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Romania 

1. Introduction 

It is known that the soil is an heterogenous, polyphasic, disperse, structured and porous 

material, whose non-linear behaviour at the interaction with the rolling bodies of land 

vehicles is difficult to be modeled mathematically, being necessary to use simplifications 

and idealizations. The compaction phenomenon of agricultural soil can be defined as an 

increase of its dry density and the closer packing of solid particles or reduction in porosity 

(McKyes, 1985), which can result from natural causes, including rainfall impact, soaking and 

internal water tension (Gill & Vandenberg, 1968; Arvidsson, 1997). Knowing the behaviour 

of soil under the action of such rolling bodies is an important element, because, by 

optimizing the pressures applied on the soil, the negative effects of soil compaction can be 

diminished, both at the surface and in depth. 

Agricultural soil is a particullary important case, being the development environment of 
plant roots, for which artificial compaction is very important. Soil compaction reduces water 
permeability, favoring water runoff on soil surface, causing erosion and preventing proper 
restoration of soil moisture. Soil aeration is also reduced, with direct consequences on the 
metabolic processes occuring in plant roots. Another negative effect for agriculture is the 
increase caused by compaction of mechanical resistance, thus the development of roots 
being delayed. All those mentioned effects may reduce the quantity and quality of 
agricultural products (Koolen & Kuipers, 1983). 
Between land vehicles traffic and soil compaction, between soil compaction and the 
parameters characterizing the development environment of plants and between this 
environment and the level of crop production, there are direct qualitative relations, of cause-
effect type. This raises the following two problems: the soil may be too compact to be 
actually used for agricultural production, requiring the prevention and reduction of this 
phenomenon; on the other hand, soil may not be compact enough to be used for road 
construction, dams or building foundations. In this last case, the problem is to obtain the 
maximum degree of compaction, with minimum effort (Gill & Vandenberg, 1968). 
Compaction phenomenon must be described mathematically, by equations that take into 
account the forces  causing it. From this point of view, there are two categories of forces: in 
the first category enter the mechanical forces generated by the traffic of land vehicles. These 
forces are applied for short periods of time and can be measured relatively easily (Gill & 
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Vandenberg, 1968). Second category is that of forces generated by natural phenomena. For 
example, drying has as effect soil compaction. Forces in this category are acting for long 
periods of time, are difficult to define and hard to measure. Estimating the degree of 
compaction can only be made  by using precise equations, which describe soil behaviour at 
compaction. In the attempt to developing these equations, outstanding scientific efforts have 
been made. 
Soil degradation is a worldwide topic of actuality (Keller, 2004). The European Union 
noticed that it is necessary to protect soil and has identified soil compaction as one of the 
most important threats for soil, which leads to its degradation (COM, 2002). Soil compaction 
in an environmental problem (Pagliai et al., 2004). It is also one of the causes of erosion and 
land flooding (Horn et al., 1995; Soane & Ouwerkerk, 1995; Gieska et al., 2003). In addition, 
it contributes directly or indirectly to crop growth and pesticides leaching in ground water 
and to the emission of nitrogen oxides in the atmosphere (Lipiec & Stepniewski, 1995). 
Efforts to improve depth compaction by deep loosening are expensive and often ineffective. 
Therefore, soil compaction must be prevented. It is believed that the risk of unwanted 
changes in soil structure can be descreased by limiting the applied mechanical stresses 
(Dawidowski et al., 2001), and by limiting the precompression tensions. 
The most important factors, which have a significant influence in the process of artificial 
compaction of agricultural soil, are: the type of soil, moisture content of the soil, intensity of 
external load, area of the contact surface between the soil and the tyre or track, shape of the 
contact surface, and the number of passes (Biriş, 2003). 
The impact of land vehicles on soil properties can be simulated using compaction models 
(Bailey et al., 1986; O’Sullivan et al., 1999), which are an important instrument in the 
development strategy for soil compaction prevention. The traffic of land vehicles on soil in 
unappropriate moisture conditions is one of the most important causes of soil degradation 
by artificial compaction (Trautner, 2003). The value of soil moisture must be taken into 
account when referring to the traffic of a land vehicle which develops soil works, crops 
maintenance, harvest or transport. It is known that, for proper processing of agricultural 
soil, its normal moisture in the processed layer must be 18-22 % (Biris et al., 2007; Biris et al., 
2009). Too dry soil compacts less, deforms less, but the resistance to processing is higher. For 
optimum moisture soils, the area of maximum pressures is found in the plough area,  while 
soil deformations are resonable, the resistance at mechanical processing being minimum. In 
case of too wet soil, maximum stresses are concentrated near the rolling bodies, soil strains 
are very high, shear stresses are high, and soil processing under these conditions is not 
recommended (Arvidsson, 1997). 
Soil moisture influences the deforming pattern and the size of soil strains at the contact with 
the rolling bodies of land vehicles (Bakker et al., 1995; Way, 1995). Strains are very low for 
dry soils, but, under these conditions, agricultural works of soil processing are nor 
recommended, because friction forces between soil particles and working bodies are very 
large, leading to large mechanical resistances, and abrasion wear phenomena for these 
working bodies are emphasized. Transport works, traffic, phytosanitary treatments 
applying, harvesting, etc. is recommended to be performed at smaller moisture values. 
At the present moment, one of the most advanced methods for modelling the phenomenon 
of stresses propagation into soil is the Finite Element Method (FEM), which is a numerical 
method for obtaining approximate solutions of ordinary and partial differential equations of 
this distribution (Biris et al., 2003; Biris et al., 2007, Biris et al., 2009; Britto & Gunn, 1987; 
Gee-Clough et al., 1994; Van den Akker, 2004). 
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This paper presents a model for prediction of the stress state in agricultural soil below 

