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1. Introduction

Water stress is one of the factors most frequently limiting maize production, food security,
and economic growth in sub-Saharan Africa. The unprecedented combination of climatic
risk, declining soil fertility, the need to expand food production into more marginal areas as
population pressure increases, high input costs, extreme poverty, and unavailability of
credit systems, have resulted in small holder farmers in southern and eastern Africa
producing maize in extremely low-input/low risk systems (Banziger and Diallo, 2004). As a
consequence, crop yields are falling to very low levels and food insecurity is widespread
amongst agricultural communities (Kamara et al., 2004). The development of maize
germplasm able to tolerate water stress is crucial if the productivity of maize based farming
systems is to be sustained or increased (Betran et al., 2003).

Maize genotypes perform differently under water stress conditions due to the existence of
genetic variability for tolerance to stress (Bolanos and Edmeades, 1993; Lafitte and
Edmeades, 1994; Banziger et al., 2000; 2006; Diallo et al., 2004). Betran et al. (2003) observed
hybrids performing well under stress and suggested the possibility of combining stress
tolerance and yield potential in tropical maize hybrids. Tolerance of maize to water stress is
partly related to the development of the root system, which in turn influences water and
nutrient uptake by crop plants (Moll et al., 1982; Kamara et al., 2004). In general, however,
the amount of grain yields recorded from maize genotypes fall with the severity of water
stress (Betran et al., 2003). Breeding strategies to develop stress tolerant maize inbred lines
include screening and selection of inbreds under managed stress conditions, multi-location
testing of progeny in a representative sample of the target environments, and selection
under high plant populations (Beck et al.,, 1997). Additional information from adaptive
secondary traits (ears per plant, anthesis-silking interval and leaf senescence) that show
differential expression between optimal and stress conditions is genetically variable and is
correlated with grain yield and is commonly used to increase selection efficiency (Bolanos
and Edmeades, 1993; 1996, Banziger and Lafitte, 1997). When genetic variance and
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heritability for grain yield declines under water stress (Blum, 1988; Bolanos and Edmeades,
1996), variances and heritability of anthesis-silking interval and ears per plant remain stable
across water stress levels or may even increase (Bolanos and Edmeades, 1996). Anthesis-
silking interval and ears per plant have, therefore, been used in selection indices to increase
selection efficiency for water stress tolerance (Bolanos et al., 1993; Bolanos and Edmeades,
1996).

The choice of the most effective breeding scheme and the rate of the genetic improvement
are dependent upon the relative magnitude of various gene effects (Dhillon and Pollmer,
1978). The expression and genetic variation of grain yield and secondary traits in maize vary
with stress level. Additive genetic effects were found to be more important for grain yield
under water stress and well-watered conditions (Betran et al., 2003; Makumbi et al., 2004).
Betran et al. (1999) reported that as water stress increases so does the importance of general
combining ability (GCA) and additive genetic effects. Derera et al. (2008) reported the
preponderance of additive effects for grain yield and ears per plant under water stress and
the importance of both additive and non-additive effects in controlling grain yield under
well-watered conditions. Both additive and non-additive gene effects are important for days
to anthesis, silking and anthesis-silking interval under both water stress and non-water
stress environments (Derera et al., 2008).

Determining of the mode of gene action controlling yield and secondary traits in QPM
germplasm under water stress, and optimal conditions would help in devising a viable
conventional breeding strategy to develop nutritionally enhanced cultivars adapted to stress
and optimal environments. The aim of this study was to determine (i) the combining ability
and (ii) modes of gene action for grain yield and related traits in QPM inbred lines under
water stress, and optimal (well-watered) conditions.

2. Materials and methods

2.1 Environments and stress management

The study was conducted in eastern and southern Africa, in Ethiopia, Kenya, Zambia and
Zimbabwe from 2006 to 2008 (Table 1). Nine environments at Harare (HAOM), Rattray
Arnold (RAOM), Mpongwe (MPOM), Bako (BKOM), Melkassa (MLOM), Pawe (PWOM),
Awassa (AWOM), Jimma (JMOM) and Kiboko (KBOM) research stations comprised
optimum management (optimal fertilization and supplemental irrigation as needed to avoid
water stress). Fertilizer rates at each location were adjusted to reflect the agronomic
recommendations for each location. The trials were conducted during the summer (main
cropping) seasons of the respective countries. Two experiments were grown under water
stress during the winter (dry) seasons at Chiredzi, Zimbabwe (CHDS) and Kiboko, Kenya
(KBDS) research stations.

Both Chiredzi and Kiboko are largely rain free during the winter season, allowing the
control of water stress intensity by withdrawing or delaying irrigation for varying lengths of
time during flowering and grain filling stages (Edmeades et al., 1999). At Chiredzi, water
stress was achieved by applying a total of 220 mm irrigation water in the first 50 days from
planting. This regime caused severe water stress at flowering and grain filling time. The
trials at Kiboko were irrigated from planting until 15 days before male flowering after which
watering was withheld until 15 days after male flowering when additional irrigation was
applied to prevent zero yield (Banziger et al., 2000). Care was taken so that irrigation, and
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hence stress, was as uniform as possible and the water stress blocks were not contaminated
with irrigation water from neighbouring blocks or leaking pipes and wind drift. Sufficient
fertilization and crop management practices were applied, except irrigation management to
avoid confined effects from other factors.

