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1. Introduction 

The polarization is a relative property to the vibratory nature of light. In an optical fibre, 
light is a combination of two vibrations of perpendicular directions. Each direction 
represents one mode of polarization. Indeed, the optical fibres and the components of the 
optical fibres present a small difference in the refractive index in the pair of the polarization 
states, a property called the birefringence. This last one induces a difference of propagation 
speed between the two modes. So, light at the output, cannot be restored more faithfully. 
The birefringence can change the state of polarization (SOP) of light when it crosses the 
fibre. In a single mode fibre, the birefringence is combined with a random coupling of 
polarization modes. The delay measured at the output of the fibre between the two 
polarization modes is called the difference of group delay DGD (measured in picoseconds). 
The polarization modes dispersion (PMD) results from the variation of the DGD according 
to the wavelength and the environment conditions.  
The typical tolerance of a system to the PMD is roughly 10% of the bit period, which gives 
40 Ps for a system of 2.5 Gb/s, 10 Ps for a system of 10 Gb/s and only 2.5 Ps for a system of 
40 Gbs/s (Noé et al.,1999). The PMD is a random phenomenon and constitutes an enormous 
obstacle ahead of the increase of the debits from 10 Gbit/s for a part of the networks of most 
telecommunication companies. Several solutions have been proposed to compensate the 
PMD as: The electronic compensation after a direct photo-detection that can only eliminate a 
part of the PMD effects since the information about the polarization and the phase get lost at 
the detection; the second solution is the electronic compensation in a coherent receptor with 
diversity of polarizations, and the third one is the optical compensation in at least a 
differential delay section. Other solutions are proposed by the Corning society and which 
rely on the use of spun fibres allowing the control of the coupling of the modes, therefore 
reducing the PMD; thus, giving differential group delays of order of Femtoseconds. In the 
past decade, some considerable efforts have been made to understand the origins of the 
PMD and to attenuate its effects in the systems. The PMD can be reduced in a fibre with two 
different manners. The first one consists in minimizing the asymmetries in the refractive 
index profile and the constraints, which implies improvements of the industrial process in 
the manufacture of the fibre in order to assure a better geometry and to reduce the rate of 
constraints in the fiber. The second method allows the control of the coupling of the modes 
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of the polarization in the fibre while spinning it during its manufacture. Indeed, the 
spinning has been used in the manufacture of fibres since the beginning of the 1990s, and it 
showed that it is an efficient technique to reduce the PMD in the fibre. First, we start by 
presenting in this work the spun fibres explaining their technology, their principle and their 
different types. Next, the description of the reduction of the PMD by using the spinning is 
developed by a mathematical formalism based on the theory of coupling and Jones's matrix. 
Moreover, the reduction of the PMD is verified in the spun fibres while applying the 
method of JME and the COTDR method (photon counting -Optical temporal Domain of 
Reflectometry) that allowed us to measure the DGD of the order of femtosecond (Cherbi et 
al., 2009). The comparison of the DGD found in this type of new generation of fibres with 
those of the standard ones, led us to confirm that the spun fibres offer effectively a smaller 
DGD than those of the standard fibres, emphasizing the importance of this type of fibres in 
the reduction of the PMD.  
We present the different results already published (Cherbi et al., 2009) while using the 
reflectometers COTDR and POFDR (polarization- Optical Frequency Domain of 
Reflectometry) which are used to get the polarization characteristics of the spun fibres as the 
beat length and the PMD and to observe the spatial frequencies linked directly to the period 
of spinning.  

2. Principle of spun fibres 

2.1 Technologies of the spun fibres 

There are more than two decades when the concept of the spun fibres has been proposed 
originally in an article published by (Barlow et al.,1981). 
 

 

Fig. 1. Two approaches used to present the rotating fibres (a) turn preforms (b) turn the fibre. 
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The fibre spun is achieved by the rotation of the preform during the drawing of the fibre 
(figure 1.a). In this approach, the system of drawing is the same as that of the 
conventional standard fibre systems (OVD) except that a rotating motor is placed on the 
top of the preform. When the motor is set in motion with a predetermined speed, the 
preform starts turning dragging the rotations of the axes of the birefringence. The rotation 
will end up with the end of the drawing operation. This approach is quite simple and 
appropriate for the pulling of the fibre at low speed. However, this is not convenient for 
the production of the fibre with a high speed pulling because the rotation of the motor 
must be at very high speed as well. To illustrate this, we consider a rotation rate of the 
fibre of 3 turns/min, for a drawing speed of 1 m/s, the rotating speed of the preform is 
thus only 180 turns/min.  
On the other hand, for a modern drawing device having a speed higher than 20m/s, the 
perform must turn at a speed greater than 3600 turns/mn, which is far from practical. For 
this reason the concept of the spun fibres has not been used in the production of fibres 
until the half of the nineties when methods of more adapted spinning have been proposed 
(Ming-Jun & Nolan, 1998). Moreover, the transmission systems as they appeared at low 
rate (<= 2.5 Gb/s), the PMD was not a major problem to seek fibres that perform this 
reduction.  
Several convenient techniques have been suggested during the year 1990, for example, by 
(Hart et al., 1994] in order to make the fibre turn rather than the preform. Later on, this 
technique became the most adapted one for the manufacturing of the fibres performing the 
reduction of the PMD. 
 

