeared in plasma at maximum levels 5 min after oral 
administration, although the proportion of free aglycones in some tissues differed to that 
observed in plasma (D'Angelo et al., 2001). In all of the investigated tissues, Hyty was 
enzymatically converted in oxidized and/or methylated derivatives, whereas the major 
urinary products were sulfo-conjugates. Tuck et al. (2001) compared the elimination of Hyty 
and Ty in rat urine within 24 h after administration, both orally (in oil- and water-based 
solutions) and intravenously (in saline). When orally administrated, polyphenols will be 
subjected to first-pass metabolism, so that the contribution of intestinal metabolism will be 
quite relevant. If the administration is intravenous, only hepatic contribution to its 
disposition will be seen. Results showed that Hyty and Ty can be absorbed into the systemic 
circulatory system after oral dosing and that their bioavailability when administered as an 
olive oil solution is almost complete.  Later, urine samples were re-examined and Hyty and 
five of its metabolites were detected (Tuck et al., 2002). Three were conclusively identified as 
monosulfate and 3-O-glucuronide conjugates of Hyty, and homovanillic acid (HVA), and 
one was tentatively identified as O-glucuronide conjugate of HVA. Although there is no 
disagreement between studies, a major limitation is that they were done with rats and some 
researches suggest that comparisons between the model species might not be adequate. 
Visioli et al. (2003) observed a 25 fold higher basal excretion of Hyty and of its main 
metabolites in rats than humans.   

In a well-designed approach, Vissers et al. (2002) measured the absorption and urinary 
excretion of olive oil polyphenols in healthy ileostomy subjects and subjects with a colon 
after the ingestion of increasing doses of extracted phenols. Only a small amount of the 
ingested compounds was recovered in the urine, supporting the hypothesis that humans 
absorb a major fraction of the olive oil phenols consumed. Furthermore, the comparison 
between the absorbed polyphenols in normal and ileostomy subject showed similar results, 
which implies that the small intestine is the major site for the absorption of those 
compounds. Free Hyty and Ty and their glucurono-conjugates were the only metabolites 
detected in the urine samples. Another study carried out in human subjects assessed 
quantitatively the uptake of phenolics from olive oils containing different amounts of Ty 
and Hyty (Visioli et al., 2000). It was observed that these compounds were absorbed in a 
dose-dependent manner, that they were excreted in urine as glucuronide conjugates and 
that, as the concentration of phenols administered increased, the proportion of conjugation 
with glucuronic acid also increased. Upon re-examination of samples two more metabolites 
of Hyty were identified: HVA and HVAlc (Caruso et al., 2001). 
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a Percentage of administered amount after 24 h, unless otherwise indicated 

Abbreviations: apo-B: apolipoprotein-B; COO: common olive oil; DAD: diode array detector; DOPAC: 3,4-dihydro

dihydroxyphenylacetaldehyde; DPPH: 2,2-diphenyl-1-picrylhydrazyl; EA: elenolic acid; EVOO: extra virgin olive o

chromatography; GI: gastrointestinal; HPLC: high performance liquid chromatography; Hyty: hydroxytyrosol; HV

homovanillic alcohol; IV: intravenous; LC: liquid chromatography; LDL: low-density lipoproteins; Lig Agl: ligstro

spectrometry; Ol: oleuropein; Papp: apparent permeability coefficient; ROO: refined olive oil; Ty: tyrosol; UV: ultr