agricultural tyres in the driving direction and perpendicular to the driving direction, which 

are different from one another, using the Finite Element Method. It was created a general 

model of analysis using FEM, which allows the analysis of equivalent stress distribution and 

the total displacements distribution in the soil volume, making evident both of the 

conditions in which the soil compaction is favoured and of the study of graphic variation of 

equivalent stress and the study of shifting in the depth of soil volume. 

This work has theoretical and obvious practical importance, because it allows that, by 

running the program of analysis through Finite Elements Method, to determine in a short 

period of time how are distributed in the soil the stresses that generate soil compaction at 

the interaction with the rolling bodies of land vehicles, for all traffic conditions and for any 

physical and mechanical properties of soil, no matter what value its moisture has. 

2. Modelling the soil artificial compaction 

2.1 Modelling the soil stress spreading 

Because the agricultural soil is not a homogeneous, isotropic, and ideal elastic material, the 

mathematical modelling of stress propagation phenomenon is very difficult. Many 

mathematical models of stress propagation into the soil under different traction devices are 

based on the Boussinesq equations, which describe the stress distribution under a load point 

(Figure 1) acting on a homogeneous, isotropic, semi-infinite, and ideal elastic medium 

(Hammel, 1994). Frohlich developed equations to account for stress concentration around 

the application point of a concentrated load for the problem of the half-space medium 

subjected to a vertical load (Kolen, 1983). 

 

 

Fig. 1. Stress state produced by a concentrated vertical load (Upadhyaya, 1997) 

Many models of dynamic soil behaviour are using elastic properties of soil, and when the 
soil is represented by a linear-elastic, homogenous, isotropic, weightless material, the elastic 
properties required to fully account for the behaviour of the material are: Young’s modulus 
(E), shear modulus (G), and Poisson’s ratio (ǖ). 
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For agricultural soils, the relationships between stresses and strains are measured on soil 

samples in the laboratory or directly in the field. The stress-strain relationships are given by 

constitutive equations (Gee-Clough, 1994). 

The Drucker-Prager plasticity model can be used to simulate the behaviour of agricultural 

soil. The yield criteria can be defined as: 

 3 0mF k         (1) 

where α and k are material constants which are assumed unchanged during the analysis, ǔm 

is the mean stress and  is the effective stress, α and k are functions of two material 

parameters (Φ and c) obtained from the experiments, where Φ is the angle of internal friction 

and c is the material cohesion strength. 

Using this material model, the following considerations should be noted: strains are 

assumed to be small; problems with large displacements can be handled providing that the 

small strains assumption is still valid; the use of NR (Newton-Raphson) iterative method is 

recommended; material parameters Φ and c must be bounded in the following ranges: 

90 0    and c ≥ 0. 
The required input parameters for the constitutive model of the agricultural soil of wet clay 
type are (Gee-Clough, 1994): 

 Soil cohesion (c): 18.12 kPa 

 Internal friction angle of soil (Ǘ): 30° 

 Soil density (Ǆw): 1270 kg/m3 

 Poisson’s ratio (ǖs): 0.329 

 Young’s modulus (E): 3000 kPa 
The stress levels under a point load as shown in figure 1 are given in cylindrical coordinates 
as follows (Upadhyaya, 1997): 
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where P –is the point load, ǖ -Poisson’s ratio, ǔz,r,θ –normal stress components, and Ǖrz –shear 

stress component. 
Figure 2 shows the stress state in soil, of an infinite cubic soil element, which can be written 

in a matrix, named the matrix of the stress tensors (Koolen, 1983; McKyes, 1985). Stresses 

acting on a soil element can be described by mechanical invariants, which are independent 

of the choice of reference axes. The invariants yields are (Keller, 2004): 
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 1 1 2 3 x y zI             (6) 