 

Fig. 2. Examples of fibre rotation systems: (a) tilted wheel, (b) two wheels moving in 
opposite directions. 
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In this case (fig 1.b), a rotating device of the fibre, is put along the way of fibrage to rotate 

the fibre directly. Two examples of this device are illustrated in figue 2. In the first example 

(fig 2.a), a wheel is in contact with the fibre and tilted with respect to its initial position, thus 

applying a moment of rotation to turn the fibre. In the second example (fig 2.b), two wheels 

are placed horizontally and are both in contact with the fibre (Blaszyk & Christoffand,2001). 

The two wheels move back and forth in opposite directions driving the rotational movement 

of the fibre. Imposing a direct motion to the fibre eliminates the problem of the preform 

when turning at high speed. Besides, this technique provides flexibility to control and 

implement different profiles of rotation for a better reduction of the PMD. 

2.2 Theory of spun fibres 

Two approaches have been suggested to model the reduction of the PMD in the spun fibres, 

one of which is based on the evolution of the polarization state (Galtarossa et al., 2001; 

Ming-Jun &Nolan, 1998). The evolution of the vector representing the polarization 

dispersion is ruled by the dynamic equation which is linked to the vector of the local 

birefringence. While solving the dynamic equation, the vector representing the 

polarization’s dispersion is gotten and its module gives the delay of the differential group 

(DGD). Another approach is based on the theory of the coupled modes of Jones' matrix 

(Ming-Jun et al., 2002) where the complex amplitudes of the two modes of polarization are 

described by the equations of the modes coupling. While solving these equations, the 

complex amplitudes are derived and Jones' matrix is determined and the DGD can be 

computed from this matrix. Basically, the two approaches give equivalent results. Our 

survey of the spun fibres is founded on Jones' matrix formalism, where we notice that the 

analytical solutions obtained are simple. 

2.2.1 Equations of the mode coupling  

As the birefringence in the fibres used in telecommunications is generally small, the 

formalism based on the theory of disruption (Ming-Jun et al., 2002), can be used to describe 

the different mechanisms of birefringence in the single mode fibres, including the 

birefringence due to the distortion of the core, constraints, curvature, rotation of the fibre 

and torsion. In what follows, we will present the theory of the coupled modes and we will 

show how to implement it in the different problems of birefringence. Indeed, the small 

birefringence of telecommunication fibres can be treated as an anisotropic disruption to a 

material originally isotrope. In the condition of weak guidance, the electric field E is 

described by the following wave equation (Dandliker,1992): 

 0 0 0E E p       (1) 

Where 0 et 0  are the dielectric and magnetic constants of vacuum respectively, ε is the 

relative dielectric constant of the non disrupted fibre, and p is the disruption term given by 

the following relation: 

 0p E    (2) 

Where   is the electric tensor describing the anisotropy of the medium. Without the term 

of disruption, the equation (1) has modal solutions of the following shape: 
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 0( , , ) ( , )exp( )n nE x y z e x y i z           1,2n 
 

(3) 

where ( , )ne x y  is the distribution of the electric field. For a monomode fibre, n =1, 2 

represent the two modes of polarization. 

In absence of disruption, the two modes are degenerated and propagate with the same 

constant ┚0. In presence of the disruption term, it is supposed that the electric field E(x,y,z) is 

given by the linear superposition of the two non disrupted modes (Ming-Jun et al., 2002): 

 

0( , , ) ( ) ( , )exp( )n n
n

E x y z A z e x y i z   (4) 

Where ( )nA z  are the complex coefficients describing the amplitudes and the phases of the 

two modes. Let's put equation (4) into equations (1) and (2) and use the relation of 

orthogonality between the two modes (Ming-Jun et al., 2002): 

 

( , ) . ( , )
0

m
m n

m nN
e x y e x y dxdy

m n

   
  (5) 

Knowing that mN is a constant of normalization which can be calculated as follows:  

 

1/2

201
2

02
coeur

m m m m

n
N e h zds e ds




  
     

 
 


 (6) 

and using the condition of the weak coupling: 

 

2

2
0

1 n nd A dA

dzdz
  (7) 

We get the equations of the coupled modes that describe the evolution of the complex 

amplitudes ( )nA z : 

 

.
dA

ik A
dz

  (8) 

where A is the complex amplitude vector taking the following form: 

 
1 2( )TA A A  (9) 

and k  is the matrix of the coupling coefficients. 

 

11 12

21 22

k k

k

k k

 
 

 
 
 

 (10) 

The coupling coefficients are associated to the different types of disruptions: 

www.intechopen.com



 
Recent Progress in Optical Fiber Research 156 

 

0

0 0

( , ). ( , , ). ( , )
2

mn n m

k
k e x y x y z e x y dxdy

n N
   (11) 

Where 0n  is the effective refractive index of both non disrupted modes. 