Table 2. Bioavailability of olive oil polyphenols in animals and humans. 
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A major limitation of the commented human studies is that they used phenolics extracts or 
olive oil samples artificially enriched with phenolics extracts, and therefore extrapolation of 
these results to typical olive oil consumption may not be realistic. Further studies have been 
performed administering VOO at doses close to that used in the Mediterranean countries 
(30-50 g/day) (Bonanome et al., 2000; de la Torre-Carbot et al., 2006, 2007; García-Villalba et 
al., 2010; Khymenets et al., 2011; Miró-Casas et al., 2001a, 2001b, 2003a, 2003b; Suárez et al, 
2009). Results confirmed that Hyty and Ty are mainly excreted in their glucurono-
conjugated form; in fact, the role of glucuronidation in metabolism of main olive oil phenols 
can be evaluated in about 65-75% of totally recovered in urine after dietary VOO 
consumption (Khymenets et al., 2011; Miró-Casas et al., 2003b), which suggests an extensive 
first-pass intestinal/hepatic metabolism of the compounds ingested. Suárez et al. (2009) 
considered for the first time the absorption and disposition of flavonoids and lignans after 
the ingestion of VOO. Besides the presence of those VOO polyphenols in their conjugated 
forms, an important variability in the concentrations was observed between the plasma 
samples obtained from different volunteers. This variability may be attributed to differences 
in the expression of metabolizing enzymes due to genetic variability within the population. 
The most comprehensive study regarding the identification of metabolites in human urine 
of practically all the olive oil polyphenols described was reported by García-Villalba et al. 
(2010). These authors were able to achieve the tentative identification of 60 metabolites; the 
most abundant were those containing a catechol group, such as Hyty and the secoiridoids 
Ol Agl and deacetoxy-Ol Agl. Phenolic compounds were subjected to various phase I and 
phase II reactions, mainly methylation and glucuronidation. The report suggests that most 
of the olive oil polyphenols are absorbed to a greater or lesser extent, although absorption 
and metabolism seems to differ greatly among the different compounds. 

2.2 Conjugation and nature of metabolites 

Low doses of polyphenols are delivered through human diet and, generally, do not escape 

first-pass metabolism. As a result, most olive oil polyphenols undergo structural 

modifications, i.e. conjugation process; in fact, conjugates are the predominant forms in 

plasma. Once absorbed, olive oil polyphenols are subjected to three main types of 

conjugation: methylation, glucuronidation and, to a lesser extent, sulfation, through the 

respective action of catechol-O-methyl transferases (COMT), uridine-5’-diphosphate 

glucuronosyltransferases (UDPGT) and sulfotransferases (SULT) (Manach et al., 2004). 

Recently, García-Villalba et al. (2010) carried out a broad study of the metabolites of most olive 

oil phenolic compounds excreted in human urine, showing that most polyphenols were 

absorbed, metabolized and excreted to a lesser or greater extent. It was initially suggested in 

literature that Ol Agl and Lig Agl were hydrolyzed in the gastrointestinal tract (GI) tract and 

then, the resulting polar phenols, Hyty and Ty, were absorbed and metabolized (Vissers et al., 

2002). Nevertheless, the results obtained in later experiments with Caco-2 cells (Pinto et al., 

2011) and humans (García-Villalba et al., 2010), showed that, at least, part of the secoiridoids 

can be absorbed and metabolized; reduction (hydrogenation) is the most probable metabolic 

pathway of these compounds. Hydroxylation and hydration are also possible pathways for the 

secoiridoids. In fact, they can precede or follow the action of COMT on compounds such as 

Hyty, deacetoxy-Ol Agl, and Ol Agl. Some compounds can even suffer a double hydroxylation 

before or after the methylation (García-Villalba et al., 2010). 
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A notable metabolic pathway for Hyty is the methylation, giving rise to the formation of 
HVAlc (Caruso et al., 2001; Bazoti et al., 2010; Manna et al., 2000; Visioli et al, 2003). 
Oxidation and methylation-oxidation, rendering 3,4-dihydroxyphenilacetic acid (DOPAC) 
and HVA, respectively, have been also proposed (D'Angelo et al., 2001). It is noteworthy 
that many of the reported metabolites of Hyty are also the major molecular species deriving 
from dopamine metabolism (HVA, DOPAC, 3,4-dihydroxyphenyl acetaldehyde - DOPAL); 
in fact, Hyty can be also called DOPET, a well-known dopamine metabolite.  

