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1. Introduction 

Over the last 40 years since “the war on cancer” began, cancer death rates have been 
significantly declining. Major advances in molecular and cellular biology have led to several 
breakthroughs in the field of cancer research. One of the most important advances in this 
area was probably the identification of genes that are closely involved in cancer initiation, 
progression, invasion, and angiogenesis, particularly those that cause cancer, those that 
suppress it, and those that promote or inhibit programmed cell death (apoptosis). As a 
result, the rates of new diagnoses and the rates of death from all cancers combined continue 
to decline. The National Cancer Institute’s Cancer Trends Report for 2009/2010 highlights 
the fact that the four most common cancers – of the prostate, breast, lung, and colorectal, 
specifically – have dropped considerably in the past few years (National Cancer Institute - 
Cancer Trends Progress Report - 2009/2010).  
Toward the study and treatment of such cancers, there are 680 genes, 545 proteins and 3 
RNAs associated with 102 different types of cancer that have been identified to date 
(National Cancer Institute - Cancer Trends Progress Report - 2009/2010). Targeting these, a 
total of 1370 drugs, out of which 1056 are small molecules and 314 are biologics, are either in 
preclinical or clinical trials or are already FDA approved (National Cancer Institute - Cancer  
 

 

Fig. 1. Small molecule drugs developed for the four most common cancers: prostate, breast, 
lung, and colorectal. 
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Trends Progress Report - 2009/2010). As shown in Fig.1, the number of small molecule 
drugs developed for the four most common cancers mentioned earlier is rather impressive. 
This dramatic resurgence reflects not only our increasing understanding of the genes and 
pathways that are responsible for the initiation and progress of cancer, but also the fact that 
we now have access to a much more powerful range of drug discovery technologies.  
The development of new anticancer drugs proves to be a very intricate, costly, and time-
consuming process. The advancement and broad application of experimental methods hold 
enormous promise as foundations for the rapid discovery of new anticancer therapeutics. 
Towards this goal, computer-aided drug discovery is becoming increasingly important, 
given the advantage that much less investment in technology, resources, and time is 
required. Due to the dramatic increase of information available on genomics, small-
molecules, and protein structures, computational tools are now being integrated at almost 
every stage in the discovery and development pipeline for drug discovery (see Fig.2).  
 

 

Fig. 2. Schematic diagram showing how in silico tools are being integrated at almost every 
stage in the discovery and development pipeline for drug discovery. 

Acknowledging that the area of cancer therapeutics is a complex and time-consuming 
process, this chapter gives an overview of the computational methodologies used for 
rational drug design, such as ligand-based (LB) and structure-based (SB) approaches, as well 
as systems biology modeling. Key principles will be illustrated through case studies that 
explore the field of anticancer drug design to demonstrate that research advances, with the 
aid of in silico drug design and computational systems biology, have the potential to create 
novel anticancer drugs that will give hope to millions of cancer patients. 
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2. Computational strategies 

The application of computational tools to drug discovery, including cancer research, has 
grown steadily for the past couple of years. In silico drug design consists of a collection of 
tools that help to make rational decisions at the different steps of the drug discovery 
process, such as the identification of a biomolecular target of therapeutical interest, the 
selection or the design of new lead compounds, and their modification to obtain better 
affinities, as well as pharmacokinetic and pharmacodynamic properties.  