2.2.2 Jones matrix and the PMD of spun fibre  

The evolution of the local polarization along the birefringent fibre is described by the 
equations of the modes coupling. The total change of polarization of an input signal, after 
having traveled a given distance in the fibre is better described by Jones' matrix. Let's 
assume that the losses in the fibres are negligible, the already predefined Jones matrix, can 
be put under another form which is: 

 

*
1 2

*
2 1

( ) ( )

( ) ( )

A z A z

T

A z A z

 
 

  
 
 

 with 
2 2

1 2 1A A   (12) 

The four complex elements of Jones' matrix can be gotten while integrating the equations of 
the coupled modes with suitable initial conditions. Once Jones' matrix is known, the PMD 
can be calculated easily from the elements of the matrix (Chen, 2002; Ming-Jun et al., 2002): 

 

2 2

1 22
dA dA

d d


 
   (13) 

In order to describe the reduction of the PMD, we define a parameter, named reduction 

factor of PMD (PMDRF) 
 
as the ratio of the DGD of the spun fibres over the DGD of the 

standard fibre. 

 0




  (14) 

Where the used lengths for the spun fibres and standard fibres are the same. For example, if 

 is equal to 1, the reduction of the PMD is not achieved and if  is equal to 0.5, a factor of 

two is obtained in the reduction of the PMD. 

2.3 Different types of spun fibres  

The coupling coefficients matrix depends upon the dielectric tensor of the disruption. The 
values of these elements are determined by the type of disruption, which means that they 
depend on the configuration of the fibre. In this section, we describe some configurations of 
the fibres and we give their coupling coefficients matrix. It is important to note that the 
coupling matrixes in this work are expressed on the basis of the circular polarization 
because it is more appropriate to process the rotating fibres (Ming-Jun et al., 2002). 

2.3.1 The linearly birefringent fibre 

The linear birefringence is a consequence of disruptions as the distortions of the core, the 
asymmetry of the lateral constraints, the curvature. In the case of the linear birefringence, 
the coupling coefficients matrix is given by (Ming-Jun et al., 2002): 
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2

2

0
1

2
0

i

i

e

k

e







 

 
 

  
   

 (15) 

where ∆┚ is the linear birefringence, and Φ is the orientation of the birefringence with 

respect to a given axis  

2.3.2 Spun fibres  

In a spun fiber, the orientation of the birefringence takes place depending on the x axis. The 

rotation angle   accumulated is therefore a function of the fibre length 'z', which in turn is 

determined by the rate of rotation ( )z :  

 
0

( )
z

z dz    (16) 

Replacing the equation (16) in equation (15), we get the coupling coefficients matrix of the 

rotating fibres, describing the disruption of the birefringence,: 

 

0

0

2 ( )

2 ( )

0
1

2

0

z

z

i z dz

i z dz

e

k

e










 
  

 
 
   

 (17) 

2.3.3 Twisted fibre 

There are two effects in this type of fibres: The rotation of the birefringence and the 

mechanical torsion. The rotation of the birefringence is similar to that of the rotating fibre. If 

the rate of torsion is T, the angle  is calculated by  

 
T z   (18) 

The rate of torsion is determined by the coefficients of photo - elasticity of the fibre. The 

torsion constraint induces the circular birefringence proportionally to the rate of torsion. 

 
.g T   (19) 

Where g is the coefficient determined by the coefficients of photo elasticity of the glass. The 

typical value of g for fibres in silica is 0.16. Combining both effects of rotation and torsion, 

the coupling matrix comes up with the following form: 

 

2

1

2

i Tz

iTz

e

k

e

 

 

 
 

  
   

 (20) 
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2.4 Solutions of the coupled equations for different types of the spun fibres  

Generally, the matrix of the coupling coefficients depends upon the variable z, and the 

analytic solutions of equation (8) have no existence in the majority of the cases. The 

numerical integration is always used to get numerical solutions. Different methods, as the 

method of the finite differences, the Runge-Kutta method (Chen, 2002), can be applied to 

solve the equation of the coupled modes. However, in the two following special cases, we 

can derive the analytic solutions which will be discussed in this section. 

2.4.1 Constant spinning rate 

For a constant spinning rate, the function 'spin' (rotation) can be written as follows: 

 0   (21) 

Where 0 is a constant. In this case, the birefringence of a fibre is estimated in only one 

direction with a rate 0 . For this reason, the constant spinning rate is often assigned to an 

unidirectional spinning. For a spun fibre, with a constant spinning rate, the integral of the 

coupling matrix can be calculated easily, and the coupled equations become (Hart, 1994): 

 

021
2

1

2

i zdA
i e A

dz

   (22) 

 

022
1

1

2

i zdA
i e A

dz

   (23) 

With initial conditions 1 2(0) 1, (0) 0A A  . 

The solutions of equations (22) and (23) are: 

 

0 0( ) ( )0 0
1

2 2

i z i zA e e      
 

  
    (24) 

 0 0( ) ( )
2

4 4

i z i zA e e    
 

    
   (25) 

Where  2 2
0

1

4
      

Using equations (12) and (13), we find that the DGD can be expressed by a simple equation 

for the spinning constant: 

 

 
2

2 2 04
( ) sin

2 2

z
z z   

 
           

 (26) 

Where 0d B

d L






   is the PMD of a uniform birefringent fibre without modes coupling at 

the z position. The sinusoidal term of equation (26) doesn't play an important role when the 
fibre is sufficiently long. On the other hand, for long fibres, the DGD is given by: 
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. .
( )

2

z
z  




  (27) 

Equation (27) indicates that the DGD progresses linearly with the length of the fibre, and the 
PMDRF takes the following form: 

 
2





  (28) 

We notice that for spun fibres of constant rate, the PMDRF depends upon the length of 
beating or the birefringence. 