Temperature Fertilization
Location Country Year Latitude Longitude Altitude Raniﬁiall </ - en\-fi};sreuf\fent Code —g—l;zga'l I()Il::t::is pgf\fiﬁ};n

Min Max N . K#
Harare Zimbabwe  2006/7 17°49S  31°1'E 1489 890 14.2 26.8  Optimum HAOM 166 56 24 4.0 x1.50 53333
RARS Zimbabwe  2006/7 17°16'S  31°03'E 1341 865 14.2 270  Optimum RAOM 208 35 21 4.0x0.75 53333
Mpongwe  Zambia 2006/7 13032'S  28003'E 1300 1500 n/at n/a  Optimum MPOM 208 35 21 4.0x0.75 53333
Bako Ethiopia 2007 9°06'N 3709'E 1650 1245 14.0 281  Optimum BKOM 100 100 - 4.8 x1.50 44 444
Melkasa Ethiopia 2007 8024'N 3921'E 1550 680 14.6 286  Optimum MLOM 50 25 - 4.8 x1.50 44 444
Pawe Ethiopia 2007 11°09N  36°03'E 1100 1577 16.6 334  Optimum PWOM 64 46 - 4.8 x1.50 44 444
Awassa Ethiopia 2007 7008'N 38048'E 1700 1100 12.6 26.8  Optimum AWOM 110 46 - 4.8 x1.50 44 444
Jimma Ethiopia 2007 7°46'N  36°00'E 1753 1530 12.0 262  Optimum JMOM 75 70 - 4.8 x1.50 44 444
Chiredzi Zimbabwe 2007 21002’S 31058 E 433 300 14.0 342  Stress CHDS 148 56 24 4.0 x1.50 53333
Kiboko Kenya 2007 2010'S 37040'E 975 561 14.0 33.0  Stress KBDS 156 92 - 4.0 x1.50 53333
Kiboko Kenya 2008 2010'S 37040'E 975 561 14.0 33.0  Optimum KBOM 156 92 - 4.0 x1.50 53 333

tn/a= not available; ¥K= potassiu m fertilizer was not used in Ethiopia and Kenya; RARS= Rattray
Arnold Research Station

Table 1. Locations and environments used to evaluate F; hybrids, with their characteristics
and codes

2.2 Germplasm

Fifteen inbred lines were selected based on diverse pedigree backgrounds. These lines
showed better combining ability in top-cross evaluations and per se performance across a
range of tropical and subtropical environments (data not shown). Most of the lines are
resistant/tolerant to major foliar diseases of the tropics (CIMMYT, 2004). Diallel crosses
were made among the 15 inbred lines in the winter of 2006 at Muzarabani, Zimbabwe. Seeds
from reciprocal crosses were bulked to form a set of 105 F; hybrids. The F; hybrids were
evaluated along with two QPM (SC527Q and CML144/CML159/ /CML176) and one normal
maize (SC633) hybrid checks in all experiments conducted in Kenya, Zambia and
Zimbabwe, and two normal maize (BH540 and BH541) and one QPM (BHQP542) hybrid
checks in all experiments conducted in Ethiopia.

2.3 Experimental design and field measurements

All experiments were laid out as 9 x 12 alpha-lattice designs (Patterson and Williams,
1976) with two replications (Table 1). Measurements were recorded on well-bordered
plants by excluding the plant nearest to the alley of each row. Days to anthesis and silking
were calculated as the number of days from planting to 50% pollen shed and silk
emergence. Anthesis silking interval was calculated as the difference between days to
silking and anthesis (ASI = DS - DA). Two weeks after pollen shed, plant height and ear
height were measured as the distance from ground level to the first tassel branch or to the
node bearing the main ear. Number of ears per plant was obtained by dividing the
number of ears by number of plants harvested. An ear was counted if it had at least one
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fully developed grain. Grain weight from all the ears of each experimental unit was
measured and used to calculate grain yield (expressed in ton ha! and adjusted to 12.5%
moisture content).

2.4 Statistical analysis
Before data analysis, anthesis-silking interval (ASI) was normalized using In/(ASI +10) as

suggested by Bolanos and Edmeades (1996). Analysis of variance per environment was
conducted with the PROC MIXED procedure in SAS (SAS, 2003) considering genotypes as
fixed effects and replications and blocks within replications as random. Entry means
adjusted for block effects generated from individual location analyses according to a lattice
design (Cochran and Cox, 1960) were used to perform across environments combined
analyses using PROC GLM in SAS (SAS, 2003) and combining ability analysis using a
modification of the DIALLEL-SAS program (Zhang and Kang, 1997).

GCA effects of the parents and SCA effects of the crosses were estimated following
Griffing’s Method IV (crosses only) and Model I (fixed) of diallel analysis (Griffing, 1956).
Combined analyses of variance were conducted for each trait that showed significant entry
mean squares in individual environment analysis. Combining ability was analyzed, and
GCA and SCA effects were estimated accordingly. The mean squares for hybrids and
environments were tested against the mean squares for hybrid x environment (E) as error
term while hybrid x E interactions mean squares were tested against pooled error.