2.1 Structure-based approaches  
The first step in developing a drug is to find a small molecule that will bind to a target 
protein and alter its biological functions. Target structure availability provides a good 
starting point for modeling target-ligand interactions using structure-based (SB) approaches 
(Anderson 2003; Gane and Dean 2000; Klebe 2000). Efficacious computational approaches 
may release the heavy burdens traditionally placed on experimental work. The goals of such 
methods include identifying effective modifications of existing lead compounds, as well as 
discovering novel lead compounds (de novo design). In recent years, several cases of 
successful applications of structure-based drug design have been reported (Combs 2007; 
Coumar et al. 2009; Khan et al. 2010; van Montfort and Workman 2009). Given the three-
dimensional structure of a target molecule, chemical compounds having potentially high 
affinity for this target can be designed rationally with the aid of computational methods. 
Based on a binding site-derived pharmacophore model, a pattern of putative interaction 
sites, the results consist of a collection of virtual ligands complementary to a three-
dimensional structure of the binding pocket. 
A successful example of structure-based pharmacophore modeling can be found in the 
identification of PUMA inhibitors (Mustata et al. 2011). PUMA, the p53 upregulated 
modulator of apoptosis, is induced by a wide range of apoptotic stimuli through both p53-
dependent and -independent mechanisms. This cancer treatment target is central in 
mitochondria-mediated cell death by interacting with all known antiapoptotic Bcl-2 family 
members (Yu and Zhang 2009). Over the years, it has become increasingly apparent that 
apoptosis acts as a barrier against oncogenesis. Deregulated apoptosis contributes to tumor 
formation, tumor progression, and impaired responsiveness to anticancer therapies, and 
recent studies suggest that the function of PUMA is compromised in cancer cells (Yu and 
Zhang 2009).  
Based on the binding of BH3-only proteins with Bcl-2-like proteins, a number of approaches 
have been used to identify small molecules that can modulate these interactions and, 
therefore, inhibit apoptosis.  Most of the efforts have focused on the development of Bcl-2 
family inhibitors that mimic the actions of the proapoptotic BH3 domains (Cory and Adams 
2002; Fesik 2005). A number of such compounds have been identified through a variety of 
methods, including computational modeling, structure-based design, and high-throughput 
screening of natural product and synthetic libraries (Zhang et al. 2007). Most notably, this 
approach led to the development of a potent and specific Bcl-2/Bcl-XL small-molecule 
inhibitor called ABT-737. Derivatives of ABT-737 are being tested in clinical trials, and 
several have already demonstrated effective antitumor effects in preclinical models 
(Bruncko et al. 2007). ABT-737 has extremely high affinity for Bcl-XL, Bcl-2 and Bcl-w, with a 
dissociation constant (Ki) below 1nM for each of them, but it binds poorly to Mcl-1 and A1 
(Oltersdorf et al. 2005).  Consequently, ABT and its analogs are found to induce apoptosis in 
a variety of cancer cells with overexpression of Bcl-XL and Bcl-2 in cell culture and in mice.  
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Motivated by the success of ABT-737 and derivatives, Mustata et al. (Mustata et al. 2011) 
used a structure-based approach to identify small molecular BH3 decoys or inhibitors that 
mimic the conserved bind surface (interactions) provided by the Bcl-2 like proteins to 
sequester PUMA, and therefore prevent its binding to Bcl-2-like proteins, thereby 
preventing apoptosis. The authors used the 3D structure of PUMA BH3 domain in complex 
with Mcl-1, a member of the pro-survival Bcl2-family (Day et al. 2008), to visualize and 
derive the most relevant protein-protein interactions and also to determine if these 
interactions are conserved among other Bcl-2 family members. They identified two 
conserved salt bridges (between Arg142 (PUMA BH3) - Asp237 (human Mcl-1) and Asp146 
(PUMA BH3) – Arg244 (human Mcl-1)) and one conserved hydrophobic interaction (Leu141 
(PUMA BH3) – Phe251 (human Mcl-1)). 
These interactions were ‘translated’ into pharmacophoric features, resulting in a structure-
based pharmacophore model. The model was used to screen ZINC8.0 database, which 
resulted in 48 hits from which they selected the 13 most promising based on in silico 
ADME/Toxicity profiling and favorable binding energies. In vitro and in vivo biological 
analyses concluded that ten of these inhibited PUMA-induced apoptosis at 25 μM, and eight 
of these inhibited PUMA-induced growth suppression in DLD1 cells using an adenovirus 
expressing PUMA. It was also found that, in HCT116 cells deficient in cyclin-dependent 
kinase (CDK) inhibitor p21 (p21-KO cells), three unreported compounds outside of the 13 
originally purchased reduced PUMA-induced apoptosis and growth suppression in a 
significant manner when all three were added at 25 μM 15 minutes following irradiation. In 
this way, the authors of this study were able to identify a handful of PUMA inhibitors that 
displayed inhibitory activity in vitro and antiapoptotic activity in several relevant cell lines 
through the generation of an SB pharmacophore model. 
 