2.4.2 The periodic spin function 

For the functions of periodic spin, under some conditions, we can describe analytic solutions 
by using the theory of disruption (Chen et al., 2002) in which fibres are submitted to 
uniform disruptions only, or in the case of small lengths regime (typically smaller than 100 
m) in order to fine down their analysis. Indeed, in this approach, the random characteristic 
of the variation of the disruption in case of important lengths regime is ignored. Using the 
initial conditions issued from the previous paragraph, the first order solutions of disruption 
for A1 (z) and A2(z) are as follows: 

 1( ) 1A z   (29) 

 

2

0

( ) ( / 2) exp[ 2 ( ')] '
z

A z i i z dz     (30) 

Where 
0

( ) ( ') '
z

z z dz    

It becomes easier to obtain the DGD by using equation (13): 

 
0

( ) exp[ 2 ( ')'] '
z

z i z dz     (31) 

Based on the theory of disruption, the first order of the disruption’s expansion is valid only 

when 1  . This condition puts some limits on the application of equation (31) on fibres 

that have a low PMD.  
The validity of this solution has been tested by (chen et al., 2002). When the length of beating 

is important (some meters), i.e. 1  , and the period of spin is smaller than the length of 

beating, the theory of disruption of the first order can always be applied. For sinusoidal 
profiles of spin, the expression for the factor of the PMD reduction can be gotten from the 
solutions of the disruption equation. Let's notice that the profile of sinusoidal spin takes the 
following form: 

 0( ) cos( )z z    (32) 

Where ┙0 is the spin amplitude , and η is the angular frequency of the spatial modulations, 
which is linked to the spin period Λ through the following relationship η=2π/Λ.  
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With the analytical solution of equation (31), we are able to assert which spin parameters 

give right to the optimization of the PMD performances. With the first observations, we 

remark that, when the length of beating of a fibre is bigger than some meters, the PMDRF is 

independent of the beating length, and therefore of the intrinsic birefringence of the fibre. In 

equation (31), the only contribution to the birefringence of the fibre, comes from  , and the 

DGD is proportional to this size. Let's note that   is the PMD of the unspun fibers (non 

rotating). On the other hand, the PMDFR will be independent of  .  

This conclusion is also verified by the direct numerical integration of equation (8) with k 

given by equation (17). Some old fibres had beating lengths inferior to some meters; with the 

improvement of fibre manufacturing, the majority of these lengths were improved lately 

beyond some meters. The PMDRF independence from the intrinsic birefringence of the fibre, 

offers the advantage of simplicity in its conception because it is worthless to optimize the 

spin profiles for the different birefringences of the fibre. Moreover, we noticed that the DGD 

increases linearly when the length of the fibre increases (figure 3) despite the fact that we got 

some overlapping oscillations on the graph representing the variation of the DGD with 

respect to the distance.  
 

 

Fig. 3. Evolution of the DGD along a spun fibre. 

We can also separate the real and imaginary contributions of the integral (31) in order to 
better analyze the variation of the DGD along the fibre. We express the equation (31) in an 
alternative way of the DGD for one spatial period T: 

 

   
0 0

( ) cos 2 ( ') ' sin 2 ( ') '
T T

DGD T z dz i z dz      (33) 

 
0

( ) cos 2 ( ') ', ( )
T

DGD T z dz z    is an even function  

 
0

( ) sin 2 ( ') ', ( )
T

DGD T z dz z    is an odd function 
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We suppose that ( )z  is a periodic function. When ( )z  is an even function, 

 
0

sin 2 ( ') '
T

z dz  is equal to zero. When ( )z  is an odd function ,  
0

cos 2 ( ') '
T

z dz
 

is equal to  

zero. For multiple values of the period T, the DGD becomes  ( )n DGD T . For values in 

between, some oscillations are encrusted in the linear variation of the DGD. On the other  
hand, this survey based on [40] leads us to the conclusion that the dependence of the DGD 
of the standard fibres on the square root of their lengths, comes from the statistical nature of 
the random coupling of the two modes of polarization. The linear evolution of the DGD 
with respect to the length of the spun fibre is caused by the periodicity of the coupling 
induced by the spinning, thus we have a coupling mode better-controlled than in the case of 
standard fibres. However, it is possible that the DGD of the spun fibres follows a different 
evolution law in a region where the first order theory of disruption is not valid any more; 
for example, when the intrinsic birefringence of the fibre is high and / or the spin rate is 
high.  
With the aforementioned results, it is rather simple to find the phase matching conditions 
for which the maximum reduction of the PMD can be obtained. In this case, the condition is 
fixed such that the PMDFR is equal to zero (chen et al., 2002):  

 

 
0

exp 2 ( ') ' 0
T

i z dz  
 

(34) 

Equation (34) can be expressed in another way if we use the properties discussed previously 
for even and odd functions. We notice that when the phase matching conditions are 
satisfied, the evolution of the DGD along the spun fibre is periodic. The DGD doesn't 
increase anymore when the length of the fibre increases.  