Since means (over replication) of each of the genotypes were used for combined analysis of
variance, estimate of pooled error mean squares were calculated following the procedure of

n n
Dabholkar (1999) as: Z:I(l-si2 ZKir, where K; and Siz are error degrees of freedom and
i=1 i=1
error mean square at ith environment, respectively, n is the number of environments and r is
the number of replications in each environment. The significance of GCA and SCA sources
of variation was determined using the corresponding interactions with the environment as
error terms. Error mean squares calculated above were used to test the significance of GCA
and SCA interactions with environment; because the combining ability mean squares were
calculated based on entry means of each genotype from each environment (Griffing, 1956;

Singh, 1973; Dabholkar, 1992). For GCA effects of the inbred lines, the restriction Z gi=0

was imposed. Significance of GCA effects was determined by the t-test, using standard
errors of GCA effects (Griffing, 1956; Singh and Chaudhary, 1985).

3. Results

Analysis of variance for each environment revealed the existence of significant differences
among hybrids for most traits except anthesis-silking interval at Harare, Mpangwe and
Pawe optimal (Table 2). Mean squares due to GCA were highly significant for all traits
studied at all environments. SCA effects were also significant for most traits. Mean grain
yields for the QPM hybrids (excluding the checks) ranged from 0.6 t hal under severe water
stress at Chiredze to 8.4 t ha'! under optimum management at Mpongwe (Table 3). At
Kiboko, average grain yield of the hybrids tested under water stress was 35.7% of grain
yield under optimal conditions (KBOM).
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Environmentt Source of

variation DF GY DA DS ASI PH EH EPP
HAOM Hybrids 104  4.6** 13.3%* 15. 0** 2.0 425.4** 279.1*  0.04**
GCA 14 6.6** 39.7%* 42.4%* - 885.5%* 537.9%  0.04**
SCA 90 1.7%* 15 21 - 108.1%** 77.6* 0.02**
RAOM Hybrids 104  5.5** 12.7%* 15.9%* 2.1% 341.5** 298.1**  0.05**
GCA 14 6.9%* 35.9%* 42.6%* 3.2%* 467.5** 364.5*  0.07**
SCA 90 2.1 1.7%* 2.6%* 0.7 124.6** 115.5**  0.02**
MPOM Hybrids 104  10.1** 3.6** 3.3%* 0.8 986.7** 459.0*  0.03*
GCA 14 15.8* 6.4** 5.1%* - 1278.1**  703.1**  0.02**
SCA 90 3.4%* 1.1 1.1 - 371.3** 155.8**  0.01
BKOM Hybrids 104  5.0%* 51.2%* 51.0%* 2.5%* 589.4** 280.9**  0.13**
GCA 14 8.3** 161.9%* 157.8%* 5.2%* 850.5%* 627.9%*  0.30**
SCA 90 1.6** 4.4%* 4.9%* 0.7 208.2** 64.6 0.03**
MLOM Hybrids 104  3.9** 22.2%% 22.2%% 1.5%* 570.6** 357.9%*  0.11**
GCA 14 6.2%* 66.3** 62.5%* 2.5%* 633.0** 420.7%*  0.26**
SCA 90 1.3%* 2.5% 3.1% 0.5* 231.2%* 141.4*  0.02**
PWOM Hybrids 104  3.6** 35.3%* 36.6** 1.8 367.7%* 212.8**  0.04**
GCA 14 4.4 77.5%% 85.9%* - 335.9* 150.5**  0.03**
SCA 90 14 8.4** 7.8%* - 160.2** 99.5%* 0.02**
AWOM Hybrids 104  2.6** 20.0%* 18.3** 4.4 571.9%* 278.4*  0.12*
GCA 14 2.9%* 63.1%* 55.7%* 5.4%* 757.9%* 381.2%*  0.16**
SCA 90 1.0%* 1.8%* 1.9% 1.7* 212.5%* 101.5**  0.04*
JMOM Hybrids 104  3.2** 39.9%* 35.4** 1.7%* 598.3** 308.6**  0.07**
GCA 14 4.8** 124.9** 110.2** 1.1%* 924.7** 409.7%*  0.13**
SCA 90 1.1%* 3.6** 3.3%* 0.8** 201.9** 114.6 0.02**
CHDS Hybrids 104  0.3** 71.2%* 309.2**  108.4**  762.6** 293.3**  0.08**

GCA 14 0.5**  207.6** 900.5**  271.4* 1598.7**  314.3**  0.19**
SCA 90 0.1* 8.9** 38.6** 20.4* 191.9** 120.6**  0.02**

KBDS Hybrids 104 3.8 345  90.9%  20.6* - - 0.09**
GCA 14  102%  115.0%  254.7%  3371* \ - 0.22%*
SCA 90 0.6  2.0% 12.9% 6.8 J - 0.02
KBOM Hybrids 104  94%  17.4%  184%  22% 42707  2045%  0.03*
GCA 14  147%  562% 567+ 55  807.6%  4923%  (.05*
SCA 90  32%  13% 1.8 04 121.1%  415%  0.01*

HAOM-=Harare optimal, RAOM=Rattray optimal, MPOM=Mpongwe optimal, BKOM=Bako optimal,
MLOM=Melkasa optimal, PWOM=Pawe optimal, AWOM=Awassa optimal, [MOM=Jimma optimal,
CHDS=Chiredzi stress, KBDS=Kiboko stress, KBOM=Kiboko optimal* P< 0.05 ; ** P< 0.01; DF= degrees
of freedom; GY= grain yield; AD= days to anthesis; DS= days to silking; ASI= anthesis-silking interval;
PH= plant height; EH= ear height; EPP= ears per plant

