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1. Introduction 

Drought (water stress) is one the major abiotic stress factors that affect all organisms lives 
including human in terms of health and food. Water absence from the soil solutions affect 
the natural evaporative cycle between earth and atmosphere that contribute amount of 
rainfall. Drought occurs when soil moisture level and relative humidity in air is low while 
temperature is also high. UN reports (2006) [1] estimate that one third of world population 
has been living in areas where the water sources are poor. Water stress resulting from the 
withholding of water, also changes the physical environment for plant growth as well as 
crop physiology [2]. Almost every plant process is affected directly or indirectly by water 
supply [3]. Plants, as one of basic food sources, either in nature or cultivations, in their 
growing period, require water or at least moisture for germination. Certainly, most land 
plants are exposed to short or long term water stress at some times in their life cycle and 
have tended to develop some adaptive mechanisms for adapting to changing environmental 
conditions. Some plants may adapt to changing environment more easily than others giving 
them an advantage over competitors. Water stress may range from moderate, and of short 
duration, to extremely severe and prolonged summer drought that has strongly influenced 
evolution and plant life. [4-6]. Crop yields are restricted by water shortages in many parts of 
the world [7]. The physiological responses of plants to water stress and their relative 
importance for crop productivity vary with species, soil type, nutrients and climate. On a 
global basis, about one-third of potential arable land suffers from inadequate water supply, 
and the yields of much of the remainder are periodically reduced by drought [2]. It is 
estimated that 10 billion people in the world will be hungry and malnourished by the end of 
this century [8]. One of the aims of the researches is to gain an understanding of survival 
mechanisms which may be used for improving drought tolerant cultivars for areas where 
proper irrigation sources are scarce or drought conditions are common. 
In research aimed at improvements of crop productivity, the development of high-yielding 

genotypes, which can survive unexpected environmental changes, particularly in regions 

dominated by water deficits, has become an important subject. 
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2. As a major plant growth inhibitor: Drought 

2.1 Water and whole plant responses 

The amount of water available to plants is important, since water accounts for 80-90% of the 
fresh weight of most herbaceous plant structures and over 50% of the fresh weight of woody 
plants [9]. Water supply is restricted in many parts of the world and productivity in these 
environments can only be increased by the development of crops that are well adapted to 
dry conditions [10]. 
Data of Raheja (1966, cited in Hurd, 1976) [11] show that 36% of world’s land area is under 
semi-arid conditions, receiving only 5 to 30 in. of rainfall annually and the remaining (64%) 
is exposed to temporary drought during the crop season. On a global basis, about one-third 
of potential arable land suffers from inadequate water supply, and the yields of much of the 
remainder are periodically reduced by drought [2]. Moreover, water deficits may occur 
during a plant’s life cycle outside of arid and semi-arid regions [12,13] even in tropical 
rainforests [14]. Water is progressively lost from a fully “saturated soil”, firstly by draining 
freely, under the influence of gravity, and the rate of loss gradually slows down until no 
further water drains away, when the soil is said to be at “field capacity”. Further loss of 
water by evaporation or by absorption by plant roots reduces the moisture content still 
further, until no further loss from these causes can occur, a stage known as the “wilting 
point” at which plants can no longer obtain the water necessary to meet their needs and 
they therefore wilt and die from moisture starvation. 
Initially, stress conditions occur transiently as “cyclic water stress” even under adequate soil 

moisture conditions and may prevail certain time in the daytime and normalized after 

reduction of transpiration rate by the night [15].  

Crop yields are restricted by water shortages in many parts of the world and the total losses 
due to this cannot be estimated with confidence [2,7]. According to Rambal and Debussche 
(1995) [16], changes in plant conductance under water stress are attributable to effects on the 
roots and xylem. As the soil dries, decreased permeability, due to root suberization and/or 
increased loss of fine roots, can reduce the balance between water extraction capacity and 
transpiring leaf area. Roots of unwatered plants often grow deeper into the soil than roots of 
plants that are watered regularly. 
Plants exposed to stress due to decreasing supply of water or other resources, or because of 
climatic changes, show different responses according to species and the nature and severity of 
the stress. By altering the chemical and physical composition of tissues, water deficits also 
modify various aspects of plant quality, such as the taste of fruits and the density of wood [17]. 
Water shortage significantly affects extension growth and the root-shoot ratio at the whole 

plant level [18,19]. Although plant growth rates are generally reduced when soil water 

supply is limited, shoot growth is often more inhibited than root growth and, in some cases; 

the absolute root biomass of plants in drying soil may increase water use efficiency relative 

to that of well-watered controls [15,20,21]. Almost every plant process is affected directly or 

indirectly by water supply. When soil dries, the reduction in water content is accompanied 

by other changes such as increase in salt concentration and increasing mechanical 

impedance. The growth of plants is controlled by rates of cell division and enlargement, as 

well as by the supply of organic and inorganic compounds required for the synthesis of new 

protoplasm and cell walls. 

It is well known that water stress not only affects morphological appearance but also 
changes bio-mass ratio. Bradford and Hsiao (1982) [22] and Sharp and Davies, (1979) [20] 
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reported that water stress drastically decreases root elongation and leaf area expansion but 
that these two processes are not equally affected. Leaf growth is usually decreased to a 
greater extent than root growth, and photosynthate partitioning is altered to increase 
root/shoot ratio [23,24]. Timpa et al., (1986) [25]; Akıncı and Lösel (2009,2010) [26,27] 
reported that the water stress caused major reductions in height, leaf number, leaf area 
index, fresh and dry weight of cotton plants and some Cucurbitaceae members. 

2.2 Classification attempts of the survival mechanisms of plants response to water 
stress 

Physiological and ecological strategies that plants evolved to cope with water shortages by 

either avoidance or tolerance to stress. On the nature, since plants are subjected to 

unavailability of water varying in length from hours to days from the water sources, 

therefore stress is determined by the extent and duration of the deprivation from water. 