Equations (31) and (34) are valid for a whole category of periodic profiles of spin. To 

illustrate the way how to determine the phase matching conditions, we take an example of a 

sinusoidal spin profile. Such a profile is defined by equation (32). The integration of this 

profile gives 0( ) sin( ) /z z    ; then we get the DGD by using equation (31): 

 

 0

0

2 sin '
( ) exp[ ] '

z z
DGD z i dz

 



   (35) 

The integral can be valued analytically by using the following identity: 

 
0 2 2 1

1 0

exp[ sin( )] ( ) 2 ( ).cos(2 ) 2 ( )sin[(2 1) ]n n
n

ix J x J x n i J x n  
 




       (36) 

Then, we get 

 

1/22 2( ) ( ) ( )DGD z R z I z    
 (37) 

where 

 2 0
0 0

1

(2 / )
( ) (2 / ) sin(2 )n

n

J
R z J z n z

n

   






   (38) 
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 2 1 0

0

(2 / )
( ) cos[(2 1) ]

(2 1)
n

n

J
I z n z

n

  






 

  (39) 

 

 

Fig. 4. The PMD change factor as a function of the spin amplitude and the spin period. 

We note that when 0 0(2 / ) 0J    , the dominant contribution comes from the term of the 

linear increase of equation (38). Neglecting the oscillations term, the expression of the DGD 

becomes:  

 0 0( ) (2 / )DGD z J z    (40)  

As in the case of spun fibres with a constant rate, in absence of random disruptions, the 
DGD increases linearly with the length of the fibre; in contrast with the PMDRF which takes 
a simpler shape: 

 0 0(2 / )PMDRF J    (41) 

Equation (41) indicates that the PMDRF is independent from the beating length in the case 

of spun fibres with sinusoidal profile whose beating lengths are equal to some meters or 

more. When 0 0(2 / ) 0J    , the linear increase term disappears, and the oscillation terms 

cannot be neglected any more. In this case, the DGD oscillates between 0 and a maximum 

value and is independent of the propagating distance. The condition where the minimum of 

the PMD is reached is called the condition of phase matching (figure 4). 
Figure 4 illustrates the presentation in three dimensions for the graph of the PMD reduction 
as a function of the spin period and the spin amplitude. The phase matching condition can 
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be achieved for different spin parameters enabling to get an optimal reduction of PMD; 
though in general, amplitudes of higher spins give a better reduction of PMD. Figure (3.a) 
shows the evolution of DGD along the fibre with the phase matching condition. Finally, the 
maximum of reduction can be reached at the zeroes of the Bessel function of order zero 
(equation 41). 

2.5 Reduction of the PMD for different profiles of spin 
2.5.1 The constant spin rate  

While using equation (28), the PMDRF, as function of the spin rate, is represented for 
different beating lengths in figure 5; for a constant spin rate.  
 

 

Fig. 5. The factor of reduction of the PMD with respect to the spin amplitude in the case of a 
constant spinning rate for different beat lengths. 

We note that the PMD is reduced when the spin rate increases. For the same spin rate, 

PMDRF depends on the beating length. The higher the beating length is, the more reduced 

is the PMD. For a high PMD of the fibre (beating length <1m), a high spin rate is necessary 

to reduce the PMD. 

2.5.2 Sinusoidal spin 

In figure 6, we use a beating length of 1m as example to illustrate the reduction of the PMD 

for sinusoidal types of spin (Ming-Jun et al., 2002).  

Figure 6 shows that for sinusoidal spin types, the PMDRF oscillates with the spin amplitude, 
which is different from the case where the spin was constant. Furthermore, this figure shows 
that, for a sinusoidal spin, the phase matching condition can be gotten in order to come to a 
low PMD; on the other hand, in the case of constant spin, the phase matching doesn't exist. 
The phenomenon of phase matching can be explained by the mechanism of coupling of 
modes. The constant spin reduces the birefringence of the fibre, and causes no coupling of 
modes as well. For the sinusoidal spin, the variation in the rate of spin carries along the two 
modes of polarization to intercouple, reaching a compensation of the PMD. For some spin 
profile and birefringence of fibre, the conditions of phase matching are satisfied and the 
maximum of energy exchange occurs in order to provide a better reduction of PMD. The 
results of modeling indicate that the conditions of phase matching depend on the beating 
length, the period of the spin and the amplitude of the spin. We can use the same function of  
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Fig. 6. The factor of reduction of the PMD versus the spin amplitude in the sinusoidal spin 
profiles. 

spin to get a small reduction of PMD for high lengths of beating. However, for small lengths 
of beating; the phase matching has a strong dependence with the length of beating.  
The fact that the birefringence of the real fibres is not constant and changes randomly, it is 
impossible to have the phase matching for the whole birefringence while using only one 
sinusoidal spin. This problem can be solved by admitting spin profiles with many Fourier 
components. To get to this point, the concept of the use of the modulated spin in amplitude 
and frequency has been developed by the Corning society.  