Besides, olive oil phenolic compounds and most of their corresponding phase I metabolites 
can be subsequently subjected to phase II reactions, preferentially glucuronoconjugation 
(García-Villalba et al., 2010). The presence of glucuronoconjugates of phenolic compounds 
belonging to most of chemical classes families described in olive oil has been widely 
detected in both urine and plasma, whereas the presence of sulfated metabolites has scarcely 
been reported in literature.  

The metabolism of olive oil lignans has not been reported in detail so far and one of the few 
references appeared only recently (Soler et al., 2010). In this study, pinoresinol glucuronide 
and sulfate conjugates were identified after incubation of free pinoresinol using 
differentiated Caco-2/TC7 cell monolayers. 

As far as flavonoids are concerned, products of methylation and glucuronidation have been 
observed (Soler et al., 2010; Suárez et al., 2009). Methyl-monoglucuronides of apigenin and 
luteolin have been identified as well (García-Villalba et al., 2010). 

2.3 Binding of olive oil polyphenols to lipoproteins  

Several reports converge on the in vitro ability of olive oil phenolic compounds to bind low 
density lipoproteins (LDL) and to protect them against oxidation (Covas et al., 2000; Visioli 
et al., 1995). Moreover, both animal and human in vivo studies (Coni et al., 2000; Marrugat et 
al., 2004) have provided evidence on the effects of olive oil ingestion on LDL composition 
and the incorporation of olive oil phenolics and their metabolites in LDL. In one of the first 
studies, Bonanome et al. (2000) determined the presence of Hyty and Ty in human 
lipoprotein fractions after olive oil ingestion. Both compounds were recovered in all of the 
fractions, except in the very low density lipoproteins one; concentrations peaked between 1 
and 2 h. Covas et al. (2006) demonstrated that the postprandial oxidative stress can be 
modulated by the olive oil phenolic content and that the degree of LDL oxidation decreases 
in a dose-dependent manner with the phenol concentration of the olive oil ingested. They 
arrived to these conclusions administering a single dose of olive oil, but similar results were 
obtained in studies using sustained doses; olive oil consumption for 1 week led to an 
increase in the total phenolic content of LDL (Gimeno et al., 2002). In a later study, 
volunteers were requested to ingest virgin, common or refined olive oil daily for 3 weeks 
(Gimeno et al., 2007). The concentration of total phenolic compounds in LDL was directly 
correlated with the phenolic concentration of the oils and with the resistance of LDL to their 
in vitro oxidation. 

De la Torre-Carbot et al. (2006, 2007) developed a rapid method for the determination in 
LDL of Ty, Hyty and several of their metabolites. The presence of these compounds in LDL 
strengthens claims that these compounds can act as in vivo antioxidants. The effect of the 
intake of virgin and refined olive oils after long-term ingestion of real-life doses on the 
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content of the metabolites in LDL was examined as well (de la Torre-Carbot et al., 2010). The 
phenols in VOO modulated the LDL content of 3 phenolic metabolites, Hyty, Ty, and HVA 
sulfates; the concentration of these compounds increased significantly after the ingestion of 
VOO, in contrast to the refined one. In parallel, the ingestion of VOO significantly reduced 
LDL and plasma oxidative markers, which suggests that the metabolic activities of phenols 
can be related to the capacity of these compounds to remain bound to LDL.  

2.4 Plasma concentration and tissue uptake 

In 1998, Bai et al. reported for the first time the absorption of Hyty into the bloodstream. Hyty 
was administered orally to rats and appeared in plasma 2 min after, reaching the highest level 
at 5-10 min. Its concentration was low compared to the administered amount. The experiment, 
however, did not take into account the presence of metabolites. 