 

Fig. 3. Computational strategy employed towards the identification of PUMA-Bcl-2 
disruptors. The complex between MPUMA and one of the Bcl2 proteins, Mcl1, is 
represented on the left side. The two-dimensional pharmacophore is represented in the 
middle, together with the inter-residue distances. Key conserved interactions derived from 
sequence and structural data include an Asp-Arg salt-bridge interaction (PUMA Asp146.Oǅ1 
with MCl-1 Arg244.Nǆ and A-1 Arg88.Nǆ, blue feature), an Arg-Asp salt-bridge interaction 
(PUMA Arg142.NH1 with MCl-1 Asp237.Oǅ2, red feature), and a Leu-Phe hydrophobic 
interaction (PUMA Leu141.Cǅ1 with MCl-1 Phe251.Cǃ and A1 Phe95.Cǅ1, green features). 
The structures of the 20 small-molecule candidates are shown on the right. 
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2.2 Ligand-based approaches 
The information gained from structure-based studies provides a good starting point for 
optimizing select ligands using ligand-based approaches. Ligand-based drug design 
exploits information about known active compounds (and possibly about inactive 
compounds, as well) to discover new actives (Stahura and Bajorath 2005). Ligand-based 
approaches rely on the central similarity-property principal, which states that similar 
molecules should exhibit similar properties (Johnson and Maggiora 1990). Therefore, the 
activity prediction of a compound or a set of compounds will be done based on the 
similarity or distance to a set of reference ligands with known bioactivity to a protein target 
(Rognan 2007). Different types of two- and three-dimensional molecular descriptors, 
features, and substructures in combination with a variety of classification schemes – such as 
recursive partitioning, Bayesian statistics, neural networks, or other machine-learning 
methods – have been used for this purpose.  
Pharmacophore-based virtual screening can be viewed as the intersection between 
structure-based and ligand-based approaches, as either the protein structure or known 
ligands can be used as references to build the models (i.e. receptor-based pharmacophore 
and ligand-based pharmacophore). One advantage of similarity searching over a 
pharmacophore-based search is that it does not require a set of structurally unrelated 
compounds of similar biological activity to derive a model. Thus, similarity-based virtual 
screening has proven very convenient, as it is computationally inexpensive and requires 
relatively less information (Sheridan and Kearsley 2002).  
For similarity searching, even one active molecule can be used to search a database for 
related compounds. It mostly uses 2D descriptors, also called topological descriptors, which 
are derived from the connectivity table of the molecule and take into account distances 
among atoms in terms of number of bonds in the shortest path between them. The most 
commonly used descriptors are topological fingerprints (Hert et al. 2004), which encode the 
presence or absence of substructural fragments in molecules in a binary fingerprint without 
taking into account the number of occurrences of the feature.  
These fingerprints can be pre-calculated and compared, usually by means of their Tanimoto 
distance, in a very fast and efficient manner to any reference set. The encoded substructures 
can either be a predefined list common to all sets of molecules analyzed or a list that 
depends on the analyzed set, in which all the encountered substructures up to a certain path 
length are considered. Contrary to similarity searching, pharmacophore searching has 
perhaps proven the most widely applied virtual screening method in terms of novel lead 
discovery, with hit rates for selected data sets of 1 to 20% (Good et al. 2000). Conversely, 
substructure-based fingerprints methods provide poorer scaffold hopping, as they are based 
in common substructure searching.  
An interesting example of small-molecules designed using a ligand-based approach is the 
case of tubulin inhibitors (Chiang et al. 2009). Tubulin polymerization, an essential 
component of cell cycle progression and cell division, represents an important target in 
anticancer therapy. Several antimitotic agents – like vinblastine and colchicine – have 
already been discovered and are clinically used, despite often low bioavailability, significant 
toxicity, rapid acquired resistance, and the resulting overexpression of drug-resistant pumps 
that eject these antimitotic inhibitors from the cell. However, due to these unfavorable 
properties, researchers have devoted substantial effort to discover new agents with more 
tolerable and effective properties, especially since it is believed that antimitotic agents could 
work to diminish blood supply to cancerous tumors. The authors of this study based their 
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model generation on a set of 21 indole-derivatives synthesized originally (Liou et al. 2006) 
for potential tubulin inhibition by this research group and used structure-activity 
relationship (SAR) analysis to drive it. These compounds were chosen such that their 
inhibitory half-maximal concentration (IC50) values spanned over three orders of magnitude, 
from 1.2 nM to 6 μM (Liou et al. 2006). 
Based on the chemical similarities of these compounds, the authors selected four common 

pharmacophoric features, including a hydrogen bond donor (HBD), a hydrogen bond 

acceptor (HBA), hydrophobic group (HY), and a hydrophobic aromatic group (HYA). 