Plant responses roughly may be classified as; i) short term changes related to mainly 

physiological responses (linked to stomatal regulation); ii) acclimation to availability of 

certain level of water (solute accumulation resulted with adjustment of osmotic potential 

and morphological changes); iii) adaptation to water stress conditions (sophisticated 

physiological mechanisms and specifically modifications in anatomy) [28-30]. Many 

processes affect the “fitness” of a plant in water-limited situations but those, such as 

survival, that may be appropriate in natural ecosystems are often of less interest in some 

agricultural crops, where productivity is usually of the greatest importance. It is not easy to 

define “drought tolerance”, as stability of yield may be the biggest consideration in some 

situations. However, Jones (1993) [31] has pointed that out drought-tolerant genotypes of 

most crop plants are those giving some yield in a particular water-limited environment. 

Kramer (1980) [2] classified as “drought avoidance”, the adaptations by which plants survive 

in regions subject to drought, in addition to drought tolerance, since this name fitted the 

actual situation more accurately than Levitt’s term “drought escape”. 

Plants showing improved growth with limited water are considered to tolerate drought, 

regardless of how the improvement occurs. Kramer and Boyer (1995) [9] have reviewed 

strategies of drought tolerance, including (1) rapid maturation before onset of drought, or 

reproduction only after rain, (2) postponement of dehydration by having deep roots, (3) 

protection against transpiration or storing water in fleshy tissues, (4) allowing dehydration 

of the tissues and simply tolerating water stress by continuing to grow when dehydrated or 

surviving severe dehydration. These effects are generally distinct from the factors 

controlling water use efficiency. Drought avoiders often reproduce rapidly after only brief 

minimal accumulation of dry weight, ensuring that they are represented in the next 

generation. Dehydration postponers, with deep roots, may have a water use efficiency 

identical to that of other species but will accumulate more dry weight because they can 

reach a larger amount of water than shallow rooted types, although their water use 

efficiency may be similar to other spp. Dehydration tolerators may have the same water use 

efficiency as dehydration sensitive species when water is available, but can also grow at 

lower tissue hydration levels than the other species [9].  

The physiology of crop plant responses to drought stress has been classified by Blum (1989) 

[32] into two domains: (1) a positive carbon balance is maintained by the plant under 

moderate stress, so that resistant genotypes achieve a greater net gain of carbon than 
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susceptible ones, and have a correspondingly better yield, (2) a net loss of carbon takes place 

under severe stress, so that growth stops and plants are merely surviving stress. Resistant 

genotypes generally survive and recover better upon rehydration than susceptible ones, 

depending upon the degree of stress. 

2.3 Plant strategies under water depletion 

Major efforts of plant physiologists and breeders during the past 30 years, have 
concentrated on improving the drought tolerance of many agricultural and horticultural 
crops. It is clear that, with the increasing world requirement for food, there is an urgent 
need for research to improve the stress tolerance of crop plants and to develop better 
management techniques to keep food production at levels near to demand, in spite of 
limited availability of land and water [33]. According to Borlaug and Dowswell (2005) [34] 
crop production will have to be doubled achieved by expanding land area for cultivation or 
increase crop productivity from per hectare. As pointed out earlier by Kozlowski (1968) [17] 
there is a need to increase crop production, in the face of mounting food shortages, and 
water conservation is an important factor in overcoming food deficiencies. 
Land plants adapted to a moderate water supply are termed mesophytes while those 

adapted to arid zones are xerophytes. There are, of course, all gradations between these 

groups and it is, therefore, not always easy to place a plant in one or other group. It is even 

possible for a plant to fit into more than one group (Levitt, 1972) [35]. Plants under severe 

drought conditions tend to develop xeromorphic characteristics including those listed by 

Walter (1949, cited in Parker, 1968) [36], namely increases in proportion of leaf vein tissue 

compared to leaf surface, increased stomatal number per unit leaf area, smaller sizes of 

stomata, epidermal and mesophyll cells, greater density of leaf hairs but smaller hairs, 

thicker outer epidermal walls and cuticle. 

Fresnillo Fedorenko et al., (1995) [37] found similar trends for live and total leaf production, 
total length per plant of the central leaflet in leaves, and branch and root segment 
production, all of which decreased proportionally with increasing water stress in Medicago 
minima. Schulze (1986) [38] also reported that water shortage significantly affects extension 
growth and the root-shoot ratio at the whole-plant level. 
Leaf adaptations are among the main factors favouring the success of a species in a water-
stressed environment [39]. Morgan (1980) [40] pointed out that, in some species, reduction in 
leaf area by rolling may also be important in controlling water loss and reflects changes in leaf 
turgor. Fitter and Hay (1987) [41] pointed out that any reduction in cell size of mesophytes or 
xerophytes, due to loss of turgor during expansion, will lead to a higher stomatal frequency 
than in unstressed leaves, since the number of potential guard cells is unchanged. 
A few reports discuss changing (reducing) of stomatal index by water stress [42,43]. It may 

also relate to reduction in leaf growth and production of smaller cells [42,44,45]. Decreasing 

water content is accompanied by loss of turgor and wilting, cessation of cell enlargement, 

closure of stomata, reduction in photosynthesis, and interference with many other basic 

metabolic processes [9]. 

Larcher (1995) [46] also stated that leaves growing under conditions of water deficiency 

develop smaller, but more densely distributed, stomata, enabling the leaf to reduce 

transpiration by a quicker onset of stomatal regulation. In addition, leaves of genotypically 

adapted plants tend to have more densely cutinized epidermal surfaces, covered with 

thicker layers of wax. 
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Water deficit increases wax deposition on the leaf surface, and results in a thicker cuticle that 
reduces water loss at the epidermis. This reduces CO2 uptake, but without affecting leaf 
photosynthesis, because the epidermal cells underneath the cuticle are nonphotosynthetic [47]. 