2.6 Statistical evolution of the PMD of the spun fibres  

As it was mentioned in the previous sections, the spun fibres follow a linear evolution law 
without the random modes coupling or in the régime of short lengths. When the random 
mode coupling is present, it has been found that the spun fibres follow an evolution law, a 
function of square root, similar to that of the unspun fibres, but with a different rate 
depending on the spin parameters (Chen, 2002). The random mode coupling can be 
characterized by a random variation of the birefringence axis and / or by the induced phase 
shift by the external constraints with an occurrence frequency of 1/h, where h is called the 
coupling length of the modes. On the other side, a fibre of length «l» can be divided into (l/h) 
segments. Using this model, for a sinusoidal profile of spun fibre under no optimal 
conditions (no phase matching ), the DGD can be expressed under the following simple 
form: 

 
hl   (42) 

We notice that the fact that the PMDRF « » is independent of the beating length when the 

length of beating is greater than some meters, the DGD in the régime of important lengths, and 

in presence of the random coupling mode, is corrected by a factor  , which is the reduction 

induced by the fibre spinning during the process of drawing. In this case, the property of 
evolution of the PMD is similar to that of the fibre possessing the linear birefringence. 
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Fig. 7. The DGD of a spun fibre according to the length of the fibre. The amplitude of spin is 
3.5 turn/m, the period of spin is 1m, the length of beating is 10m and the length of coupling 
is 10m. 

 

 

Fig. 8. Probability density function versus the DGD of the fibre when the condition of phase 
matching is not verified. The amplitude of spin is 3.5 turn/m, the period of spin is 1m, the 
length of fibre is 500m and the length of coupling is 10m. 

The simplest law of evolution given by equation (42) has been verified by using a numerical 
modeling (Chen, 2003). Figure 7 shows the results of the numerical simulation for a 
sinusoidal spun fibre under the non optimal conditions. As it is shown in this figure, the 
numerical modeling accomodates very well with the theoretical prediction. 
In the case of standard fibres (unspun fibres ) with a random coupling mode length h, the 
distribution of the DGD is analog to the distribution of Maxwell, where the standard 
deviation   used in the expression of PDF can be given by the following expression: 

 

( ) . / 3
b

h l
cL

   (43) 

We have proven that the Maxwell distribution is valid in the case of the spun fibres, except 

that, the parameter   should be corrected by the contribution of the spinning fibre. The 

modified parameter   is now under the following form 

length of fiber  (m)
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0 0(2 / ) ( ) . / 3
b

J h l
cL

       (44) 

This equation has been tested and validated in (chen, 2002). Figure 8 represents the 
probability density function 'PDF ', according to the DGD of the spun fibre, obtained by 
numerical calculations and Maxwell distribution equation where we confirm according to 
the figures that the two results converge perfectly.  

When the conditions of phase matching are satisfied, the total DGD of the fibre is a periodic 

function, and it oscillates between the zero value and a maximal value max . For this reason, 

the DGD of only one segment of a fibre is linked to the average of DGD inside one period of 

spin. Therefore, in the regime of high lengths (l >>h), the total DGD can be written as 

follows (Ming-Jun et al., 2002): 

 ' /q l h  
 

(45) 

Where 
q  is the square average of the DGD in one period of spin, and '  is a coefficient 

that depends on the average coupling coefficient between two segments. For a condition of 

phase matching (for example: 1 '
0 2.76 / 2 ),tours m et m     is found equal to 1.194. 

Besides, the DGD increases when the length of coupling of modes decreases (Ming-Jun et al., 

1998). It is foreseeable, because under the conditions of phase matching, the DGD is minimum. 

Any disruption moves the fibre away from the optimal conditions, implying an increase of the 

PMD. Despite the fact that the DGD of the optimized spun fibres changes differently with the 

coupling length in comparison with the DGD of the non optimized spun fibres, the DGD 

always follows a Maxwell distribution, but with a modified parameter   (Chen, 2002).  

 
'( / ) / 3q l h    (46) 

3. Application of the JME method for the measurement of the PMD of the 
spun fibres  

We used the JME method (Derickson, 1998) in order to verify the reduction of the PMD in 
the spun fibres (Cherbi et al., 2006). This applied method, between 1510 to 1615 nanometers, 
consists in determining the DGD directly between the two main states of polarization by 
measuring the Jones matrix of the device under test to a set of wavelengths. In order to 
determine the PMD of the spun fibres, we take the following steps:  

 Measure Jones' matrixes ( )iJM   for a set of wavelengths 1 2,, .... n   of the work range 

(1510 nm-1615nm)  

 Do the product 1( ). ( )i iJM JM        

 Determine the eigen values 1  and 2  of the calculated product of matrix 

 The DGD ( )i  is gotten then by (Heffner, 1992):  

 

1

2

arg

( )iDGD




 


 
  
   


 (47) 
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The PMD of the fibre under test is determined by the arithmetic mean of the ‘n’ measured 
DGD:  

0

( )
n

i
i

DGD

PMD
n





 

We applied the above procedure to two types of the spun fibres in order to compare their 
performances. The first fibre is unidirectional of length 212m in which we noted that the 
rotation of the spins was only in one sense once removed it from the spool. On the other 
hand, for the second bi-directional of length 1Km, the rotation of the spins was in the two 
senses. The results gotten in the figure 9.a and the figure 9.b, show that this method has a 
good resolution because it permitted to measure DGD of the order of femtoseconds, and to 
show that this type of fibre presents effectively low DGD compared to those measured in 
standard fibres that are of order of the picoseconds. Besides, we noted that the bi-directional 
fibre possesses a lower DGD than that of the unidirectional one indicating thus the 
efficiency of the bi-directional spun fibres in the reduction of the PMD.  