Table 2. Mean squares for hybrids, general (GCA) and specific (SCA) combining ability for
grain yield and agronomic traits in stressed and optimal environments, 2006 - 2008
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Combined analysis of variance across water stress environments revealed highly significant
mean squares due to environments and hybrids for all traits analyzed (Table 4). Mean grain
yield across water stress environments ranged from 0.3 to 3.7 t ha! with a mean of 1.8 t hal.
Higher grain yields were recorded for VL052 x VL05561 (3.7 t ha1), VL05561 x CML159 (3.5 t
ha), VL054178 x VL06375 (3.4 t ha?l), VL05482 x VL05561 (3.3 t hal) and VL054178 x
VL05561 (3.0 t hal). Mean grain yield across water stress environments (Table 4) was 27.4%
of the mean grain yield across optimal environments (Table 5). Mean days to anthesis was
92.3 with a range of 82.8 - 103.5. Days to silking ranged from 83.7 to 120.0 d with a mean of
102.0. Anthesis-silking interval ranged from 0.4 to 21.4 with a mean of 9.7. Ears per plant
ranged from 0.10 to 0.88 with a mean 0.50. Combining ability analysis revealed non-
significant GCA mean squares for grain yield but significant GCA mean squares for days to
anthesis and silking, anthesis-silking interval and ears per plant. SCA mean squares,
however, were not significant for all traits. Hybrid x E, GCA x E and SCA x E interaction
mean squares were significant for all traits tested.

Across optimal environments, the effects of environments, hybrids, GCA and SCA were
highly significant for all the traits evaluated (Table 5). Grain yields ranged from 1.8 to 9.4 t
ha-1 with a mean of 6.5 t hal. The highest yielding hybrids were VL05483 x CML491 (9.4 t
ha1), CML511 x CML491 (8.8 t ha'l), VL05561 x CML491 (8.7 t ha'l), CML159 x CML491
(8.5 t hal) and VL054178 x CML491 (8.1 t hal). Mean days to anthesis was 73.8 with a
range of 66.9 - 80.4. Days to silking ranged from 68.9 to 82.8 with a mean of 75.1. Mean
plant and ear height was 225.5 and 110.9 cm with ranges of 189.0 - 248.4 cm and 89.9 -
131.7 cm. Mean ears per plant was 1.14 with ranges of 0.79 - 1.48. Anthesis-silking interval
ranged from -0.2 to 3.3 d with a mean of 1.6 d. Hybrid x E, GCA x E and SCA x E
interactions were highly significant for all traits except SCA x E for ear height and
anthesis-silking interval.

HAOM RAOM MPOM BKOM MLOM PWOM AWOM JMOM CHDS KBDS KBOM

Grand mean 7.7 6.5 8.4 6.5 6.7 49 4.7 4.6 0.6 29 8.1
Hybrid mean 7.7 6.4 8.4 6.5 6.7 49 47 4.6 0.6 29 8.2
Best hybrid 12.9 10.6 13.8 9.7 10.6 8.8 7.2 7.9 21 5.7 12.1
Best QPM check 9.1 7.8 9.2 6.4 59 3.8 47 49 1.0 24 7.5
Best normal check 11.6 10.0 8.6 74 6.5 6.1 6.0 2.5 0.3 3.2 5.5
SE (m) 0.6 0.9 0.7 0.3 0.5 0.8 0.5 0.4 0.2 0.5 0.5
% high yielding hybst 1.0 1.0 419 314 61.0 14.3 10.5 41.0 13.3 45.7 73.3

HAOM-=Harare optimal, RAOM=Rattray optimal, MPOM=Mpongwe optimal, BKOM=Bako optimal,
MLOM=Melkasa optimal, PWOM=Pawe optimal, AWOM=Awassa optimal, JMOM=]imma optimal,
CHDS=Chiredzi stress, KBDS=Kiboko stress, KBOM=Kiboko optimal.  proportion of QPM hybrid
with higher grain yield than the best check (normal maize or QPM); SE(M)= standard error of the
mean

Table 3. Means of QPM hybrids, and best normal and QPM checks for grain yield in stress
and optimal environments, 2006 -2008
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Sources of variation DF GY DA DS ASI EPP
Environment (E) 1 275.0% 65614.0** 116716.3** 7339.6%* 14.24**
Hybrid 104 1.3%* 46.7*%* 159.8** 42 4%* 0.07**

GCA 14 7.3 308.8** 1030.3** 233.0** 0.39**
SCA 90 04 59 24.3 12.7 0.02

Hybrid x E 104 0.7%* 6.1** 40.3** 22.1** 0.02**

GCAXxE 14 3.3%* 13.8** 124 .9** 71.5** 0.02**

SCA xE 90 0.3** 5.0%* 27.1*%* 14.4* 0.02**
Error 164 0.2 2.5 11.8 8.8 0.01
Mean 1.8 92.3 102.0 9.7 0.50
Minimum 0.3 82.8 83.7 0.4 0.10
Maximum 3.7 103.5 120.0 21.4 0.88
SE (m) 0.3 1.1 24 2.1 0.07
CV% 24.1 1.7 3.4 30.7 20.0

* P<0.05; ** P< 0.01; ASI= Anthesis silking interval; CV= coefficient of variation; DA= days to anthesis;
DF= degrees of freedom; DS= days to silking; EPP= ears per plant; GCA= general combining ability;
GY= grain yield; SCA= specific combining ability; SE (m)= standard error of the mean