They also used the HypoRefine feature to generate excluded volumes (EX) in an attempt 

to separate inactive compounds from active ones (Fig. 4). Following validation of their 

most significant pharmacophore hypothesis, the authors then used the hypothesis to 

screen both the ChemDiv database and an in-house database of approximately 130,000 

compounds. Although the authors do not report the resulting number of hits, they note 

that the top 1000 hits were then made subject to visual inspection, ruling out all but 142 of 

them.  

These compounds were then biologically tested using the human oral squamous carcinoma 

KB cell line. From among these 142 biologically tested compounds, four, shown in Fig. 4, 

were found to inhibit the KB cell line with IC50values of 187 nM, 2.0 μM, 3.0 μM, and 5.7 μM, 

respectively. The most potent compound in this set of four active molecules was also found 

to inhibit the proliferation of other cancer cell lines like MCF-7, NCI-H460, and SF-268, 

giving IC50values of 236 nM, 285 nM, and 319 nM. 

 

 

Fig. 4. The mapping configuration of four hit compounds found to inhibit the KB cell line 

onto the pharmacophore model along with their chemical structures. The pharmacophore 

model is represented by the colored spheres: HBD (magenta), HBA (green), HY (cyan), HYA 

(dark orange), and EX (black). Reprinted from the Journal of Medicinal Chemistry, 2009, 52, 

4221-4233, Copyright 2009 American Chemical Society. 

Another example of an LB approach is the development of a 3-dimensional pharmacophore 
model generated utilizing a set of known inhibitors of c-Myc-Max heterodimer formation 
(Mustata et al. 2009). c-Myc is a member of the basic helix-loop-helix leucine zipper protein 
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family (bHLH-ZIP). Dimerization with another bHLH-ZIP protein, Max, controls biological 
functions like apoptosis, transcriptional activation, and cellular transformation. Inhibition of 
the interactions between these two important proteins therefore represents yet another 
means for potential cancer treatment. This is especially true since deregulation of the c-Myc 
oncogene is a hallmark of cancer-related abnormalities leading to especially aggressive 
tumors in the cervix, colon, lung, breast, and hematopoietic organs (Nesbit et al. 1998).  
Previously, the authors of this study showed through nuclear magnetic resonance (NMR) 
studies that inhibitors of the c-Myc-Max dimerization function by binding to the inherently 
disordered c-Myc protein, altering its structure and making it incapable of dimerization 
with the Max protein (Hammoudeh et al. 2009).  
For this study, they aimed to develop an LB model based on previous work in an effort to 
discover new classes of potential c-Myc-Max inhibitors. The authors made use of the 
Genetic Algorithm with Linear Assignment for Hypermolecular Alignment of Datasets 
(GALAHAD) in SYBYL 8.0 software (Shepphird and Clark 2006) to develop a ligand-
based pharmacophore model that takes into account ligand flexibility, steric overlaps, and 
strain energies. Model generation was based on a set of six c-Myc-Max inhibitors that 
these authors had previously reported – composed of the original compound, which they 
called 10058-F4, and five compounds derived from it – and gave 20 pharmacophore model 
hypotheses. The model that received the best overall score was found to contain two 
hydrophobic features, two acceptor atoms, and one donor atom; this is shown in Fig.5. 
 

 

Fig. 5. GALAHAD model obtained from six compounds in the biological data. It includes 
two hydrophobes (light blue), one donor atom (purple), and two acceptor atoms (green)., 
and the sphere sizes indicate query tolerances. 

By making use of two inactive analogues of the original compound, 10058-F4, the authors of 

this study were also able to refine the highest-scoring pharmacophore model generated 
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through their work. This was accomplished using the Tuplets function in SYBYL 8.0 

(Shepphird and Clark 2006) software. The refined LB model was then tested using a set of 

ten compounds composed of four inactive analogues of the original compound 10058-F4 

and the six compounds described above. This validation step resulted in one false negative, 

one false positive, and eight correct identifications. 

The refined and validated LB model was then used to screen the set of approximately five 

million drug-like compounds of the ZINC 7.0 database, resulting in 15,822 hits, which 

amounts to about 0.31% of the ZINC 7.0 drug-like molecule database. Since the Tanimoto 

score of this set was found to be 0.50, it was determined that it was, indeed, composed of 

structurally-diverse molecules based on similar biological activity data referenced by this 

study. 