 

Fig. 9. Representation of DGD measured of spun fibre according to the wavelength for the 
length (a ) L = 290m, (b) L = 212m.  

(a) 

(b) 
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The researchers and inventors of the optical fibre of telecommunication systems predict the 

impact of PMD from the distribution of  , because this results from the variation of   as 

a function of wavelength and the conditions of the environment. On the other hand, due to 

this type of variation, the PMD of an optical path is expressed then statistically, as either the 

average or the root mean square (RMS) of  i   (Derickson, 1998 ). It is interesting to 

determine the total PMD of a link made of a series of different spun fibres. 

For this reason, we took three different lengths of spun fibres (fibre2, 3 and 4). We started by 

measuring, with the JME method, their PMD separately, for a given temperature while 

using a reference fibre (fibre1) used in calibration (table 1). Then, we connected the three 

fibres, and done the measurement of the total PMD in the same experimental conditions. 

The same procedure has been applied for the two fibres (fibres 3 and 4). We sought for the 

best relation of computation to determine the total PMD of a link of spun fibres, by testing 

the two following relations:  

 1 2 ..............totale nPMD PMD PMD PMD    (48) 

 Or   2 2 2
1 2 ..........totale nPMD PMD PMD PMD    (49)  

With n the number of fibres used in the link 

Our experimental results regrouped in table 1 are in very good agreement with the first 
relation [Cherbi et al., 2006].  
 

 

DGD(fs) measured 
with the step 
(10nm)  

Total DGD (fs) 
calculated with 
relation (48)  

Total DGD (fs) 
calculated with 
relation (49)  

reference fibre of (1 km) 98,721   

Fibre 2 (212 m)  4,8223   

Fibre 3 (290m)  7,4315   

Fibre 4 (1 km)  9,7399   

connected Fibres (2+3+4) 22,9437 21,99 13,16 

connected fibres (3+4)  17,1985 17,17 12,25 

Table 1. The PMD relation of the spun fibres link. 

4. Determination of the polarization’s properties of the spun fibres using the 
reflectometers 

The beat length of the fibre can be measured directly by the extraction of the spatial 

period of the backscattered signals (Wegmuller, 2002, 2004), which permits to estimate the 

PMD in the single-mode fibres (Ellison et al., 1998; Chen, 2002). The OFDR method is not 

exploited again especially for investigating of the spun fibres for the determination of its 

parameters and of their PMD according to the distance. In this section, we will present the 
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relation already demonstrated experimentally by COTDR in our anterior works (Cherbi et 

al., 2009) existing between the spatial period of the backscattered signal and the PMD of 

the spun fibre and given by (Chen, 2003). Even more, the COTDR method allowed us to 

compare the results found with those of the JME method. Afterward we will present the 

POFDR method which used for spun fibres (Cherbi et al., 2009; Wegmuller et al., 2005) to 

obtain the beat lengths of the two types of spun fibres and the spin period of the bi-

directional fibre. 

Chen( Chen, 2003) has demonstrated that the spatial period of the backscattered signals 

obtained from a POTDR (polarization-sensitive optical time-domain reflectometer) of the 

spun fibres varies linearly with the beat length of the fibre. This means that for a given beat 

length, the spatial period sT  can be used as calibration for the reduction of the PMD. A 

simple relation linking the spatial frequency F ( 1 / sF T ) to the beat length and the spin 

parameters, is given by: 

  0 02 / /( /2)bF J L   (50) 

The PMD of the bi-directional spun fibre is linked to the spatial frequency in the form 
(Chen, 2003):  

  /2PMD c F  (51) 

Thus, the PMD of the bi-directional spun fibres can be determined directly through the 

measure of the spatial period as in the case of the standard fibres, while measuring the 

spatial period of the backscattered obtained from the reflectometers. The equation (50) 

shows that when the spin is zero, the spatial period converges to the one of the standard 

fibres.  

4.1 Measure of the DGD in the spun fibres by the C-OTDR method 

The technique (COTDR) (Wegmuller et al., 2004) is appropriate to detect the defaults in a 

given fibre (sites of reflection, losses) with a spatial resolution of the decimetre order. The 

main difference of this reflectometer (Cherbi et al., 2009) compared to a classic OTDR 

(Ellison & Siddiqui, 1998) resides in the use of photon counting detector (InGaAs avalanche 

photodiode). It is used in the so-called gated Geiger mode, which means that the detector is 

only active during a short time slot. During this period, only a single photon falls in the 

detector and triggers an avalanche, which is then detected by electronics discriminator. 

Contrary to the operation of a classic detector APD in linear regime, this avalanche is no 

longer proportional to optical input signal power, but independent of it. The detection is 

therefore a binary one, either there is an avalanche, or not. In order to evaluate the incident 

optical power (or mean photon number) on the detector during its activation, the detection 

process (gate opening) must be repeated many times in order to determine the detection 

probability of photons with a good precision. This probability is proportional to the incident 

signal power that is smaller than about 40% (no detector saturation) and larger than the 

detector thermal noise (dark counts). This condition is satisfied in our set-up by using the 

variable attenuator before the excitation of the fibre. 
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From the detection probability for a certain gate position, set by the delay generator, the 

reflectivity at the corresponding location in the fibre is readily gotten with a spatial 2- point 

resolution determined by gate duration. Thus, to have some information on the different 

positions in the fibre, the gate delay must be adjusted. In our set-up, the user can specify the 

zoom interval ( ,start stopL L ) for which the reflectivity is automatically measured with a step 

size (sampling resolution ).  
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Fig. 10. The Power spectral density of C-OTDR signal for the bi-directional spun fibre of 1 Km. 