Table 4. Mean squares from combined analysis of variance and means for grain yield and
agronomic traits of QPM hybrids across water stress environments at Chiredzi and Kiboko,
2007

Sources of
variation DF GY DA DS PH EH EPP ASI
Environment (E) 8 231.4%* 5263.9**  7362.0%* = 61527.2%* 46311.2** 3.09** 509.0%*
Hybrids 104 14.4%* 69.8** 71.1%* 1356.2%* 643.5%* 0.11** 2.8%*
GCA 14 46.8*%* 477 1% 472.7% 5289.2%* 2925.7%* 0.58** 13.2%*
SCA 90 9.4%* 6.5%* 8.6** 744 4%* 288.5%* 0.04** 1.2%*
Hybrids x E 832 1.2%* 4.7%* 4.6%* 135.4** 87.0%* 0.02** 0.9**
GCA xE 112 2.6%* 17.2%* 16.2%* 183.5%* 129.1** 0.05** 1.6**
SCA xE 720 0.8** 2.2%* 2.2%* 110.5%* 69.3 0.02** 0.6
Error 738 0.6 15 1.8 73.1 61.7 0.01 0.6
Mean 6.5 73.8 75.1 225.5 110.9 1.14 1.6
Minimum 1.8 66.9 68.9 189.0 89.9 0.79 -0.2
Maximum 94 80.4 82.8 248.4 131.7 1.48 33
SE (m) 0.3 04 0.5 2.9 2.6 0.03 0.3
CV% 11.6 1.7 1.8 3.8 7.1 8.8 47.8

* P<0.05; ** P< 0.01; ASI= anthesis-silking interval; CV= coefficient of variation; DA= days to anthesis;
DF= degrees of freedom; DS= days to silking; EH= ear height; EPP= ears per plant; GCA= general
combining ability; GY= grain yield; PH= plant height; SCA= specific combining ability; SE (m)=
standard error of the mean

Table 5. Mean squares from combined analysis of variance and means for grain yield and
agronomic traits of QPM hybrids across nine optimal environments, 2006 - 2008
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Estimates of GCA effects for grain yield showed that inbred lines VL05561, VL05483, CML511,
CML159 and VL06375 combined well in most of the environments (Table 6). These inbred lines
mostly showed positive and highly significant GCA effects in most environments. On the
other hand, VL052, VL052887, VL0523 and CML144 showed negative and highly significant
GCA effects in most of the environments. Inbred lines VL05561, VL05483 and CML511 showed
high positive GCA effects across optimum and combined environments.

For days to anthesis, VL054178, VL05482, VL05561, VL05483, CML511 and VL06375 had
negative and highly significant GCA effects in most environments (Table 7). On the other
hand, inbred lines VL05200, VL054178, VL052887, VL0523, VL05561 and CML144 showed
positive and highly significant GCA effects in most environments. VL054178, VL05482,
VL05561, VL05483, CML511, CML159 and VL06375 had highly significant negative GCA
effects for days to silking for both water stress and optimal environments.

Inbred lines VL054178, VL05482, VL05561, VL05483 and VL06375 had negative and highly
significant GCA effects for days to silking (Table 8). On the other hand, VL05468, VL052887,
VL0523, VL0524, CML144 and CML491 showed positive and highly significant GCA effects.
VL054178, VL05482, VL05561, VL05483, CML159 and VL06375 had highly significant
negative GCA effects for days to anthesis for both water stress and optimal environments.
The GCA effects for anthesis-silking interval were negative and highly significant for
VL05561 but positive and highly significant for VL054178 in almost all environments (Table
9). Across water stress environments, inbred lines VL054178 and VL05482 showed lower
GCA effects. VL052887, VL05561 and CML144 had negative and highly significant GCA
effects across optimal environments. VL054178, VL05561, VL05483 and VL06375 showed
lower GCA effects for anthesis-silking interval over all environments.

Inbred lines VL05200, VL054178, VL05482, CML144 and CML159 showed negative and
significant GCA effects for plant and ear height in most environments (Tables 10 and 11).
However, VL05483 and VL06375 had positive and significant GCA effects for plant height
while VL053, VL0524 and VL5561 had positive and significant GCA effects for ear height in
most environments.

For ears per plant, inbred lines VL05482, VL05483 and CML511 showed positive and
significant and VL05200, VL05468, VL0523, VL0524 and CML159 showed negative and highly
significant GCA effects in water stress and optimal environments (Table 12). At Chirezi under
water stress, VL05482, CML511 and CML491 showed negative and significant GCA effects.