The 100 top-ranking compounds among the 15,822 hits that resulted from the database 
screening were then tested by adsorption, distribution, metabolism, excretion, and toxicity 
(ADME/Tox) analyses using ADME Boxes version 4.0 software (Mustata et al. 2009) in an 
attempt to rationally devonvolute the extensive hit-list. The highest-ranking 30 
compounds that passed the ADME/Tox filtering steps were then analyzed for their 
predicted probability of being an inhibitor of or metabolite for the cytochrome P450 
isoform CYP3A4. The authors rationalized that this was necessary since the original 
compound 10058-F4 was previously found to be extensively metabolized, resulting in 
rapid clearance, and that the CYP3A4 is believed to metabolize more than 50% of drugs in 
the human body.  
From among the compounds that passed the ADME/Tox filters, nine were purchased from 

ChemBridge and tested in vitro. At a concentration of 200 μM, four of these compounds 

were found to completely inhibit c-Myc-Max, three were found to partially inhibit it, and the 

remaining two were found to be inactive. The four highly effective compounds identified 

through this initial test were then determined to have IC50 values about two- to ten-fold 

lower than that of the original parent compound 10058-F4. These compounds were also 

tested using fluorescence polarization, and this indicated that they were able to bind to the 

c-Myc protein at the same location as 10058-F4. The authors also tested these four 

compounds in HL60 cells in a manner described in their previous work, finding compounds 

5360134 and 6370870 to be more active than 10058-F4, with IC50 values of 23, 16.7, and 35 

μM, respectively.  

This study respresents the first report of a pharmacophore model that provides a 

hypothetical picture of the main chemical features responsible for the activity of c-Myc-Max 

heterodimer disruptors. The authors successfully identified a set of structurally diverse 

compounds that showed affinities in the micromolar range and inhibitory activity against 

the growth of c-Myc-overexpressing cells, therefore demonstrating the applicability of 

ligand-based pharmacophore modeling to the identification of novel and potentially more 

puissant inhibitors of the c-Myc oncoprotein (Mustata et al. 2009). 

The same group also recently identified the binding site and determined the conformation 

by which the parental compound, 10058-F4, binds c-Myc and stabilizes the intrinsically 

disordered monomer over the highly ordered c-Myc-Max heterodimer (Follis et al. 2008; 

Follis et al. 2009). Docking of the top two newly identified Myc-Max heterodimer disruptors 

revealed similar binding mode to the 10058-F4 parental compound (Fig.5), centered around 

residues 402-412 (Follis et al. 2008; Follis et al. 2009). This information should allow the 

authors to define the major structural determinants of affinity/specificity.  
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Fig. 6. Docking of the two most active compounds, 5360134 and 6370870, to the c-Myc 
fragment that binds the parenteral compound 10058-F4. The electrostatic interaction surface 
at the binding site region is displayed and colored red for negative charge and blue for 
positive charge. Docking simulations were performed using Molegro Virtual Docker, taking 
into account side chain flexibility for all residues (Thomsen and Christensen 2006).  