3. Physiological and morphological responses to water stress 

3.1 Drought effect on photosynthesis 

Water stress reduces photosynthesis by decreasing both leaf area and photosynthetic rate per 
unit leaf area [48]. Photosynthesis by crops is severely inhibited and may cease altogether as 
water deficits increase. The decrease in leaf growth, or increasing senescence of leaves under 
drought conditions, may also inhibit photosynthesis in existing leaves [49]. Decreasing water 
content is accompanied by loss of turgor and wilting, cessation of cell enlargement, closure of 
stomata, reduction in photosynthesis, and interference with many other basic metabolic 
processes [9]. Photosynthesis by crops is severely inhibited and may cease altogether as water 
deficits increase. The decrease in leaf growth, or increasing senescence of leaves under drought 
conditions, may also inhibit photosynthesis in existing leaves [49]. Ehleringer (1980) [50] 
pointed out that leaf pubescence, which increases under water stress, can decrease the 
photosynthesis by reflecting quanta that might have been used in photosynthesis. 
In the field, plants are normally not deprived of water rapidly. During slowly increasing 
water stress photosynthesis and transpiration usually decrease at similar rates [51]. The two 
main factors causing stomatal closure are usually an increase in the concentration of gaseous 
carbon within leaves and a decrease in water potential of leaf cells [52,53]. 
The simplest explanation for the inhibition of photosynthesis during water stress would be 
that the stomata close and the internal CO2 concentration decreases [54,55], since stomatal 
limitation is more severe when a plant is stressed than when it is not [54]. Therefore, it is 
rather surprising that photosynthesis often decreases in parallel with, or more than, stomatal 
conductance [56-59]. The photosynthetic rate in higher plants decreases more rapidly than 
respiration rate with increased water stress, since an early effect of water reduction in leaves 
is usually a partial or complete stomatal closure, markedly decreasing the movement of 
carbon dioxide into the assimilating leaves and reducing the photosynthetic rate up to ten 
times, according to the amount of water removal and the sensitivity of the plant [35]. In 
terms of the relationship between photosynthesis and leaf water status, Quick et al. (1992) 
[60] reported that, in field conditions, photosynthesis in ambient CO2 reached a maximum 
value in the morning and declined later in the day when water potential decreased and leaf-
to-air water vapour pressure deficits increased. In non-watered plants the decline was 
larger, and occurred earlier. In most cases stomatal conductance followed a diurnal pattern 
similar to that of photosynthesis. 

3.2 Osmotic adjustment mechanisms under water stress 

Water is essential in the maintenance of the turgor which is essential for cell enlargement 

and growth and for maintaining the form of herbaceous plants. Turgor is also important in 

the opening of stomata and the movements of leaves, flower petals, and various specialised 

plant structures [9]. Although turgor measurements on segments the non-growing lamina 

have often appeared to show declining rates of leaf growth with decreasing turgor, turgor 

measurement in regions of leaves and stems, where cell enlargement usually occurs, often 

show little or no decrease, even when cell enlargement is largely inhibited due to soil drying 

[9,61-63]. This is believed to be due to osmotic adjustment, the process in which solutes 
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accumulate in growing cells as their water potential falls [64,65] of osmotic potential arising 

from the net accumulation of solutes in response to by maintaining turgor in tissues, 

osmotic adjustment may allow growth to continue at low water potential. Turner and Jones 

(1980) [64] have defined osmotic adjustment as “the lowering water deficits or salinity”. 

Osmotic adjustment usually depends mainly on photosynthesis to supply compatible solute. 

As dehydration becomes more severe, photosynthesis is inhibited, resulting in a smaller 

solute supply for osmotic adjustment. With continued water limitation, osmotic adjustment 

delays, but cannot completely prevent, dehydration [9]. In leaves and stems at least, solute 

accumulation does not fully compensate for the effects of limited water supply on cell 

enlargement. Turner and Jones (1980) [64] stated that the rate of development of stress has a 

major effect on the degree of osmotic adjustment. Oosterhuis and Wullschleger (1987) [66] 

pointed out that increasing the number of stress cycles increased the amount of osmotic 

adjustment in cotton. Turner (1986) [67] noted that leaf expansion can decrease without 

change in leaf turgor pressure. 
Osmotic adjustment has been found in many species [64,65], and has been implicated in the 
maintenance of stomatal conductance, photosynthesis, leaf water volume and growth 
[64,65,67]. 
Wheat and other cereals show other additional strategies: turgor loss and stomatal closure 
may occur at different relative water contents, while osmotic adjustment leads to rapid 
responses decreasing the effect of water stress [68].When soil dries, the reduction in water 
content is accompanied by other changes such as increase in salt concentration and 
increasing mechanical impedance [69]. The growth of plants is controlled by rates of cell 
division and enlargement, as well as by the supply of organic and inorganic compounds 
required for the synthesis of new protoplasm and cell walls [9]. 
Wheat and other cereals show other additional strategies: turgor loss and stomatal closure 

may occur at different relative water contents, while osmotic adjustment leads to rapid 

responses decreasing the effect of water stress [68]. Russel (1976) [70] pointed out that water 

stress increases the osmotic pressure of the cell sap, increasing the percentage of sugar in 

sugar-cane and often in sugar beet, although the yield per acre may be reduced. 

Solutes known to accumulate with water stress and to contribute to osmotic adjustment in 

non-halophytes, include inorganic cations, organic acids, carbohydrates and free amino 

acids. In some plants potassium is the primary inorganic cation accumulating during water 

stress and it is often the most abundant solute in a leaf [71,72]. Osmotic adjustment is 

usually not permanent and plants often respond rapidly to increased availability of water. 

Loss of osmotic adjustment can occur in less than 2d in durum wheat [73], and both osmotic 

potentials and concentrations of some individual solutes have been shown to return to pre-

stress levels within 10d after watering [64,74]. 