4. Discussion

The results observed in various environments (Table 2) showed that water stress
significantly affected grain yield, as previously reported (Bolanos and Edmeades, 1993, 1996;
Banziger et al., 1997; Banziger and Lafitte, 1997; Banziger et al., 1999a; Derera et al., 2008).
High levels of variation observed among hybrids under water stress, and optimal
environments indicate the possibility of selecting for improved grain yield and agronomic
traits under stress and non-stress conditions. The existence of genetic variability in maize
evaluated under stress conditions has been reported by several investigators (Bolanos et al.,
1993; Bolanos and Edmeades, 1996; Banziger and Lafitte, 1997; Beck et al., 1997; Banziger et
al., 1997; 1999b; Betran et al., 2003; Derera et al., 2008). Significant GCA and SCA mean
squares for most traits in each environment indicate the importance of both additive and
non-additive effects for the traits studied. This suggests that effective selection or systematic
hybridization could be employed in improving these traits.
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Related Characteristics in Inbred Quality Protein Maize Lines and Their Hybrid Progeny

The Influence of Water Stress on Yield and

Table 6. Estimates of general combining ability effects of 15 QPM inbred lines for grain yield

per environment, 2006 -2008
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Environmentt P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 I
HAOM 0.42 1.48* 1.63** -2.75* 1.89** -3.84** 1.39** 1.05** -0.84** -1.19**  0.26 1.
RAOM 0.46*  0.69**  1.87** -232* 1.81** -2.80* 219 1.52** -1.03** -1.56** -0.61* 1.
MPOM -0.68** -0.29 0.12 0.12 -046  0.68* 0.17 -0.36 0.14 0.14 1.74%  -1.
BKOM 0.90**  0.91**  2.66** -511** 4.87** -6.15** 3.07** 334" -0.26** -3.71** -144** 3.
MLOM 0.58 0.78* 1.81%* -2.83** 3.11** -5.02** 2.28*  2.04* -0.63 -2.22%*  -0.73* 1.
PWOM 1.37* 1.42* 1.79** -3.48%* 398 -436* 1.33* 216 -2.89** -1.39* 1.05 1.
AWOM 1.00%*  1.51**  1.55** -2.88** 3.00** -4.22** 1.51* 1.39% -0.76** -230** -0.99** 2.
JMOM 1.01%  -2.74* -2.06** 1.99** -1.65* 2.72% -274** -0.16  2.66* -4.26* 421" -6.
CHDS 2.36%* 172  1.35* -531** 3.50** -5.78%* 488 279** -0.81 -3.25%*  -3.89** 5.
KBDS 1.88*  1.21**  1.83** -4.03** 4.46** -5.00%* 2.05* 2.06* -1.23** -3.25** -237* 3.
KBOM 1.01**  0.58**  1.51** -2.81** 2.66** -4.16* 214** 1.61* -117** -1.86** -1.09** 2.
ACDRT# 212%* 146  1.59** -4.67** 3.98** -539** 3.46%  242% -1.02** -3.25* -313** 4.
ACOPT* 0.67**  0.77%*  1.73** -292% 279* -399** 1.93* 1.77%* -0.77%* -1.87** -0.43** 1.

HAOM-=Harare optimal, RAOM=Rattray optimal, MPOM=Mpongwe optimal, BKOM=Bako opt
PWOM-=Pawe optimal, AWOM=Awassa optimal, JMOM=]Jimma optimal, CHDS=Chiredzi stress, KBI
optimal; * P< 0.05 ; ** P< 0.01; * ACDRT= across water stress environments; #* ACOPT= across optimu
VL05200; P3= VL05468; P4= VL054178; P5= VL052887; P6= VL05482; P7= VL0523; P8= VL0524; P9
CML511; P12= CML144; P13= CML159; P14= CML491; P15= VL06375; SE(gi)= standard error of GCA eff
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Related Characteristics in Inbred Quality Protein Maize Lines and Their Hybrid Progeny

The Influence of Water Stress on Yield and

Table 8. Estimates of general combining ability effects of 15 QPM inbred lines for days to

silking per environment and across environments, 2006 - 2008
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Environmentt P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 I
RAOM 0.05 0.09 1.47** -0.14 -0.22 0.47%* -030 -0.22 -0.80*  -0.14 0.01 -(
BAOM 034 -047%  0.76** 0.41* -1.28%*  0.64** 010 057 -1.24**  -0.24 -0.01 -0
MLOM 024 0.16 0.74** 0.39* -0.45** 0.28 -0.30  -0.18 -1.03** 0.01 016 -0
AWOM -0.35  -0.78**  0.92** 0.57* -0.51 0.84** 0.68* 0.61* -0.78**  -0.39 -032 -0
JMOM -0.31  0.02 -0.03 -0.05 0.06 -0.19 0.52** 037  -0.27 0.12 -046* 0
CHDS 1.85 118 6.01**  -8.08** 2.45* 5. 71 6.62%*  539%  -3.24*  -5.00%  -227% 3.
KBDS 1.24* 023 2.47%* -1.23* 2.23**  -1.53*  1.17*  1.16* -2.73* -1.19* -1.30"* 1.
KBOM -0.10  0.69**  1.07** -0.02 -0.55**  0.88**  -0.55** -0.02 -1.29* 046"  0.35* -(
ACDRT# 1.55** 0.71 4.24**  -4.65%* 2.34%*  -3.62%  3.89** 3.27% -299**  -3.09%* -1.79%* 2.
ACOPT* -0.02  0.01 0.78** 0.22%* -0.58**  0.59** -0.10 014 -091** -0.05 0.03 -0

HAOM=Harare optimal, RAOM=Rattray optimal, MPOM=Mpongwe optimal, BKOM=Bako of
PWOM-=Pawe optimal, AWOM=Awassa optimal, JMOM=Jimma optimal, CHDS=Chiredzi stress, KB
optimal; * P< 0.05 ; ** P< 0.01; + ACDRT= across water stress environments; # ACOPT= across optimu
VL05200; P3= VL05468; P4= VL054178; P5= VL052887; P6= VL05482; P7= VL0523; P8= VL0524; I
CML511; P12= CML144; P13= CML159; P14= CML491; P15= VL06375; SE(gi)= standard error of GCA ef
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Related Characteristics in Inbred Quality Protein Maize Lines and Their Hybrid Progeny