After this first approach, different methods for the simultaneous detection of Ol and Hyty in 
rat plasma have been optimized. Ruiz-Gutiérrez et al. (2000) determined Hyty in overnight-
fasted rat plasma after its oral administration. Ol and Hyty plasma concentrations were 
measured after oral administration of a single dose of Ol to rats using soya oil and distilled 
water as administration vehicle (Del Boccio et al., 2003). Analysis of plasma showed the 
presence of unmodified Ol, reaching a peak value within 2 h, with a small amount of Hyty. 
In another study, Ol and Hyty plasma levels were monitored in rats after intravenous 
dosing of Ol (Tan et al., 2003). The dosing profile showed that at 10 min both Ol and Hyty 
were rapidly distributed. 

Studies in which phenolic ingestion is closer to typical dietary patterns may be more 
appropriate for estimating bioavailability than the administration of pure compounds. 
Recently (Bazoti et al., 2010), the simultaneous quantification of Ol and its major metabolites 
in rat plasma was carried out after a control diet of 80 days supplemented with Ol or with 
EVOO. Basal levels of HVAlc were detected in the blood stream after the enzymatic 
treatment of the samples with β-glucuronidase. Before the enzymatic treatment, HVAlc was 
detected below the limits of quantification in plasma samples of rats supplement with Ol. 
Hyty was not detected, which indicates that it was metabolized to HVAlc. Ol was detected 
below the LOQ before and after the enzymatic treatment. These results are in accordance 
with the study made by Del Boccio et al. (2003), who demonstrated that Ol was rapidly 
metabolized and eliminated.  

Miró-Casas et al. (2003b) quantified Hyty and HVAlc in human plasma and urine after real-
life doses of VOO. Both compounds appeared rapidly in plasma mainly as glucuronides, 
with peak concentrations at 30 min for Hyty and 50 min. for HVAlc after the ingestion, 
supporting the premise that the small intestine is the major site of absorption for these 
compounds (Vissers et al., 2002).  

Most of the studies described so far have centered their attention on Hyty, Ty and Ol 
derivatives. In a recent work, the absorption and disposition of other olive oil polyphenols 
(flavonoids and lignans) have been considered (Suárez et al., 2009). Samples were obtained 
from healthy humans 1 and 2 h after the ingestion of VOO. The major compounds identified 
and quantified in plasma corresponded to metabolites of Ty, although Ty sulfate was only 
detected in one subject, and especially Hyty, as glucuronide and sulfate conjugates. HVA 
sulfate could be the direct product of the Hyty methylation, and vanillin sulfate and vanillic 
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acid sulfate could be formed as products of alcohol dehydrogenase and aldehyde 
dehydrogenase activities. Suárez & co-workers also found hydroxybenzoic acid in all the 
plasma samples. The glucuronide metabolite of apigenin was tentatively quantified in all 
the samples analyzed, but showing a considerable inter-individual variation. Lignans 
(pinoresinol and acetoxypinoresinol) could not be detected in the plasma samples even in 
glucuronide or sulfate conjugated forms.  

Once the polyphenols reach the bloodstream, they are able to penetrate tissues, particularly 
those in which they are metabolized. The nature of the tissular metabolites may be different 
from that of blood metabolites; data are still very scarce, even in animals, and their ability to 
accumulate within specific target tissues needs to be further investigated. An article written 
by D’Angelo et al. (2001) studied the fate of radiolabelled 14C Hyty intravenously injected in 
rats in different biological fluids (plasma, urine and feces) and tissues (brain, heart, kidney, 
liver, lung, skeletal muscle and GI content). The pharmacokinetic analysis indicated a fast 
and extensive uptake of the molecule by the organs and tissues investigated, with a 
preferential renal uptake. Over 90% of the administered radioactivity was excreted in urine 
after 5 h and about 5% was detectable in feces and GI content. Less than 8% of the 
administered radioactivity was still present in the blood stream 5 min after injection. 
Regarding tissues, the time course analysis indicated that the highest level of radioactivity 
was detected 5 min after injection, followed by a rapid decrease. It is worth noting that Hyty 
is able to cross the blood-brain barrier, even though its brain uptake is lower compared with 
other organs. In all the investigated tissues, Hyty was enzimatically converted in four 
oxidized and/or methylated derivatives (HVAlc, HVA, DOPAC, DOPAL) and 
sulfoconjugated derivatives. Enzymatic methylation is presumably operative in the brain, 
HVAlc representing 41.9% of the detected, labeled species. This reflects the key role of 
COMT in the central nervous system. The occurrence in the analyzed organs of both labeled 
DOPAL and DOPAC implies a sequential oxidation of Hyty ethanol side chain catalyzed by 
alcohol, and aldehyde dehydrogenase, respectively. Labeled HVA, the product of both 
methylation and oxidation, was also identified.  Sulfoconjugated metabolites were mainly 
found in plasma (43.3%) and urine (44.1%).  