Studies by Blum and co-workers (reviewed by Blum, 1989) [34] and Kameli (1990) [75] have 

suggested that drought-resistant wheat varieties, with long-term yield stability under 

drought stress, were characterised by a greater capacity for osmoregulation than less 

resistant varieties. Landraces of sorghum and millet from dry regions in India and Africa 

were found to be more drought resistant (in terms of plant growth and delayed leaf 

senescence) than those from humid regions [32]. Munns et al., 1979 [76] found that the 

change in osmotic potential in the apex and enclosed developing leaves of wheat seedlings 

under rapidly developing water stress, was due mainly to the accumulation of soluble 

sugars, amino acids (particularly asparagine and proline) and K+ ions. 
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Morgan and Condon (1986) [77] showed that such increase in solute concentration gives 
tissues a temporary advantage, enabling turgor to be maintained at low water potentials by 
decreasing their osmotic potentials. Westgate and Boyer (1985) [78] pointed out that, when 
dehydration occurs in the absence of high external salinities, there can also be rapid 
increases in solute content of cells. The growing tissues throughout the plant may show 
osmotic adjustment when the soil loses water. 
In less severe stress, the elongating regions of wheat leaves were found to adjust osmotically 

by the accumulation of sugars, principally glucose [73,79]. Osmoregulation was very active 

in races from dry regions. Osmoregulation and turgor maintenance permit continued root 

growth and efficient uptake of soil moisture [20]. However, despite the accumulation of ions 

and organic solutes, allowing osmotic adjustment in the meristematic and expanding 

regions, growth of the shoot may still be inhibited by stress, either because osmotic 

adjustment may not be sufficiently rapid to compensate for growth or due to a stress-

induced fall in turgor. 

4. Plant metabolic response to water scarcity 

One of the gains an understanding of survival mechanisms which may be used for 

improving drought tolerant cultivars for areas where proper irrigation sources are scarce or 

drought conditions are common. Plants adaptations to dry environments can be expressed 

at four levels: phenological or developmental, morphological, physiological, and metabolic 

the least known and understood of which are the metabolic or biochemical adaptations 

involved [80]. Physiological and biochemical changes including carbohydrates, proteins and 

lipids observed in many plant species under various water stress levels, which may help in 

better understanding survival mechanisms in drought. 

4.1 Carbohydrates changes under water stress 

The available reports (listed in Table 1) stated that the content of soluble sugars and other 

carbohydrates in the leaves of various water stressed plants are altered and may act as a 

metabolic signal in the response to drought [26,27,81-83] however, accumulation or decrease 

of sugars depending on stress intensity and role of sugar signalling in these processes is not 

totally clear yet [84]. 

Among the major effects are those involving carbohydrate metabolism, with the 

accumulation of sugars and a number of other organic solutes [75]. Munns et al., (1979) [76] 

and Quick et al., (1992) [60] showed that sugars are major contributors to osmotic adjustment 

in expanding wheat leaves. Moreover, short-term water stress inhibited starch synthesis 

more strongly than sucrose synthesis, in both ambient CO2 and in saturating CO2. Short-

term water stress was earlier also reported to stimulate the conversion of starch to sucrose in 

bean leaves [85,86]. The increase of sugar in various plant tissues response to water stress 

are supported the idea of contribution of solutes while the plants exposed to different stress 

levels. The studies have shown that soluble sugars accumulate in leaves during water stress 

[60,71,79,87-90], and have suggested that these sugars might contribute to osmoregulation 

[65], at least under moderate stress. 

Quick et al., (1992) [60] compared the effect of water stress on the rate of photosynthesis and 

the partitioning of photosynthate in four different species, including two annuals (Lupinus 

albus L. and Helianthus annuus L.), and two woody perennials (Vitis vinifera cv. Rosaki and 
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Eucalyptus globulus Labill.) and concluded that, when water stress develops under field 

conditions, there is an alteration in the balance between sucrose synthesis and translocation, 

which allows many species to maintain or increase the pool of soluble sugars in their leaves. 

In Eucalyptus soluble sugars were low compared to starch and non-watered plants contained 

higher levels of soluble sugars in their leaves than watered plants, but much less starch. 

Similarly, leaves of non-watered sunflower plants contained almost twice as much soluble 

sugar those of watered plants. Hodges and Lorio (1969, cited in Levitt, 1972) [35] detected a 

marked increase in reducing sugars, nonreducing sugars, and total carbohydrates, with an 

approximately equivalent decrease in starch. 

 

Carbohydrates changes References 

Increasing total carbohydrates cotton (Timpa et al., 1986) 

Total soluble sugars increasing 
durum wheat (Kameli and Lösel, 1996) Nodulated 

alfalfa (Irigoyen et al., 1992) 

Increasing soluble sugars South African grasses (Westgate et al., 1989) 

Increasing sucrose 

lupins and Eucalyptus (Quick et al., 1992), Alfalfa (Al-

Suhaibani, 1996), embryos from Soybean (Westgate et 

al., 1989), wheat (Drossopoulos et al., 1987), wilted 

bean (Steward, 1971), durum wheat (Kameli and 

Lösel, 1993), -in leaves under severe stress-Cucumis 

sativus L., C. melo L. (snake cucumber), Cucurbita pepo 

L., Ecballium elaterium (L.) A. Rich. (Akıncı and Lösel, 

2009). 

Fructose, glucose accumulation durum wheat (Kameli and Lösel, 1993) 

Starch accumulation cotton (Ackerson and Hebert, 1981) 

Fructans enhancing resistance tobacco (Pilon-Smiths et al., 1995) 

Carbohydrate unchanged Artemisia tridentata (Evans et al., 1992) 

Sucrose content decreasing soybean cotyledon (Westgate et al., 1989) 

Sucrose and starch decreasing grapevine (Rodriguez et al., 1993) 

Raffinose utilisation prevented 

by water stress 
Citrullus lanatus seeds (Botha and Small, 1985) 

Starch depletion 

Lupinus, Helianthus, Vitis, Eucalyptus (Quick et al., 

1992), wilted bean leaves (Steward, 1971), South 

African grasses (Schwab and Gaff, 1986), cucumber 

(Akıncı and Lösel, 2010) 

Table 1. Changes in plant metabolics (Carbohydrates) 