Another successful example of LBDD is the targeting of I Kappa B Kinase ǃ (Noha et al. 
2011). The NF-κB signaling pathway, which is activated by tumor necrosis factor-ǂ (TNF-ǂ), 
stimulates through a complex signaling cascade that leads to the transcription of 
proinflammatory target genes, including I kappa B kinase ǃ (IKK-ǃ), the expression of which 
may promote tumor growth in the human body. As a result, IKK-ǃ, a key player in this 
pathway, represents yet another potential target for the treatment of cancer, in addition to 
inflammation . Since previous attempts at molecular docking that have used the active site 
of homology models for IKK-ǃ were riddled with uncertainty due to the lack of an accurate 
three-dimensional X-ray crystal structure (Noha et al. 2011) the authors of this study 
decided to use LB pharmacophore modeling to identify new compounds with affinity to 
IKK-ǃ. 
The LB pharmacophore model for this study was based on a set of five compounds with 
high activity (i.e. IC50 values of 100 nM or less) and at least a several-fold difference in 
selectivity for IKK-ǃ over IKK-ǂ in an attempt to develop an IKK-ǃ inhibitor-specific 
pharmacophore model. Pharmacophore model hypotheses were built using the “HipHop 
algorithm” of the Catalyst 4.11 (Patel et al. 2002) software built into the DiscoveryStudio 2.1 
package. The highest-ranking LB model hypothesis was iteratively refined with shape 
constraints and exclusion volume spheres (XVOLs) using the “refinement algorithm” 
available in DiscoveryStudio as “steric refinement with excluded volumes” based on two 
biologically inactive compounds from the literature. The final LB model contained one 
hydrogen-bond acceptor (HBA), one hydrophobic (H), one aromatic ring (RA), and two 
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hydrogen-bond donor (HBD) features. The model was further refined using a dataset 
extracted from the literature of 44 biologically inactive compounds, 128 active compounds, 
and 12,775 diverse random decoy compounds.  
The refined model was then used to screen the National Cancer Institute (NCI) compound 
database using the “FAST” algorithm on DiscoveryStudio with the “fast flexible” search 
function to generate a maximum of 100 conformations per molecule in the database. Out of 
247041 compounds in the database, 1860, comprising 0.8% of the entire set, were identified 
as hits. In an attempt to select for the most relevant compounds from among these extensive 
hits, the Rapid Overlay of Chemical Structures (ROCs) algorithm (Moffat et al. 2008) was 
used to analyze the compounds extracted from the NCI database. A combined scoring 
function, composed of the ROCS “color force field” score and the shape Tanimoto 
coefficient, was used in this form of three-dimensional similarity-based hit ranking. Two 
very active and structurally-diverse compounds from the literature training dataset were 
chosen for the shape-based screening and were passed through the three-dimensional 
geometry generation capabilities of CORINA from the Molecular Networks program 
(Sadowski et al. 2003). The top ten high-scoring compounds were tested in vitro, and it was 
found that the most potent inhibitor from among these ten, compound NSC 719177, could 
inhibit IKK-ǃ with an IC50 value of approximately 6.95 μM (Noha et al. 2011). Cell-based 
analyses were also conducted to test the ability of compound NSC 719177 to inhibit NF-κB 
activation in HEK293 cells stably transfected and carrying a luciferase reporter gene 
activated by a promoter composed of multiple copies of the NF-κB response element. 
Compound NSC 719177 was found to have a cell-based assay IC50 value of approximately 
5.85 μM and exhibited dose-dependent activity in inhibiting TNF-ǂ-induced luciferase 
activity. Therefore, Noha and colleagues (Noha et al. 2011) were able to demonstrate the 
successful application of ligand-based approaches to the identification of low micromolar 
inhibitors against IKK-ǃ. 

2.3 Combined structure-based and ligand-based approaches 
The studies discussed earlier are only a few, and by no mean the most, representative 
examples for cancer research. Nevertheless, it is clear that structure-based and ligand-based 
drug design approaches have a great impact on the discovery of anticancer drugs, and the 
combination provided by these complementary computational methods are even more 
valuable. One recent example of how both methods could be integrated in cancer research is 
the development of a “merged” pharmacophore model for aromatase reported by 
Muftuoglu and Mustata (Muftuoglu and Mustata 2010) toward the identification of better 
breast cancer drugs. 
Excluding cancers of the skin, breast cancer is the most frequently diagnosed cancer in 
women (2011) and ranks second as a cause of cancer death (after lung cancer). Currently, 
one of eight American women has the chance of having invasive breast cancer some time 
during her life. Approximately two-thirds of breast cancer tumors are hormone dependent, 
requiring estrogens to grow (Brueggemeier et al. 2005). One approach in treating hormone-
dependent cancer is to interfere with endogenous hormone production. Aromatase has 
always been considered the most promising target for the endocrine treatment of breast 
cancer (Meunier et al. 2004; Meunier et al. 2004) because, by inhibiting the aromatase 
enzyme, the estrogen production is decreased and the tumor growth stopped or reduced.  
The recent study reported by Muftuoglu and Mustata (Muftuoglu and Mustata 2010) is the 
first study aimed to develop a pharmacophore model, based on both ligand and structural 
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information, to screen for new classes of effective AIs. The model developed was generated 
through a merging of a ligand-based model and a structure-based model.  
The structure-based pharmacophore model was generated using the recent X-ray structure 
deposited in the Protein Data Bank (PDB) [pdb code: 3EQM] (Ghosh et al. 2009), which 
contains the chemical features important for androstenedione–enzyme interaction, while the 
LB model was developed from the most comprehensive list of non-steroidal aromatase 
inhibitors. Development of the final model, named the Merged Model (see Fig.7), required a 
database of both active AIs and inactive compounds for use in the training and testing sets, 
in addition to structural information based on the X-ray crystal structure of aromatase. As 
such, two test sets were created: a training set, to develop the LB model, and a test set, to 
validate the LB, SB, and Merged Models. The training set was composed of 20 of the most 
active AIs found in the literature.  
The test set, on the other hand was composed of 36 slightly less active AIs and nine inactive 
compounds, also found in the literature. Both sets, however, represented a collection of 
structurally very diverse compounds. The LB model, as shown in Fig.7, was generated using 
the Conformation Import function and the PCHD scheme from the Pharmacophore 
Elucidation function in MOE (Chemical Computing Group 2008), and resulted in four 
pharmacophoric features: two hydrophobic/aromatic groups, one hydrogen bond acceptor, 
and one hydrogen bond acceptor projection. In addition, an SB model was also generated 
based on the x-ray crystal structure of aromatase using LigandScout software (Wolber and 
Langer 2005), which included excluded volume areas to reflect possible steric hindrances. 
The resulting SB model, shown in Fig.7, was composed of three chemical features – one 
hydrophobic/aromatic group and one hydrogen bond acceptor – in addition to 11 excluded 
volume spheres. The two models, LB and SB, were then merged into one, named the 
“Merged Model” (see Fig.7) to capture both types of information (i.e., known active and 
inactive inhibitors as well as the structure of the enzyme). 
 