As data on plasma concentration of olive oil phenols are still scarce, an alternative is to look 

at olive oil phenols excreted in urine; these may provide information on the form in which 

phenols are present in plasma. 

2.5 Elimination 

The amount and form in which the olive oil phenols are excreted in urine may give an 

insight into their metabolism in the human body. The first experimental evidence of the 

absorption of Ty and Hyty from olive oil in humans was obtained by Visioli et al. (2000) 

from a single oral dose of 50 ml of phenolic-enriched olive oil. The proportions of Hyty 

and Ty recovered in glucuronidase-hydrolyzed urine, with respect to ingested dose, were 

in the ranges of 30–60% and 20–22%, respectively. This paper postulated that Hyty and Ty 

were dose-dependently absorbed in humans and excreted in urine as glucuronide 

conjugates.   

Miró-Casas et al. (2001a) measured the urinary recovery of administered Ty during the 24 h 

after EVOO ingestion. Maximal Ty values were obtained in the 0-4 h urine samples and 
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decrease to reach basal values after 8-12 h. Ty was excreted in urine mainly in its glucuro-

conjugated form, with only 6–11% excreted in the free form. In a later study (Miró-Casas et 

al., 2001b), the simultaneous determination of Hyty and Ty in human urine after the intake 

of VOO was reported. Like the previous study, Hyty and Ty levels in urine rose after VOO 

consumption, reaching a peak at 0–4 h and returning to basal values at 12–24 h. After 

hydrolytic treatment, the amount of total compounds recovered in 24 h urine was also 

determined for Hyty and Ty. Recoveries ranged between 32-98% for Hyty and 12.1-52% for 

Ty. Both compounds were mainly excreted in conjugated form since only 5.9% Hyty and 

13.8% Ty of the total amount excreted were in free form. The hydrolysis procedure applied 

in this study was limited because it did not provide specific information about the type of 

conjugation involved. This paper also postulated that Ol is not the main source of Hyty after 

ingestion of olive oil. The absorption of Hyty and Ty was later confirmed in an experiment 

using single and sustained doses of VOO (Miró-Casas et al., 2003a). Urinary recoveries of Ty 

were similar for both cases; however, mean recovery values for Hyty after ingestion of 25 

ml/day VOO for one week, were 1.5-fold of those obtained after a 50 ml single dose.  

Vissers et al. (2002) studied the absorption of Hyty, Ty and, for the first time, Ol and Lig Agl, 

in ileostomy subjects and in volunteers with a colon. The results showed that 55-66% of the 

ingested olive oil phenols were absorbed in ileostomy subjects, which implies that most 

phenols are absorbed in the small intestine. Excreted phenolics, mainly in the form of Hyty 

and Ty, were determined to be 5–16% of the total ingested. Similar levels of Hyty and Ty 

were found in the urine of subjects with and without a colon, confirming that olive oil 

phenols are absorbed mainly in the small intestine. The obtained values, lower than those 

reported by others, could be underestimations because metabolites of olive oil phenols were 

not considered. In this work it is also suggested that an important step in the metabolism of 

the Ol glycoside and Ol and Lig-aglycones is their transformation into Hyty or Ty. This was 

supported by finding that 15% of an Ol glycoside supplement administered to healthy 

human subjects was excreted in urine as Hyty and Ty.  