Drossopoulos et al., (1987) [91] concluded that, in two wheat cultivars, sucrose generally 
formed the major portion of the ethanol soluble carbohydrates. High concentrations of 
glucose and fructose were observed in the stems of the water-stressed plants towards 
maturation as well as in the ears, immediately after heading. The major differences between 
cultivars were in the sucrose levels of leaves and roots before heading. There have been 
many reports that water stress leads to a general depletion of soluble sugars and starch in 
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leaves. Hanson and Hitz (1982) [80] and Huber et al., (1984) [57] have concluded that water 
stress has a larger effect on carbon assimilation than on translocation and use of 
photosynthate.  
Barlow (1986) [92] showed that much of the sugar accumulation, which began with the first 

indication of suppression in leaf elongation under water stress in wheat, was due to glucose, 

fructose and sucrose. The inhibition of germination of Citrullus lanatus seeds by water stress 

was investigated by Botha and Small (1985) [93], who observed a marked effect on 

carbohydrate metabolism. Smaller changes in glucose content and in the reducing substance 

content of the control seeds occurred during germination, coinciding with a decrease in 

sucrose. However, this decrease did not entirely account for the observed increase in 

glucose content. Fructose decreased in control seeds, over the first 30 h of incubation, and 

then increased again, whereas the glucose content of stressed seeds tended to increase 

throughout the 48 h incubation period, with fructose remaining fairly constant. On the other 

hand, Pattanagul and Madore, (1999) [94] also reported various sugars depletion in 

variegated coleus (Coleus blumei Benth.). In the green leaf tissues the diurnal - light period 

levels of the raffinose family oligosaccaharides stachyose and raffinose and non – structural 

carbohydrates (galactinol, sucrose, hexoses and starch) decreased whereas drought had little 

effect on soluble carbohydrate content in the other part of non – photosynthetic white leaf 

tissues. There was no difference in glucose and fructose levels between the wilted 

(incubated) and turgid bean leaves as well as depletion of starch concentrations was 

observed in plants of bean exposed to drought stress [60,85]. 

4.2 Plant proteins: Responses to drought 

Many specified protein synthesized under water scarcity have been isolated and 

characterized by researches [95-98]. The water stress-specific proteins (stress induced) have 

been described by different groups such as dehydrins (polypeptide), LEAs (late 

embryogenesis abundant), RABs (responsive to ABA), storage proteins (in vegetative 

tissues) [99]. LEAs proteins are also subdivided into several groups and expect to be located 

in cytosol and with hydrophylic and soluble on boiling featured [100]. 

Under water stress conditions plants synthesize alcohols, sugars, proline, glycine, betaine 
and putrescine and accumulate that of those molecular weights are low [101,102]. Dehydrins 
have been the most observed group among the accumulated proteins in response to loss of 
water and increased in barley, maize, pea, and Arabidopsis and under water stress LEA 
proteins plays important role as protection of plants. Osmotin is also accumulated protein 
under water stress in several plant species such as tobacco, triplex, tomato and maize [103].  
Changes of amino acids and protein have been mentioned in many reports which have 

stated that water stress caused different responses depending on the level of stress and plant 

type and listed in Table 2. For instance, in Avena coleoptiles water stress clearly caused a 

significant reduction in rate of protein synthesis [104]. Water stress has a profound effect 

upon plant metabolism, and results in a reduction in protein synthesis. Several proteins 

were reduced by stress in maize mesocotyls [105,106]. Dasgupta and Bewley (1984) [107] 

pointed out water stress reduced protein synthesis in all regions of barley leaf. Vartanian et 

al., (1987) [108] mentioned the presence of drought specific proteins in tap root in Brassica. 

Dasgupta and Bewley (1984) [107] pointed out water stress reduced protein synthesis in all 

regions of barley leaf. 
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Protein changes References 

Inhibited protein synthesis Avena coleoptiles (Dhindsa and Cleland, 1975) 

Increased protein levels Cicer arietinum (Rai et al., 1983) 

Increased protein content Zea mays (Rai et al., 1983) 

Water stress induced spefisic 
proteins (Dehydrins, LEAs, RABs, 
vegetative storage proteins) 

cotton (Artlip and Funkhouser, 1995), rice (Xu et 
al., 1996) 

Proline, glycine accumulation, 
betain, putrescine 

tobacco (Chopra et al., 1998), (Galston and 
Sawhney, 1990) 

Dehydrin, LEA group 1 (D19) cotton, barley, carrot (Ramagopal, 1993) 

Dehydrin-like transcripts 
accumulate 

Lathyrus sativus (Sinha et al., 1996) 

LEA (D7, D29) 
desiccating mature cotton embryos, Craterostigma 
plantagineum chloroplast, Citrus seedlings 
exposed to drought (Bray, 1995; Naot et al., 1995) 

Osmotin 
tobacco, triplex, tomato and maize (Ramagopal, 
1993) 

87kDa and 85kDa proteins (stress-
associated –SAPs-) accumulation 

rice varieties (Pareek et al.,1997) 

Boiling-staple protein (BspA) 
accumulation 

Populus popularis (Pelah et al., 1997) 

RAB18 protein accumulation Arabidopsis thaliana (Mantyla et al., 1995) 

Chloroplastic proteins (CDSP 32 and 
CDSP 34) 

Solanum tuberosum (Pruvot, et al., 1996) 

Total proteins decrease sugar beet (Shah and Loomis, 1965) 

Soluble protein decrease Bermuda grass (Barnett and Naylor, 1966) 

12.6- k.Da protein (cell wall) 
synthesis decrease 

Lycopersicon chilense (Yu et al., 1996) 

Soluble protein level decline Pisum sativum L. nodules (Gogorcena et al., 1995) 

Total and soluble protein content Populus popularis (Pelah et al., 1997) 

Table 2. Changes in plant metabolics (Proteins) 

A stress episode which inhibits cell division and expansion, and consequently leaf 

expansion, will also halt protein synthesis, which is also inhibited by osmotic stress 

imposed on excised plant parts. The direct significance of the inhibition of protein 

synthesis by stress to growth and leaf expansion is difficult to assess. Hsiao (1970) [109] 

concluded that inhibition of cell expansion precedes the decline in polysome content and 

that changes in polysome profile might be caused by cell growth rather than the reverse. 