The Influence of Water Stress on Yield and

Table 10. Estimates of general combining ability effects of 15 QPM inbred lines for plant

height per environment and across environments, 2006 - 2008
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Environmentt  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
HAOM -5.51%  -6.18** 1.40 -6.45** 6.34*  -12.83**  6.95**  9.42*  453* 2.34 2.25
RAOM -0.38 -8.54**  5.81** -1.72 2.83 -8.24**  439*  6.25** 6.01** -1.07  5.78**
MPOM 2.16 -8.57*%  -6.48**  -13.21** 4.66 -6.88** 3.68 6.21* 12.01**  6.96** 7.58**
BKOM 0.11 -9.96** 0.88 -6.39** 4.60* -5.46**  6.11*  9.01** 14.76**  -3.31 0.31
MLOM -0.2 -12.66**  0.34 1.80 1.57 -3.3 5.07* 5.17* 11.35**  3.30 1.57
PWOM -0.77 -4.67* -0.82 -1.56 -0.64 -1.46 6.28*  6.68**  -0.70 118  -3.87
AWOM -0.72  -10.80**  -4.93* -7.43%* 5.07* -0.29 4.08*  8.02** 2.36 5.20* 5.77**
JMOM -0.3 -0.43 0.32 -1.51 -4.02 0.54 -1.50  -10.83**  -6.90**  -2.95 8.32**
CHDS 0.83 -6.67**  -4.77* 3.86 -5.04* 1.33 5.64*  5.95* 9.31** 0.9 -0.21
KBOM -1.92  -10.05**  -0.87 -3.90** 1.82 -8.61**  8.35%  9.46** 10.55** -045  1.48

HAOM=Harare optimal, RAOM=Rattray optimal, MPOM=Mpongwe optimal, BKOM=Bako op
PWOM-=Pawe optimal, AWOM=Awassa optimal, JMOM=]Jimma optimal, CHDS=Chiredzi stress, KB
optimal; * P< 0.05; ** P< 0.01; 8 ACALL= across all environments; # ACOPT= across optimum environme
VL05468; P4= VL054178; P5= VL052887; P6= VL05482;, P7= VL0523; P8= VL0524; P9= VL05561; P1
CML144; P13= CML159; P14= CML491; P15= VL06375; SE(gi)= standard error of GCA effects
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Environmentt P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 I
HAOM -0.04*  -0.06* -0.07** -0.05* 0.01 0.07**  -0.02 0.00 0.04*  0.13** 0.03 0
RAOM -0.08**  -0.08**  -0.01 -0.03  0.07** -0.01  -0.05* 0.03 0.02 0.07*  0.19* -0.
MPOM -0.01 0.00  -0.07%* -0.01 0.01 0.03 0.00  -0.07**  0.03 0.08** 0.05 0
BKOM -0.01 -0.19**  -0.11** -0.27**  0.34* 0.12*  -0.03 -0.01 -0.03  0.12*  0.06* 0.
MLOM 0.01 -0.04*  -0.05* -0.18* 0.24* 020" -0.18** -0.09** -0.09* 0.14** 0.10** 0.
PWOM -0.01 -0.03  -0.05*  -0.02 -0.05 0.07* 0.00 -0.06*  0.07**  -0.01 0.03 -(
AWOM -0.01 -0.04 -0.08  -0.09* 017 0.21*  -0.06 0.09 -0.05 0.05 0.00 0
JMOM -0.06* 0.00 0.12*  -0.01 -0.04  0.09* -0.07** 0.00 -0.18*  0.02 0.23** 0.
CHDS -0.03 -0.03  -0.13* 0.19* -0.11* 0.16** -0.18** -0.16**  0.05 0.06*  0.08** -0.
KBDS -0.10**  -0.06* -0.12** 0.13** -0.14* 0.15* -0.18** -0.15** 0.19* 0.13** 0.07** -0.
KBOM -0.06** -0.05** -0.01 -0.07** 0.13*  0.04* -0.08** -0.05** 0.02  0.11** 0.05*
ACDRT# -0.07*  -0.04* -0.13** 0.16** -0.13* 0.15* -0.18** -0.16* 0.12** 0.10* 0.07** -0.
ACOPT* -0.03** -0.06** -0.07** -0.08** 0.13** 0.09* -0.05** -0.02* -0.01 0.08* 0.07** 0

HAOM=Harare optimal, RAOM=Rattray optimal, MPOM=Mpongwe optimal, BKOM=Bako op
PWOM=Pawe optimal, AWOM=Awassa optimal, JMOM=Jimma optimal, CHDS=Chiredzi stress, KBI
optimal; * P< 0.05 ; ** P< 0.01; ¥+ ACDRT= across water stress environments; # ACOPT= across optimu
VL05200; P3= VL05468; P4= VL054178; P5= VL052887; P6= VL05482; P7= VL0523; P8= VL0524; PS¢
CML511; P12= CML144; P13= CML159; P14= CML491; P15= VL06375; SE(gi)= standard error of GCA ef
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Combined analysis of variance across water stress (Table 4) and optimal (Table 5)
environments indicated the existence of significant variation among hybrids and
environments for all traits. Both additive and non-additive genetic effects were not
important for grain yield across water stress environments while only additive effect was
important for days to anthesis and silking, anthesis-silking interval and ears per plant.
This finding is contrary to the reports of other researchers (Betran et al., 1999; 2003;
Makumbi et al., 2004; Derera et al., 2008), who reported the importance of additive effects
for grain yield of normal maize under water stress. When genetic variance for grain yield
is not apparent, secondary traits of adaptive value whose genetic variability increases and
whose heritability remains high under water stress can increase selection efficiency
(Bolanos and Edmeades, 1996; Edmeades et al., 1997; Banziger and Lafitte, 1997; Banziger
et al., 1999b).