Tuck et al. (2001) investigated the in vivo fate of tritium labeled Hyty and Ty after 

intravenous (in saline, tail vein) and oral dosing (in oil- and water-based solutions) to rats. 

For both Hyty and Ty, the elimination of radioactivity in urine within 24 h for the 

intravenously and orally administered oil-based dosing was significantly greater (95 and 

75%, respectively) than the oral aqueous dosing method (74 and 53%, respectively). The 

majority of the excreted dose was eliminated from the body within 2 h, when intravenously 

dosed, and within 4 h for both oral dosings. Later, urine samples collected after 24 h were 

re-examined (Tuck et al., 2002). After oral oil dosing Hyty represented 4.10% of compound 

eliminated, monosulfate conjugate 48.42%, glucuronide conjugate 9.53%, HVA 10.26% and 

other possible metabolites 20.27%. Other study with rats supplemented with Ol (Ol rats) or 

with EVOO (EVOO rats) was developed for the simultaneous determination of Hyty, Ty 

and EA in rat urine (Bazoti et al., 2005). The urinary levels of free Ty and Hyty were higher 

in EVOO rats than in Ol rats. When the urine sample were treated with β-glucuronidase, the 

total amount of metabolites measured for the EVOO rat was higher for Ty but lower for 

Hyty than in Ol rats. EA was not detected, probably because of its further metabolism to 

simpler molecules. Nevertheless, as already mentioned, caution should be taken 

interpreting the results achieved from rats (Visioli et al., 2003).  
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The urinary excretion of HVAlc and HVA in humans was reported for the first time by 

Caruso et al. (2001) after the intake of different VOOs. HVAlc contributes to 22% of the total 

excretion of Hyty and its metabolites, and HVA 56%. The excretion of both metabolites 

correlated with the administered dose of Hyty. Even at low doses, HVAlc and HVA were 

excreted. In a later study, Miró-Casas et al. (2003b) observed how urinary amounts of Hyty 

and HVAlc increased in response to VOO ingestion, reaching the maximum peak at 0-2 h. 

Urinary recovery 12 h after olive oil ingestion was rather different depending on the 

hydrolytic treatment applied. Under acidic conditions recoveries were higher for both Hyty 

and HVAlc than with enzymatic hydrolysis. It was apparent that 65% of Hyty was in its 

glucuronoconjugated form and 35% in other conjugated forms.  

To understand the impact of glucuronidation on the metabolic pathway of olive oil 

phenols, the simultaneous determination of Ty, Hyty, HVAlc and their corresponding O-

glucuronides in human urine was carried out by Khymenets et al. (2011). It was the first 

time that the glucuronides of these compounds have been directly identified and 

quantified in urine samples of volunteers supplemented with EVOO, because previous 

methods measured either free or total phenols after hydrolysis. The maximum excretion 

of Hyty and Ty occurred during the first 6 h after administration, which is in agreement 

with earlier reported data. The free Ty and Hyty, as well as HVAlc, were detected at 

significant concentrations in all urine samples collected 6 h after EVOO acute intake. 

Concentrations of O-glucuronide metabolites (4-O-gluc-Ty, 4-O-gluc-Hyty, 3-O-gluc-

Hyty, and 4-O-gluc-HVAlc) were substantially higher in 6 h postprandial samples when 

compared to their parent compounds. About 13% of the consumed olive oil polyphenols 

were recovered in 24 h urine, 75% of which were in the form of glucuronides and 25% as 

free compounds.  

In another recent work, specific information about the type of conjugates in human urine 

was provided (García-Villalba et al., 2010). The authors were able to indentify more than 60 

metabolites. This was the first report in which metabolites of simple phenols, flavonoids, 

lignans and secoiridoids have been found in human urine samples. Phenolic compounds 

were subjected to different phase I (hydrogenation, hydroxylation, methylation) and phase 

II (mainly glucuronidation) reactions. Ten metabolites were identified as possible 

biomarkers of olive oil intake and their levels in urine after the olive oil ingestion were 

monitored, finding the highest level of most of them 2 h after administration. 