Although water stress may inhibit protein synthesis [104,110] some specific types of 

proteins and mRNA increase in water stressed plants. For instance, free proline 

accumulation in response to drought in many plant species tissues is well documented 

[111-115]. Vartanian et al., (1987) [108] mentioned the presence of drought specific 

proteins in tap root of Brassica. 
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The functions of many of these proteins have not been established [116]. However, water 

stress may inhibit the synthesis of different proteins equally whilst inducing the synthesis of 

a specific stress protein [107]. Changes of amino acids and protein have been mentioned in 

many reports which have stated that water stress caused different responses depending on 

the level of stress and plant type. For instance, in Avena coleoptiles water stress clearly 

caused a significant reduction in rate of protein synthesis [104]. Treshow (1970) [117] 

concluded that water stress inhibited amino acid utilisation and protein synthesis. While 

amino acid synthesis was not impaired, the cellular protein levels decreased and since 

utilisation of amino acids was blocked, amino acids accumulated, giving a 10- to 100-fold 

accumulation of free asparagine. Valine levels increased, and glutamic acid and alanine 

levels decreased. Barnett and Naylor (1966) [118] found no significant differences in the 

amino acid and protein metabolism of 2 varieties of Bermuda grass during water stress and 

reported that amino acids were continually synthesised during the water stress treatments, 

but protein synthesis was inhibited and protein content decreased. Similarly, water stress 

did not change protein content uniformly in the different cultivars of Cucumber and 

Cucurbita pepo L., Cucumis melo L. (snake cucumber) and Ecballium elaterium (L.) A. Rich. 

(Squirting cucumber) which show differing responses to moderate and severe stress 

treatment and during recovery [3]. Tully and Hanson (1979) [119] found that water stress 

slightly increased the amino acid to sugar ratio of the exudate, but did not change the amino 

acid composition very markedly. Several proteins were reduced by stress in maize 

mesocotyls [105,106]. 

4.3 Plant lipids – water stress interactions 

The effect of water stress lipid composition on the higher plants have been the subject of 

considerable research. Phospholipids and glycolipids serve as the primary nonprotein 

components of plant membranes, while triglycerides (fats and oils) are an efficient storage 

form of reduced carbon, at various developmental stages and particularly in seeds [47]. The 

functions of membrane proteins are influenced by the lipid bilayer, in which they are either 

embedded or bound at the surface. For this reason, a knowledge of the lipid composition of 

membranes in plant cells is important. 

Ideas about the adaptive value of lipid changes induced by environmental conditions are 

often based upon physical properties of the lipids involved in membrane structure, such as 

phase separation temperatures and fluidity, which may affect the permeability of bio 

membranes [120]. About 70% of the total protein and 80% of the total lipid of leaf tissue are 

present in chloroplasts. Any changes in chloroplast membranes, therefore, will usually be 

reflected by corresponding alterations to leaf total lipids [121].  

Lipids, being one of the major components of the membrane, are likely to be affected by 

water stress. In plant cell, polar acyl lipids are the main lipids associated with membraneous 

structures [122,123]. Glycolipids (GL) are found in chloroplasts membranes (more than 60%) 

and phospholipids (PL) are thought to be the most important mitochondrial and plasma 

membrane lipids [124]. Many workers have investigated the effect of different levels of 

water stress on lipid content and composition in different parts of plants [75,90,125-132] and 

their changes listed in Table 3. However, researches concerning on plant lipids affected by 

water stress have often contradictory since absence of enough information about the plant 

water status i.e. description of stress effects [133]. 
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Lipid changes References 

PL and GL decline cotton (Wilson et al., 1987) 

GL decrease 
cotton (Ferrari Ilou et al., 1984),wheat, barley 
(Chetal et al., 1981) 

Total lipids and PL, GL and 
diacylglycerols decrease 

sunflower (Navari-Izzo et al., 1993) 

PL decrease 

sunflower (Quartacci and Navari-Izzo, 1992), 
maize (Navari-Izzo et al., 1989) cotton (Wilson et 
al., 1987), cotton (El-Hafid et al., 1989), oat 
(Liljenberg and Kates, 1982) 

Diacylglycerol, free fatty acid and 
polar lipid decrease 

maize (Navari-Izzo et al., 1989) 

Total lipid content decrease 
cucumber Cvs., squash, squirting cucumber 
(Akıncı, 1997) 

Trans-hexadecenoic acid decrease cotton (Pham Thi et al., 1982) 

Linoleic and linolenic acid 
biosynthesis, galactolipid decrease 

cotton (Pham Thi et al., 1985) 

Diacylglycerol, triacylglycerol and 
glycolipid increase 

soybean (Navari-Izzo et al., 1990) 

Saturation of the fatty acids increase cotton (Pham Thi et al. 1982) 

Phospholipid (phosphatidylcholin) 
increase 

wheat (Kameli, 1990) 

Total lipid content increase alfalfa (Al-Suhaibani, 1996) 

Triglyceride ands streryl ester levels 
increase 

maize (Douglas and Paleg,1981) 

Free fatty acids (FFA) increase  wheat (Quartacci et al., 1994) 

Table 3. Changes in plant metabolics (Lipids) 

Navari-Izzo et al., (1993) [131] pointed out that, since the plasma membrane has a key 

position in cell biology, understanding membrane function is a major challenge. The 

selectivity of membranes and their functioning vary with the types and proportions of lipid 

and protein components. 

Investigations on various crop species record a general decrease in phospholipid, glycolipid 

and linoleic acid contents and an increase in the triacylglycerol of leaf tissues exposed to 

long periods of water deficits, although the intensity of the stress applied is not always 

specified. [126,127,134]. The physical state and composition of the lipid bilayer, in which 

enzymic proteins are embedded, influence both structural and functional properties of 

membranes. Enzyme activity and transport capacity are affected by the composition and 

phase properties of the membrane lipids [120,135,136]. Wilson et al., (1987) [137] observed 

that water deficit caused a significant decline in the relative degree of acylunsaturation (i.e. 