 

Fig. 7. Schematic diagram depicting the general methodology for the development of the 
Merged Model based off of the original SB and LB models. Hydrophobic groups are shown 
as light yellow spheres, hydrogen-bond acceptors are shown as red spheres, and excluded 
volumes are shown as gray spheres. 
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All three models were also computationally validated using the active and inactive 
compounds of the test set. In the end, it was found that the LB model is more discriminating 
than the SB Model, while the SB Model performs better in identifying active inhibitors. The 
Merged Model, however, was found to combine the strengths of each, proving superior to 
both original models. The authors of this study, therefore, would choose the Merged Model 
for screening of virtual libraries, although this piece of their work is not yet published. 
The authors do, however, discuss another area of analysis they pursued – virtual docking – 
by explaining the theory behind a three-stage process that focuses in on the most stable 
binding conformation for a ligand based on optimization and individualized pose selection. 
Stage One governs the entry of the ligand into the binding pocket, where all AIs are believed 
to bind and some are experimentally proven to be binding. Stage Two allows for the 
prediction of each ligand’s coordinating heteroatom, since it is known that non-steroidal AIs 
bind in the active site of aromatase by heteroatom coordination as the sixth ligand to the 
iron atom of the aromatase heme moiety. And lastly, Stage Three refines the binding 
conformation predictions made in Stage Two. The authors of this study refer to this new 
method as Refined Virtual Docking and implement the protocol for two aromatase 
inhibitors (Fig.8).  
 

 

Fig. 8. Predicted binding conformations of (A) vorozole (B) 3-imidazolyl based on the 
Refined Docking Protocol, showing the heme moiety (stick, colored by atom), the preferred 
adrostenedione substrate (stick, green), and the aromatase inhibitors (ball-and-stick). 
Reprinted from Bioorganic Medicinal Chemistry Letters, 2010, 20(10), 3050-3064 , Copyright 
(2010), with permission from Elsevier. 

In summary, the authors of this study successfully developed a powerful pharmacophore 
model for the identification of new classes of AI based on both LB and SB pharmacophore 
modeling. Additionally, they validated the models, proving the Merged Model to be more 
powerful and specific than the original models, and also developed a new docking protocol 
specific to the structural characteristics of their target enzyme, aromatase. Through this 
study, the authors demonstrated that both models and both types of information (i.e., 
known active and inactive inhibitors as well as the structure of the target enzyme) are 
essential to the development of a successful pharmacophore model, and subsequently, to the 
identification of novel, potent, highly specific, and potentially less toxic aromatase 
inhibitors. 
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2.4 Computational systems biology 
Systems Biology is directly applicable in the medical sciences, as the ability to 

therapeutically target complex diseases such as cancer will be greatly improved by a 

global understanding of the unified signaling and regulatory network that integrates all 

environmental signals into a net outcome or phenotype.  One example of such application 

is the identification of new uses for existing molecular targets through a systems biology 

analysis of the differences between normal and diseased samples. A second example can 

be found in the elucidation of complex signaling relationships or network analysis, which 

would allow for targeting of the most appropriate region of a signaling cascade for the 

development of more efficient and safe therapeutic agents. This could be achieved 

through studies that characterize perturbations of the biological system caused by small 

molecules, including existing therapeutic agents. The information gained through such 

studies could be extremely valuable since it would enable us to discriminate between 

cellular changes associated with therapeutic benefits and cellular changes associated with 

side-effects.  