In summary, data on urinary excretion indicate that at least 5% of ingested olive oil phenols 

is recovered in urine mainly as glucuronidated Ty and Hyty. The remaining phenols are 

metabolized into other compounds, such as O-methylated Hyty. Monosulfate conjugates 

might be other metabolites, as shown in two rat studies; however, if olive oil phenols are 

also metabolized into these conjugates in humans remains to be elucidated. 

3. Need and difficulties of carrying out bioavailability studies of polyphenols 

In this section, we will discuss some common mistakes that can be made when 

bioavailability studies are carried out, the difficulties that the analyst can find and the 

limitations of some of the studies made so far. Figure 1 gives a general idea of the most 

important topics commented in the section. 
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Limits/difficulties of some of 
the studies carried out so far

Bioavailability

From the characterization

of olive oil-polyphenols

fraction

Fraction of an ingested nutrient or 

compound that reaches the systemic 

circulation and the specific sites where it 

can exert its biological action

-Release from the carrier matrix

-Intestinal absorption

-Tissue uptake

Three main steps are implicit

To achieve evidence about 

health benefits and to 

understand their metabolism

Rigorous determination of 
bioavailability of polyphenols?

In-vitro 

- Great care is required when interpreting

- Are doses applied realistic?

- Compounds tested are available (or isolated) standards – i.e. polyphenol

aglycones or their sugar conjugates - rather than active metabolites

Animal models

- Differences between human and animal genomes

In-vivo

- Intervention studies are difficult

- “Single-dose” design

- Bioavailability in target tissues?

Food matrix

- Polyphenols in food are more complex than often thought

Metabolomic studies

- Complex analytical tools

- Lack of standards  (identification / quantization)

 

Fig. 1. Definition of bioavailability and the limits affecting bioavailability studies of 
polyphenols 

Since intervention studies are very difficult to carry out, in many cases the researchers have 
to turn to in vitro or animal studies. In vitro studies are a pillar of pharmacological research 
and build the bases for future in vivo assays; however, the interpretation and extrapolation 
of the achieved data have to be made very carefully (Kroon et al., 2004). When the biological 
activity of polyphenols is assessed by using culture cells as tissue models, in most of the 
cases, cells are treated with aglycones or polyphenols-rich extract derived from plants or, in 
this case, from olive oil, and data are reported at concentrations which elicited a response. It 
is absolutely necessary to bear in mind that plasma and tissues are not exposed in vivo to 
polyphenols in these forms: the molecular forms reaching the peripheral circulation and 
tissues are different from those present in the olive oil (Day et al., 2001). Moreover, the 
polyphenols concentration tested should be of the same order as the maximum plasma 
concentration attained after a polyphenol-rich meal (0.1-10 µmol/l). 

Matters of practicality determine the use of rats rather than humans as the model of choice 
for in vivo studies, although interspecies variability renders comparisons between the model 
species (animals, humans) complex and sometimes questionable (Visioli et al., 2003), since 
the rats and rodents in general are not the best model for the study of dietary problem of 
human metabolism. 

When in vivo studies are carried out, we can say that most of researches have investigated 
the kinetics and extent of polyphenol absorption by measuring plasma concentrations 
and/or urinary excretion among adults after the ingestion of a single dose of polyphenol, 
provided as pure compound, plant extract, or whole food/beverage. Using this “single-
dose” design, the increase in the blood concentration is transitional and reflects mainly the 
ability of the organism to take up the polyphenol from the food matrix. Consequently, most 
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of the data from humans presented in the literature on the bioavailability refer only to the 
release of the polyphenols from the food matrix and their consequent absorption 
(D'Archivio et al., 2010; Vissers et al., 2004). 