Highly significant GCA and SCA mean squares for all traits under optimal environments
indicate the importance of both additive and non-additive gene effects for the inheritance of
these traits. Similar results have been reported in diallel studies of QPM inbred lines under
optimal environments (Pixley and Bjarnason, 1993; Bhatnagar et al., 2004; Hadji, 2004; Fan et
al., 2004). Derera et al. (2008) reported the importance of both additive and non-additive
effects in conditioning grain yield, days to anthesis and silking, and anthesis-silking interval
in Design-II crosses of normal maize inbred lines. Similarly, additive and non-additive
effects were important for all traits evaluated across environments except anthesis silking
interval which had non-significant SCA effects. Significant mean squares of Hybrid x E,
GCA x E and SCA x E interactions for most traits across environments indicate that these
effects were not consistent over environments. This implies that different genes are involved
in controlling these traits under water stress and optimal conditions. Cooper and Byth (1996)
explained that the larger the degree of genotype-by-environment interaction, the more
dissimilar the genetic systems controlling the physiological processes conferring adaptation
to different environments.

Even though significant cross-over interactions were observed for GCA effects of the inbred
lines, some inbred lines were identified with consistent GCA effects across environments.
This implies that the genetic systems controlling a given trait under different stress and non-
stress conditions are at least partially similar. Hence, it is possible to identify QPM hybrids
that perform well across stress levels in Africa. Similar conclusions have been drawn by
Betran et al. (2003) who evaluated tropical normal maize inbred lines and their hybrids for
grain yield under optimal and water stress conditions.

Inbred lines VL054178, VL05561, VL05483, CML511, CML159 and VL06375 were good
general combiners for grain yield in both water stress and optimal environments indicating
that these inbred lines contributed to increased grain yield in their crosses under all
environmental conditions. Inbred lines VL054178, VL05482, VL05561, VL05483, CML159
and VL06375 contributed to earliness under most environments as inferred from the
negative and highly significant GCA effects of days to anthesis and silking. VL05561 was the
best general combiner for anthesis-silking interval. Inbred lines VL05200, VL054178,
VL05482, CML144 and CML159 were good combiners for plant stature as they contributed
to reduced plant and ear height in the crosses. VL05482, VL05483 and CML511 contributed
to increased ears per plant in the crosses. Anthesis- silking interval and ears per plant are
important secondary traits to be considered in increasing the efficiency of selection for grain
yield under stress. The highest grain yielding genotypes under water stress tended to show
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lower anthesis-silking interval, delayed senescence, and a higher number of ears per plant
(Bolanos and Edmeades, 1993; Banziger and Lafitte, 1997; Banziger et al., 1999¢; Diallo et al.,
2004).

Higher SCA variances than GCA variances for grain yield in most optimal environments
indicate that additive variability was of greater importance in the inheritance of grain yield
under optimal conditions. Under water stress conditions, however, additive variability was
more important than non-additive variability. The predominance of additive effects under
water stress conditions has been reported by several researchers (Betran et al., 2003; Diallo et
al., 2003; Makumbi et al., 2004; Derera et al., 2008).

Additive effects were more important that non-additive effects in the inheritance of days to
anthesis and silking in all cases. Similarly, additive effects were more important for anthesis-
silking interval, plant and ear height, and ears per plant in most cases.

According to Baker (1978), when SCA mean squares are not significant, the hypothesis that
the performance of a single-cross progeny can be adequately predicted on the basis of GCA
would be accepted. On the other hand, if the SCA mean squares are significant, the relative
importance of GCA and SCA should be assessed by estimating components of variance in
determining progeny performance.

5. Conclusions

A large proportion of the maize crop in Africa is grown by small scale farmers under low
input systems, without adequate fertilization and irrigation. Significant yield losses due to
water stress were realized in this study. The results indicated the availability of considerable
variation among QPM hybrids and the possibility of making selections for grain yield and
agronomic traits under stress and non-stress conditions. Significant GCA and SCA mean
squares, and hence the importance of both additive and non-additive effects was observed
for most traits in most environments. Neither additive nor non-additive genetic effects were
important for grain yield across water stress environments. In this case, secondary traits
such as anthesis-silking interval and ears per plant with high genetic variability and
heritability can be used to increase selection efficiency.

Estimates of GCA effects showed that inbred lines VL.054178, VL05482, VL05561, VL05483,
CML511, CML159, CML491 and VL06375 had good GCA effects for most traits under stress
and non-stress conditions. These inbred lines can be used for the development of QPM
hybrids and synthetics that perform well across stress and non-stress environments. In
general, the inbred lines used in this study were found to be useful sources for genetic
variability for the development of new genotypes for stress tolerance and the study
confirmed the possibility of achieving good performances across stress and non-stress
conditions in QPM germplasm.
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