 2 2 2
2 1 2 1 3 2 3x y x z y z xy xz yzI                         (7) 

 2 2 2
3 1 2 32x y z xy xz yz x yz y xz xyI                     (8) 

 

 

Fig. 2. Stress tensor components (Koolen, 1983) 

It is useful to define the stress measures that are invariant. Such stress is the octahedral 
normal stress and the octahedral shear stress (Keller, 2004): 

  1 2 3 1

1 1

3 3
oct I        (9) 

        2 22 2
1 2 2 3 1 3 1 2

1 2
3

3 9
oct I I                (10) 

The critical state soil mechanics terminology uses the mean normal stress p and the deviator 
stress q. If p=ǔoct (Eq. 9), q is given as (Keller, 2004): 

      2 22 2
1 2 2 3 1 3 1 2

1
( 3 )

2
q I I              (11) 

2.2 Utilization of  incremental methods for studying the soil non-linear behaviour 

The incremental methods are used to deal with material and geometrically non-linear 
problems. The basis of the incremental procedure is the subdivision of the load into many 
small increments. Each increment is treated in a piecemeal linear behaviour with the 
stiffness matrix evaluated at the start of the increment. The tangent stiffness, Et (Figure 3) for 
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each element is calculated from the stress-strain curves according to the current stress level 
of that element. The Finite Element Method (FEM) is proving to be very promising into 
modelling this propagation phenomenon. In a FEM calculation when the coordinates are 
continually updated, the strain increment dЄ, has the mean of a ratio between an 
incremental length and the current length. 
The relationship between ǆ and Є has the form (Gee-Clough, 1994): 

 1 e    (12) 

 

 

Fig. 3. Stress-strain curve for agricultural soil 

According to the relationship between ǆ and Є the following revised stress-strain and 

tangent stiffness formulae were derived and used in the calculation (Gee-Clough, 1994): 
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For saturated soil under an un-drained condition, the volume change is generally 

considered to be negligible. But for FEM calculation purposes, it is common to assume a 

constant Poisson’s ratio slightly less than 0,5 (Gee-Clough, 1994). In terms of the concept of 

the incremental method, for a soil with nonlinear properties when increments are very 

small, Hooke’s law in which the Young’s modulus, Et, and Poisson’s ratio, ǖt, are variables 

(depending on current stress and strain values) is valid. On this basis, for a plane strain 

problem, a formula for the volume modulus, Kt, can be derived: 
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where: ǆx, ǆy are strains in x and y directions; ǔx, ǔy are stresses in x and y directions. 

If ǖt is constant, as Et decreases (soil failure), Kt also decreases. This means that soil volume 
changes can be large. Assuming Kt is constant, and the initial values of Et and ǖt are E0 and 
ǖ0, respectively, then the Poisson’s ratio formula can be derived as in eq. (15) in which a 
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maximum ǖt and a minimum Et may be specified to avoid the calculation problem (Gee-
Clough, 1994): 

 2
0 0

0

8
0,25 ( 9 (1 2 ) 1)t

t

E

E
  

         (16) 

2.3 Tyre deformation at running path interaction 

Under the action of an external load (weight per wheel), a tire deforms as it is shown in 
figure 4. According to Hedekel’s equation, tire deformation is given by the following 
relationship: 

 
2 i

F
f

p R r


   
     [mm] (17) 

where: F – vertical load acting on the wheel, [N]; pi – air pressure inside the tire, [MPa]; R – 

free radius of the wheel, [mm]; r – radius of tire running path in cross section, [mm]. 
 

 

Fig. 4. Tire deformation under the action of an external load 

Static tire radius is given by: 

 sR R f   [mm] (18) 

and the length of the contact chord is: 

 2 22 sL R R       [mm] (19) 
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Figure 5 shows the influence of tire pressure on the dimensional characteristics of the wheel 

(figure 4), respectively tire deformation (Eq. 17), static radius Rs (Eq. 18) and the length of 

contact chord L (Eq. 19), for the rear wheel. 

 

 

Fig. 5. Influence of tire pressure on the dimensional characteristics of the wheels 

2.4 Contact surface between tyre and running path 

The calculation of the contact surface between tyre and running path is rather complicate 

due to this interface complexity which depends on soil varaiable parameters and tyre 

parameters. It is usually necessary to make simplifying assumption of the true contact area. 