Figure 10 presents the PSD of the backscattered signal power measured by the C-OTDR 

reflectometer with its spatial frequencies for a bi-directional spun fibre of 1 Km length. Two 

peaks appear, respectively, at spatial frequencies F and F/2, in the COTDR trace. A spatial 

frequency of 10.005 m  is gotten from the backscattered signal PSD. The relation (51) gives a 
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DGD of the used spun fibre equal to 11.4 femtosecondes. We found for the same fibre a 

mean value of the DGD equal to 11,53 femtosecondes while using the JME method. These 

two results are in very good agreement. In conclusion, this demonstrates that the DGD of a 

spun fibre can be calculated from the spatial frequency of the COTDR signal in accordance 

with relation (51) permitting to calculate the spatial frequency of a backscattered signal 

COTDR in a spun fibre from its parameters": 0 3.5 ,rad  1.5 m   and 20BL m . The 

calculated spatial frequency is equal to 10.005F m , which is equal to the same one 

measured from the C-OTDR trace. Based on that, we validate the equation, linking the 

spatial frequency, the spin parameters and the intrinsic birefringence of the bi-directional 

spun fibre, given in (Chen, 2003) 

4.2 Measure of the beat length of the spun fibres by P-OFDR  

This reflectometer implements the technique of coherent detection sensitive to the 

polarization in order to get information about the evolution of the polarization states along 

the fibre under test. In our case, a POFDR is used, implementing the detection of 

polarization diversity ( Cherbi et al, 2009] and a polarized beam splitter which plays the role 

of a fixed analyser. The former permits to remove the Rayleigh reflections independent of 

the polarization by subtracting output 1 from output 2, thereby removing the frequencies of 

the back scattered signal that are not related to the fibre birefringence.  

The used laser in this reflectometer is a DFB (distributed feedback) characterised by a 

spectral width of the order of 1MHz on the whole tuning range, a spatial range of 80 m. Due 

to the coherent detection, a very good sensitivity of 100 dB is gotten with this reflectometer. 

The only factor limiting the resolution of this method is the tuning of the laser. The laser that 

we used is limited by the continuous tuning of 20 GHz that gives approximately a resolution 

of 9 mm.  

In (cherbi et al., 2009), we have analyzed three types of fibres having the same length of 200 

m: a bi-directional spun fibre, a unidirectional spun fibre and a standard fibre. They were 

wrapped on a table in order to minimize the external constraints. Figure 11 shows the 

example of the different POFDR traces for different used resolutions of the unidirectional 

spun fibre (dark line is the mean of different traces). The beat lengths of the two types of 

spun fibres and the one of the standard fibre are calculated by the following relation 

(Wegmuller et al., 2002):  

 

1 12

( )
bL

std DSP 
   (52) 

Where PSD is the power spectral density of POFDR signal.  

The calculated values of beat lengths derived for the PSD signals of the different fibres: 

unidirectional spun fibre (figure 11), standard fibre and bi-directional spun fibre (figure 12) 

are respectively: 50 m, 38 m, and 150 m. We note that the beat length of the bi-directional 

spun fibre is more important than those of the others, which means that the PMD of the bi-

directional spun fibre is lower than that of the two other types of fibres, result that we found 

with the JME method. It also confirms that the bi-directional spun fibre reduce efficiently the 

PMD compared to the unidirectional spun and the standard fibres. 
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Fig. 11. The mean power spectral density of the backscattered signals POFDR, obtained for 
different resolutions, of the unidirectional spun fibre of 200 m length. 

 
 
 

 
 
 

Fig. 12. The mean power spectral density of the backscattered signals POFDR obtained for 
bi-directional spun fibres and standards of lengths 200m.  
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5. Conclusion 

In this chapter, we presented the principle of the spun fibres with their technology and their 
role in the reduction of the PMD in a transmission link of optical fibre. Several types of spun 
fibres have been given. The theory of these fibres based on the equations of the coupled 
modes has been detailed. 
The reduction of the PMD in these fibres is verified while applying the JME method and the 
COTDR method used to measure the DGD of the order of femtoseconds. We also confirmed 
this result while measuring the beat length of these fibres with the POFDR method and 
compare it with that of a standard fibre. This comparison proved the efficiency of this type 
of fibres in the reduction of the PMD. Finally, according to the use of the COTDR and 
POFDR, we concluded that the validity of the data analysis, obtained from the 
reflectometers and used nowadays for standard fibres, has been demonstrated for the spun 
fibres and more precisely for the bi-directional spun fibres. Besides, the high spatial 
resolution of the POFDR enables again the observation of the spatial frequencies directly 
linked to the spin period, so a precise characterization of the spun fibres can be 
accomplished.  
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