FA -unsaturation) in phospholipids and glycolipids in two different drought tolerant cotton 

plants. Pham Thi et al., (1987) [130] pointed out that changes in oleic and linoleic acid during 

water stress resulted in desaturation changes in one drought sensitive and another more 

resistant cotton variety and showed that water stress markedly inhibited the incorporation 

of the precursors into the leaf lipids. 
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Navari-Izzo et al., (1993) [131] found that, in plasma membranes isolated from sunflower 
seedlings grown under water stress, there was a reduction of about 24% and 31% in total 
lipids and phospholipids, respectively, and also significant decreases in glycolipids and 
diacylglycerols. There was no change in free fatty acids, but triacylglycerols and free sterols 
increased. However, diacylglycerol, triacylglycerol and glycolipid content increased in 
soybean seedling shoots under water stress [129]. On the other hand, total lipid content of 
leaves tended to decrease in two cucumber cultivars as well as C. pepo and Ecballium in 
severe stress [3]. The researches indicated that PL in plant tissues under long time drought 
have been decreased in various crop species [127,129,137,138].  
Navari-Izzo et al., (1989) [127] studying responses of maize seedling to field water deficits, 
found that the diacylglycerol, free fatty acid and polar lipid contents decrease significantly 
with stress. In the latter class the dryland conditions induced a decrease of more than 50% in 
phospholipid levels, whereas they did not cause any change in glycolipid levels; and 
triacylglycerols increased by about 30% over the control.  
Pham Thi et al., (1982) [125] investigated the effect of water stress on the lipid composition of 
cotton leaves. The most striking effects were a decrease of total fatty-acids, due especially to 
a decrease of trans-hexadecenoic acid. The fatty acid composition of all acyl lipids changed 
during stress in the direction of increased saturation of the fatty acids. This increased 
saturation remained even after 10 days of recovery growth under non-stressed conditions. 
Pham Thi et al., (1985) [126] pointed out that water deficits inhibit fatty acid desaturation, 
resulting in a sharp decrease of linoleic and linolenic acid biosynthesis. The decrease in 
unsaturated fatty acid biosynthesis occurs in all lipid classes, but is greatest in the 
galactolipid fractions. Wilson et al., (1987) [137] similarly observed that water deficit caused 
a significant decline in the relative degree of acylunsaturation (i.e. FA -unsaturation) in 
phospholipids and glycolipids in two different drought tolerant cotton plants. Navari-Izzo 
et al., (1993) [131] found that, in plasma membranes isolated from sunflower seedlings 
grown under water stress, there was a reduction of about 24% and 31% in total lipids and 
phospholipids, respectively, and also significant decreases in glycolipids and 
diacylglycerols. There was no change in free fatty acids, but triacylglycerols and free sterols 
increased. Douglas and Paleg (1981) [128] noted that the fatty acids of triglycerides, of maize 
seedling were quite responsive to stress and in half of the comparisons were found to differ 
significantly. Stem triglycerides, in general, responded, whereas the major triglyceride 
change in the leaf was an increase in linolenic, which is essentially absent from this fraction 
in stems and roots. Kameli (1990) [75] observed that total leaf phospholipids content and, 
especially, phosphatidylcholine increased, rose in stressed plants of a relatively water stress 
resistant cultivar of wheat but did not change significantly in another, less tolerant cultivar. 

5. Drought and nutrient uptake 

Reduction in photosynthetic activity and increases in leaf senescence are symptomatic of 
water stress and adversely affect crop growth. Other effects of water stress include a 
reduction in nutrient uptake, reduced cell growth and enlargement, leaf expansion, 
assimilation, translocation and transpiration. Water and nutrient availability is one of 
suboptimal phenomenons like most of the natural environments occur continuously, with 
respect to one or more environmental parameters. Soils are very important natural source 
for plant growth where the plants anchored however millions of hectares of land becoming 
unproductive and affecting plant growth every year. The nutrient uptake of crop plants 

www.intechopen.com



 
Water Stress 28

greatly influenced by including overuse of the land in agricultural activities, climate change, 
precipitation regimes, root morphology, soil properties, quantity and quality of fertilizers, 
amount of irrigation [139-141]. The root structures such as root extension rate and length, 
the means of root radius and root hair density affect the quantity of nutrient uptake by a 
plant. Nutrient elements availability plays vital role for plant growth, nevertheless these 
physiological factors in nutrient, in soil, in plant or at the root absorpsion sites may in 
interact as well as antagonistically and synergistically of the plants [141-143]. 
Many nutrient elements are actively taken up by plants, however the capacity of plant roots 
to absorb water and nutrients generally decreases in water stressed plants, presumably 
because of a decline in the nutrient element demand [141]. It is well documented that 
essential plant nutrients are known to regulate plant metabolism even the plants exposed to 
drought by acting as cofactor or enzymes activators [144]. 
It is rather difficult to identify the effects of water stress on mineral uptake and 

accumulation in plant organs. Many workers have reported different effects of water stress 

on nutrient concentrations of different plant species and genotypes, and most studies have 

reported that mineral uptake can decrease when water stress intensity is increased [145-150]. 

For instance, nitrogen uptake decreased in soybean plants under water stress conditions 

[145] and nitrogen deficiency causes cotton plants to be sensitive to stress with a higher 

water stress [151] and decrease of nutrient presumably because of a decline in the nutrient 

element demand since the reduced root-absorbing power or capacity absorb water and 

nutrients generally declines accompanied to decrease in transpiration rates and impaired 

active transport and membrane permeability of crop plants [152]. 

Water stress generally favoured increases in nitrogen, K+, Ca2+, Mg2+, Na+, and Cl- but 

decreases in phosphorus and iron [147]. Although the many report stated that water stress 

mostly causes reduction in uptake of nutrients [152], for instance phosphorus, K+, Mg2+, Ca2+ 

in some crops [153-155], Ca2+, Fe3+, Mg2+, nitrogen and phosphorus and potassium in 

Spartina alterniflora [156]; Fe3+, Zn2+ and Cu2+ in sweet corn [157]; Fe3+, K+ and Cu2+ in 

Dalbergia sissoo leaves [150], Gerakis et al., (1975) [158] and Kidambi et al., (1990) [159] stated 

that nutrient elements increased in forage plant species and alfalfa and soinfoin (Onobrychis 

viciifolia Scop.) respectively. An increase in some specific elements such as K+ and Ca2+ were 

reported in maize [145], and K+ in drought tolerant wheat varieties [160], and in leaves of 

Dalbergia sissoo nitrogen, phosphorus, Ca2+, Mg2+, Zn2+ and Mn2+ increased with increasing 

water stress [149].  