Surface of contact can be approximated by a circle, in case of rigid running paths and tyres 

with high pressure. In case of low inflation pressures, the more elliptical the contact area 

becomes. Low tire inflation pressure and high axle loads lead to high tire deflection and the 

contact area is no longer elliptical, but rectangular with curved ends (Upadhyaya & 

Wulfsohn, 1990). Figure 6 shows the theoretical shape of contact area between the soil and 

agricultural tyres. The pressure distribution along the width of tyre is described by a decay 

function (Keller, 2004): 
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 (20) 

and the pressure distribution in the driving direction is described by a power-law function: 

 0,

( )
( ) {1 [ ] } ; 0

( ) 2
2

x y

l yx
p x p x

l y


      (21) 

where C, ǅ and α are parameters, w(x) is the width of contact between the tyre and soil, px=0,y 

is the pressure under the tyre centre and l(y) is the length of contact between the tyre and 

soil. 
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Fig. 6. Shape of the contact surface between the soil and the tyre 

Figure 7 shows the vertical load distribution in the contact area beneath agricultural tyres 

for three considerations: the real distribution with measured values (left), a model with 

uniform load distribution (centre), and a better model with irregular load distribution 

(right). 

 

 

Fig. 7. Distribution of the vertical load in the contact area (Keller, 2004) 

Equation (20) can describe different cases of pressure distribution, e.g. maximum pressure 

under the tyre centre or pressure under the tyre edge. The parameters C, ǅ and α are 

calculated from wheel load, tyre inflation pressure, recommended tyre inflation pressure at 

given wheel load, tyre width and overall diameter of the unloaded tyre. All these 

parameters are easy to measure or readily available from e.g. tyre catalogues. 

2.5 FEM model for studying the distribution of soil strains and stresses 

For the modelling using the finite element method it was considered a soil volume with the 

depth of 1 meter, the width of 3 meter and length of 4 meter (Figure 8) under the action of 

different tractors and harvester-threshers (Table 1). The structural nonlinear analysis was 

made on the ideal model, the soil being considered a homogeneous and isotropic material. It 

was used the COSMOS/M 2.95 Programme for FEM modelling. 
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Fig. 8. Analyzed soil volume 

 

Applicant 
Soil 

interaction 
elements 

Gauge
[mm]

Mass 
(total / deck) 

[kg] 

The active 
width 

for load 
[mm] 

Pressure on 
the soil 
[kPa] 

Romanian tractor 
U-445 (45 HP) 

The front 
wheels 

1500 1920 

720 170 82.5 

The back 
wheels 

1200 315 44.2 

Romanian tractor 
U-650 (65 HP) 

The front 
wheels 

1600 3380 

1170 180 110 

The back 
wheels 

2210 367 57.3 

Romanian 
Caterpillar SM-445

(45 HP) 
Track 1300 2600 360 31 

Harvester-thresher 
NH-TX66 

The front 
wheels 

2950 14000

11000 615 106.5 

The back 
wheels 

3000 408 103.2 

Romanian 
harvester-thresher 

Sema-140 

The front 
wheels 

2850 11033

9033 587 115 

The back 
wheels 

2000 317.5 148.5 

Table 1. The principal characteristics of the rolling devices used in modelling 

The static radius of tire and length of contact chord are computed, thus providing the 
contact area between the wheel and the soil and the value of the pressure applied by the 
rolling body on the soil. 
Figures 9, 10 and 11 show the results of FEM analysis in cross-section and figures 12, 13, 14 
and 15 the results of FEM analysis in longitudinal section for two 45 HP tractors with tires 
and with caterpillar (U-445 and SM-445), respectively for two harvester-threshers (New 
Holland TX-66 and SEMA-140). These results are: the stresses distribution in soil and the 
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graphical variation of stresses along the vertical-axial direction and along to the longitudinal 
direction. 
 
 
 

 
a)                                                                                  b) 

 
 

 
c) 

 
 

 
d) 

Fig. 9. Stresses distribution in cross-section for: a) SEMA 140 harvester-thresher, b)SM-445 
caterpillar tractor, c) SEMA 140 harvester-thresher after the first transit, d) New Holland TX-
66 harvester-thresher (Units: Pa) 
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a)                                                                                 b) 

Fig. 10. Stresses distribution in cross-section for: a) front wheels of U-445 tractor (U-445_f) 
(Units: Pa), b) back wheels of U-445 tractor (U-445_b) (Units: Pa) 

 
 

 

 

Fig. 11. Graphical distribution along the axial-vertical direction 
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Fig. 12. Stresses distribution and graphical variation along the longitudinal direction to the 
top layer of the soil in longitudinal section for New Holland TX-66 harvester-thresher 