A dynamic model of such a network could be adapted to describe its changes in the context 

of a disease, for example by incorporating genetic mutations as changes in the node states or 

in interactions. The model would be able to predict the phenotypes associated with 

mutations and their combination with diverse environmental signals, and it would provide 

strategies for reversing a diseased phenotype into a healthy one. This emerging 

understanding would enable fundamental advances in cancer treatment by allowing 

clinicians to prescribe treatments specifically targeted to individuals and their present 

conditions. Treatments then may be tailored so that the least invasive intervention yields the 

greatest system-wide benefit, maximizes the body's self-healing abilities, and minimizes side 

effects. In this way, linking molecular characterizations to clinical phenotypes in a causal 

manner will be a key challenge of systems medicine, and several promising steps have 

already been made in this direction. 

For example, such a methodology can be applied to prostate cancer, one of the most 

frequent malignancies and the second-leading cause of cancer mortality in North 

American males (Jemal et al. 2009). Although prostate cancer rates are progressing slowly, 

there are cases in which tumors behave aggressively, resulting in poor prognosis and 

eventually in the death of the patient. Disruptions in the balance of the insulin-like 

growth factor (IGF) axis and downstream signaling proteins have been attributed a critical 

role in the establishment and maintenance of the transformed phenotype in prostate 

cancer.  

A recent study performed by Vellaichamy and collaborators from University of Michigan 

together with GeneGo, Inc. (Vellaichamy et al. 2010)  demonstrates in a very elegant manner 

how computational systems biology approaches can be applied to better understand the 

biology and biochemistry of prostate cancer in order to establish new prognostic markers 

and to detect cellular functions suitable for therapeutic interference. These authors applied a 

topological scoring approach to investigate the response of LNCap prostate cancer cells, a 

well-studied model system for prostate cancer progression, to treatment with synthetic 

androgen (R1881). Their computational method combines disease- or condition-specific, 

high-throughput molecular data with the global network of protein interactions to identify 

nodes which occupy significant network positions with respect to differentially expressed 

genes or proteins in the molecular dataset.  
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Using such analysis, they were able to identify individual signaling cascades leading to the 

top transcriptional regulators revealing that PI3K signaling is supported by consistently 

high topological scores derived from both proteomics and microarray datasets. Fig.9 shows 

this cascade in the context of IGF signaling, with the PI3K cascade highlighted by the red 

line, where all of the elements that achieve high topological scores with respect to both sets 

are marked by red boxes. Through this study, the authors determined the central role of this 

pathway in regulating events that follow androgen treatment: through inhibition of GSK3 

kinase and its ability to phosphorylate c-Myc and cyclin D (Fig.9). 

 

 

Fig. 9. Map for IGF signaling showing topologically significant genes identified from 
microarrays and iTRAQ proteomics. Red level in the ‘‘thermometers’’ represents relative 
rank (percentile) of a protein in the corresponding list of topologically significant proteins. 
Red boxes and highlighted path illustrate signaling cascade with strongest support from 
both sets. Adapted from Vellaichamy et al., PLoS One (2010), vol 5 (6), 1-10 with permission 
fromPloS ONE.  
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3. Conclusions 

Undoubtedly, computational approaches have had a major impact on the design of 
anticancer drugs and drug candidates over the years and have provided fruitful insights 
into cancer in general. Nevertheless, to be useful to a biologist or a physician, computational 
models generated using these approaches should produce useful predictions that match 
experimental results, allow experiments to be performed in silico to save time and cost, and 
facilitate the understanding of how a system or process works. In that sense, computational 
approaches have room for improvement in all of the major areas: virtual screening 
techniques, ADME/Toxicity predictions, and ligand docking protocols.  
The optimization of these techniques can be represented by its own theoretical feedback 
signaling system: the biology informs the computational approaches, which, in turn, inform 
the biology, and so on, creating immense room for both fundamental breakthroughs and 
incredible application-based advancements. The field is continuously evolving and 
challenges still remain, but we expect to see accelerated activity in this area as compounds 
continue to move through clinical trials and as the science and technology continue to 
develop. We hope this chapter will stimulate researchers to adopt and apply computational 
tools to the discovery of future cancer drugs.  
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