Under water stress, the uptake of K+ and Ca2+ by maize plants increased [145]. The relative 
amounts of K+, Ca2+, and Mg2+ increased considerably more in barley than in rye when 
water stresses were imposed [150]. Potassium contributes to osmotic adjustment as one of 
the primary osmotic substances in many plant species [161,162] and under water stress 
conditions, K+ application is beneficial for plant survival with improved plant growth 
[163,164]. There are a few reports indicating that water stress favored increases in K+ [147] in 
plants such as maize [145], drought-tolerant wheat varieties [160], creeping bentgrass [165] 
and Ammopiptanthus mongolicus (evergreen xerophyte shrub) [166]. Contrary to reports 
stating that water stress generally favored increases in Ca2+ [145,147,167,168]. Kırnak et al., 
(2003) [148] who stated that water stress can cause Ca2+ reduction in bell pepper, and 
suggested antagonistic affects of Zn2+ and Mn2+ on Ca2+ uptake. In moderate and severe 
stressed leaves of bean (Phaseolus vulgaris L.) Ca2+ content was lower than the amount of 
potassium with a Ca/K ratio of 0.12, 0.15 and 0.16 in the control, and in both stress levels 
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[168]. The reason for total Ca2+ content being lower than K+ was considered to be directly 
related to antagonistic effects of Ca2+ on K+[169]. According to Kuchenbuch et al., (1986) 
[170], a reduction in leaf area of onion plants can be explained by declining amount of K+ 
caused by decreasing water content in the soil.  
Unlike previous reports which have stated that water stress causes a reduction in nutrients 

uptake [152-155] as well as Mn2+ [150], Mn2+ content in bean leaves tended to increase with 

increased in water stress levels [168]. Nambiar (1977) [150] pointed out that drying the 

upper layer of a siliceous soil profile strongly reduced the absorption of Mn2+ by rye grass, 

but Cu2+ and Zn2+ uptake were not relatively affected. For several grassland plants, total 

nutrients generally decreased with increasing water stress [158].  

It is generally accepted that the uptake of phosphorus by crop plants is reduced in dry soil 

conditions [171,172]. The studies carried out before the mid 1950s, 12 of the 21 papers 

reported that P concentration decreased, and 9 papers stated that P status was not changed 

in plants [158]. Although Fawcett and Quirk (1962) [173] reported that only severe water 

stress reduced plant phosphorus absorption, Nuttall (1976), [174] stated that increased soil 

moisture resulted in increased phosphorus but decreased sulphur in alfalfa. It is believed 

that, P uptake by plants increased with increased P levels in the soil ignoring water stress. 

Olsen (1961) [175] highlighted that the correlations among the soil P levels and monovalent 

phosphate uptake by plant and magnitude of water stress. In alfalfa (Medicago sativa L.) P 

and that of Ca2+, Mg2+, and Zn2+ in alfalfa and soinfoin (Onobrychis viciifolia Scop.) increased 

with decreased soil moisture supply [159]. On the other hand, there was no effect on 

moisture stress on the concentrations of P, N, K [176].  

Magnesium has an inverse relationship with calcium, phosphorus, iron, manganese and 

potassium with Ca2+ and Mg2+ having antagonistic effects on Mn2+ of a complex nature 

[47,177] Although some studies have found that Mg2+ absorption is increased by water 

stress in many crops [147,158], in bean leaves Mg2+ content decreased by 18% and 45% 

respectively in two increased water stress levels [168].  

In particularly, the presence of Ca2+ is of great importance since zinc absorption is closely 

related with nutrient concentrations, with Zn2+ solubility and availability negatively 

correlated with Ca2+ saturation in soils [177]. The increase in Zn2+, particularly in severely 

stressed plants, seemed to show a competing relationship between Zn2+ and Ca2+, with Ca2+ 

appearing at a lower level in the S2 treatment. Dogan and Akıncı (2011) [168] stated that 

Zn2+ supply is expected to decrease the uptake of most nutrients, K+ and Mg2+ suppressed, 

while Ca2+, Fe3+ only slightly decreased in bean leaves. 

According to Singh and Singh (2004) [149], availability of soil nutrients decreases with 

increasing soil drying, with K+, Ca2+, Mg2+, Zn2+, Fe3+ and Mn2+ decreasing by 24%, 6%, 

12%, 15%, 25% and 18%, respectively. Nambiar (1977) [150] pointed out that drying the 

upper layer of a siliceous soil profile strongly reduced the absorption of Mn2+ by rye 

grass, but Cu2+ and Zn2+ uptake were not relatively affected. In herbage plants, the uptake 

and solubility of nutrient elements depressed but Ca/K and Ca/P ratios increased under 

water stress conditions. In dried soil, older roots lost their ability to function and nutrients 

are absorbed by the more active root tips. Most of the studies revealed that water stress 

restricted uptake of nutrient elements by crops, active transport systems were impaired or 

destroyed by severe water stress while the presence of various ions responded differently 

in growth conditions. 
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6. Conclusion 

Wherever they grow, plants are subject to stresses, which tend to restrict their development 
and survival. Moisture limitation can affect almost every plant process, from membrane 
conformation, chloroplast organisation and enzyme activity, at a cellular level, to growth 
and yield reduction in the whole plant and increased susceptibility to other stresses [178]. 
Reduction in photosynthetic activity and increases in leaf senescence are symptomatic of 
water stress and adversely affect crop growth. Other effects of water stress include a 
reduction in nutrient uptake, reduced cell growth and enlargement, leaf expansion, 
assimilation, translocation and transpiration. In research aimed at improvements of crop 
productivity, the development of high-yielding genotypes, which can survive unexpected 
environmental changes, particularly in regions dominated by water deficits, has become an 
important subject. As pointed out earlier by Kozlowski (1968) [17] there is a need to increase 
crop production, in the face of mounting food shortages, and water conservation is an 
important factor in overcoming food deficiencies. From the above survey, it is clear that a 
wide range of morphological, physiological and biochemical responses have been correlated 
with differences in drought tolerance in various crop plants. 
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