 

 

Fig. 13. Stresses distribution and graphical variation along the longitudinal direction to the 
top layer of the soil in longitudinal section for SEMA 140 harvester-thresher 
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Fig. 14. Stresses distribution and graphical variation along the longitudinal direction to the 
top layer of the soil in longitudinal section for U-445 tractor, b) SM-445 caterpillar tractor 

 

 

Fig. 15. Stresses distribution and graphical variation along the longitudinal direction to the 
top layer of the soil in longitudinal section for SM-445 caterpillar tractor 
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Figure 16 shows the results of FEM analysis in cross-section for a “1/2 symmetrical model” 
which consists in equivalent stresses distribution in agricultural soil under the action of a 
uniform load in the case of back wheel of U-650 tractor. Figure 17 shows the distribution of 
equivalent stresses in agricultural soil in cross-section for the same “1/2 symmetrical 
model” under the action of an un-uniform load (Decay function, Eq. 20) in the case of back 
wheel of U-650 tractor. 
 

 

Fig. 16. Distribution of equivalent stresses for uniform load in the case of back wheel of U-
650 tractor (Units: Pa) 

 

 

Fig. 17. Distribution of equivalent stresses for un-linear load in the case of back wheel of U-
650 tractor (Units: Pa) 
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Figure 18 shows the graphical variation of equivalent stresses along the vertical-axial 
direction for the two cases of loading. 
 

 

(p_unif: uniform load; p_ne-unif: un-linear load) 

Fig. 18. Graphical variation of stresses along the vertical-axial direction 

2.6 Laboratory tests for studying the stress and strain distribution into the soil 

In order to check the model elaborated using FEM, laboratory tests were taken using a data 
acquisition system (Figure 19). The system was connected to Flexi Force Tekscan W-B201-L 
force sensors (Figure 20), vertically mounted in the soil, at 10 cm distance, in a metallic 
container with 1x1x1 m dimensions (Figure 21). The load on the wheel (of different types) in 
statically state was applied using the Hydropulse equipment (Figure 22). 
 

 

Fig. 19. Data acquisition system 

 

 

Fig. 20. Flexi Force Tekscan W-B201-L force sensors 
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Fig. 21. Metallic container 

 

 

Fig. 22. Test stand in Hydropulse laboratory 

2.7 Comparative analysis of results measured and calculated, using FEM model  

In figures 23 and 24 are comparatively presented the variation curves of the equivalent 

stresses with the points obtained by FEM calculus and by experimental tests for different 

depths along the tire’s vertical axis in the case of the U-445 tractor. 
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Fig. 23. Equivalent stresses calculated and measured for the front deck of U-445 tractor 
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Fig. 24. Equivalent stresses calculated and measured for the back deck of U-445 tractor 

3. Conclusions 

The Finite Element Method is at the present the most advanced mathematical tool which 
can be used for the study of agricultural soil artificial compaction process. For 
mathematical modelling the soil is considered as a homogeneous and isotropic material, 
and the Drucker-Prager plasticity model can be used to simulate the behaviour of 
agricultural soil. 
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This study shows that from these analysed tractors and harvester-threshers, the highest 
artificial compaction of soil was caused by the front wheels of SEMA-140 harvester-thresher 
(see Figure 13), when the equivalent maximum stress in soil is approx. 60 kPa, and in the 
case of the front wheels of NH TX-66 harvester-thresher (Fig. 12), when the maximum 
equivalent stress is higher then 55 kPa. In these cases it is recommended to extend the 
contact area between the wheel and the soil. 
In the case of the front wheels of U-445 tractor (see figure 10.a), the equivalent maximum 
stress in soil is approx. 42 kPa (Fig. 11). We can see that the equivalent maximum stress in 
soil in the case of analyzed caterpillar tractor (SM-445) is less than 20 kPa (Figure 11 and 15). 
This study represents a supplementary argument for using the caterpillar for the reduction 
of artificial soil compaction. The present researches are directed to using the rubber 
caterpillar, and also to using the reduce-pressure tyres with largest contact area with the 
soil. 
We can see from the figures 16, 17, and 18, that the distribution of equivalent stresses in soil 
volume is strongly influenced by the loading distribution in the contact area. 
As we can see in figure 23 and 24, between the calculated and measured results is a 
difference of 8% for the front wheel and 12% for the back wheel of U-650 tractor. There is a 
true development possibility of the pseudo-analytical procedures for the modelling of the 
stress propagation in agricultural soil, based on the work of Boussinesq, Fröhlich and Söhne, 
using the numerical calculus procedures, respectively the finite element method. 
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