To address the bioavailability of olive oil phenols, we should exclude studies without a 
control diet and studies in which the amount of ingested phenols is not reported or could 
not be estimated (Miró-Casas et al., 2001a; Visioli et al., 2000a; Vissers et al., 2004). In other 
words, it is essential to characterize in depth the polyphenolic extract of the olive oil before 
starting bioavailability studies to assure their usefulness; since this fraction is quite complex 
and heterogeneous, it represents another requirement which difficults the whole process.  

Advances in the understanding of olive oil polyphenols metabolism have been made 
possible by improvements in the analytical methodologies used, particularly high-resolution 
chromatographic systems with mass spectrometry as detector (Bai et al., 1998; Del Boccio et 
al., 2003; García-Villalba et al., 2010; Khymenets et al., 2011; Miró-Casas et al., 2003b). 
Performing metabolomic studies is challenging and requires measurements of a very high 
quality using powerful platforms. Even if the analyst uses proper tools, the fully structural 
assignment of the metabolites under study is sometimes very difficult due to the lack of the 
metabolite standards; fact which  makes difficult the correct quantification too (D'Archivio 
et al., 2010; García-Villalba et al., 2010). The amount of information about the sample under 
study achieved in metabolomic studies is considerable, that is why for meaningful 
interpretation the appropriate statistical tools must be employed to manipulate the large 
raw data sets in order to provide understandable and workable information (Manach et al., 
2009). 

A very interesting review written by D'Archivio et al. (2010) gives a critical overview about 
the difficulties and the controversies surrounding the studies aimed at determining the 
bioavailability of polyphenols. Summarizing, there are some essential steps to be followed 
to establish conclusive evidences for the effectiveness of polyphenols in disease prevention 
and in human health improvement: 1) determination of the distribution of these compounds 
in our diet, estimating their content in each food; 2) identification of which of the existing 
polyphenols are likely to provide the greatest effects in the context of preventive nutrition, 
and 3) assesment of the bioavailability of polyphenols and their metabolites, to evaluate 
their biological activity in target issues.  

Even though the bioavailability studies are properly designed, we have to be aware of how 
many different endogenous and exogenous variables are involved and the difficulties that 
have to be faced. The main factors recognized as affecting olive oil polyphenols 
bioavailability can be grouped in the following categories: factors related to the polyphenol 
characteristics, food/food processing related factors, external factors and factors related to 
the host, as it can be observed in Figure 1. An in-depth discussion of every factor 
influencing the bioavailability of olive oil polyphenols has been made by Manach et al. 
(2004) and Cicerale et al. (2009).  

4. Conclusions  

To explore and understand the mechanism of action of olive oil polyphenols and their role 
in disease prevention and human health improvement, extensive studies of absorption, 
metabolism, excretion, toxicity, and efficacy are needed. Although in vitro studies can be 
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very useful and provide valuable information, they have to be completed with extensive in 
vivo research. The first requirement for a beneficiary dietary compound is that it enters into 
the blood circulation; therefore to demonstrate in vivo effects of olive oil phenolics it is 
necessary to assess first their bioavailability. 

Analysis of plasma and urine provide valuable information on the identity and 
pharmacokinetics of circulating metabolites after ingestion. Since the metabolites 
sequestered in body tissues are not usually taken into account, results from urine samples 
could be an underestimation. There have been several studies which have determined the 
metabolites of the various olive oil polyphenols (mainly Hyty, Ty, and Ol) in human plasma 
and urine after oral intake, although the information is still scarce. The conjugation 
mechanisms that occur in the small intestine and later in the liver are highly efficient. The 
resulting metabolites are mainly glucuronate and sulfate conjugates with or without 
methylation across the catechol group (many are multiply conjugated). 

Bioavailability studies are gaining increasing interest as food industries are continually 
involved in developing new products, defined as ‘‘functional’’ by virtue of the presence of 
specific antioxidants or phytochemicals. The difference between functional foods and 
medicines calls for moderation when the “medicinal” properties of individual food items, be 
it olive oil, are indicated. The correct message should be to select foods whose components 
have proven, albeit limited in magnitude, biological activities and build a balanced diet 
round them, to reduce several chronic diseases. 
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