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1. Introduction

Optical fibres have been developed as an ideal medium for the delivery of optical pulses
ever since their inception (Kao & Hockham, 1966). Much of that development has been
focused on the transmission of low-energy pulses for communication purposes and thus
fibres have been optimised for singlemode guidance with minimum propagation losses only
limited by the intrinsic material absorption of silica glass of about 0.2dB/km in the near
infrared part of the spectrum (Miya et al., 1979). The corresponding increase in accessible
transmission length simultaneously started the interest in nonlinear fibre optics, for example
with early work on the stimulated Raman effect (Stolen et al., 1972) and on optical solitons
(Hasegawa & Tappert, 1973). Since the advent of fibre amplifiers (Mears et al., 1987), available
fibre-coupled laser powers have been increasing dramatically and, in particular, fibre lasers
now exceed kW levels in continuous wave (cw) operation (Jeong et al., 2004) and MW peak
powers for pulses (Galvanauskas et al., 2007) in all-fibre systems. These developments are
pushing the limits of current fibre technology, demanding fibres with larger mode areas and
higher damage threshold. However, it is increasingly difficult to meet these requirements with
fibres supporting one single optical mode and therefore often multiple modes are guided.
Non-fibre-based laser systems are capable of delivering even larger peak powers, for example
commercial Ti:sapphire fs lasers now reach the GW regime. Such extreme powers cannot
be transmitted in conventional glass fibres at all without destroying them (Gaeta, 2000), but
there is a range of applications for such pulses coupled into hollow-core capillaries, such
as pulse compression (Sartania et al., 1997) and high-harmonic generation (Rundquist et al.,
1998). For typical experimental parameters, these capillaries act as optical waveguides for a
large number of spatial modes and modal interactions contribute significantly to the system
dynamics.

In order to design ever more efficient fibre lasers, to optimise pulse delivery and to
control nonlinear applications in the high power regime, a thorough understanding of pulse
propagation and nonlinear interactions in multimode fibres and waveguides is required.
The conventional tools for modelling and investigating such systems are based on beam
propagation methods (Okamoto, 2006). However, these are numerically expensive and
provide little insight into the dependence of fundamental nonlinear processes on specific fibre
properties, e.g., on transverse mode functions, dispersion and nonlinear mode coupling. For
such an interpretation a multimode equivalent of the nonlinear Schrédinger equation, the
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4 Recent Progress in Optical Fiber Research

standard and highly accurate method for describing singlemode nonlinear pulse propagation
(Agrawal, 2001; Blow & Wood, 1989), is desirable.

In this chapter, we discuss the basics of such a multimode generalised nonlinear Schrédinger
equation (Poletti & Horak, 2008), its simplification to experimentally relevant situations and
a few select applications. We start by introducing and discussing the theoretical framework
for fibres with x(3) nonlinearity in Sec. 2. The following sections are devoted to multimode
nonlinear applications, presented in the order of increasing laser peak powers. A sample
application in the multi-kW regime is supercontinuum generation, discussed in Sec. 3. Here
we demonstrate how fibre mode symmetries and launching conditions affect intermodal
power transfer and spectral broadening. For peak powers in the MW regime, self-focusing
effects become significant and lead to strong mode coupling. The spatio-temporal evolution
of pulses in this limit is the topic of Sec. 4. Finally, at GW peak power levels, optical pulses
can only be delivered by propagation in gases. Still, intensities become so high that nonlinear
effects related to ionisation must be taken into account. An extension of the multimode theory
to include these extreme high power effects is presented in Sec. 5 and the significance of mode
interaction is demonstrated by numerical examples pertaining to a recent experiment. Finally,
we end this chapter with conclusions in Sec. 6.

2. The multimode generalised nonlinear Schrédinger equation

Pulse propagation in singlemode fibres is frequently modelled by a generalised nonlinear
Schrodinger equation (NLSE) which describes the evolution of the electric field amplitude
envelope of an optical pulse as it propagates along the fibre (Agrawal, 2001; Blow & Wood,
1989). This framework has been extremely successful in incorporating all linear and nonlinear
effects usually encountered in fibres, such as second and higher order dispersion, Kerr and
Raman nonlinearities and self-steepening, and its predictions have been corroborated by
numerous experiments using conventional fibres, photonic crystal fibres and fibre tapers of
different materials, as well as laser sources from the continuous wave regime down to few
cycle pulses. Perhaps the most prominent application of the NLSE is in the description
of supercontinuum generation where all the linear and nonlinear dispersion effects come
together to induce spectacular spectral broadening of light, often over very short propagation
distances (Dudley et al., 2006).

For very high power applications, as motivated above, a further extension of the NLSE is
required to deal with the multimode aspects of large-mode area fibres. A very general
multimode framework has been presented recently allowing for arbitrary mode numbers,
polarisations, tight mode confinements and ultrashort pulses (Poletti & Horak, 2008). Here
we describe a slightly simplified version that is more easily tractable and still is applicable to
many realistic situations, e.g., for the description of high power applications as discussed in
the later sections.

We start by considering a laser pulse propagating in a multimode fibre. The pulse can be

written as the product of a carrier wave exp]i (ﬁéo)z — wot)], where wy is the carrier angular

frequency and ,B(()O) is its propagation constant in the fundamental fibre mode, and an envelope
function E(x, t) in space and time. Note that throughout this chapter we adopt the notation
that vectorial quantities are written in bold face and x = (x, y, z). For convenience, we assume
E(x, t) to be complex-valued, so that it includes the envelope phase as well as the amplitude,
and we consider the pulse evolution in a reference frame moving with the group velocity of
the fundamental mode, so that in the absence of dispersion a pulse would stay centred at time
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Multimode Nonlinear Fibre Optics: Theory and Applications 5

t = 0 throughout its propagation. Finally, we use units such that |E(x, t)|? is the field intensity
in W/m?. The envelope function can then be expanded into a superposition of individual
modes p =0, 1,2,..., each represented by a discrete transverse fibre mode profile F,, (x,y) and

a modal envelope Ay(z,t), as

Fp<x/]/)

E(xt) = ¥ 5 Ap(z,t). (1)

Note that |A,(z,t)|? gives the instantaneous power propagating in mode p in units of W,
and that a simplified normalisation has been used compared to a more rigorous previous
formulation (Poletti & Horak, 2008). The accuracy of this approximation improves as the fibre
core size is increased and the core-cladding index contrast is decreased, leading to guided
modes with an increasingly negligible longitudinal component of polarisation.

The multimode generalised nonlinear Schrodinger equation (MM-NLSE) is then given by the
following set of coupled equations to describe the dynamics of the mode envelopes,

+in2;)0 <1 + la) Z {(1 _fR)SIrflmnAlAmA;; +fRS§lm”Al[h ¥ (AMA;E)]} . (2)

The following approximations have been applied here: (i) we have assumed that the Raman
response and the pulse envelope functions vary slowly on the time scale of a single cycle of
the carrier wave, so that we can neglect a rapidly oscillating term, and (ii) an additional term
related to the frequency dependence of the mode functions has been omitted, assuming the

variation of SI;I’TIE ,, 18 slow compared to the 1/wj self-steepening term. In Eq. (2),

A () n
D{An} = ()~ RIB A, — (B0 - RN+ D B (i2) 4, @

yields the effects of dispersion of mode p with coefficients ,B,(f’ Y BP) /ow". Here we
allow for complex values of the modal propagation constants plr ) where the imaginary part
describes mode and wavelength dependent losses; R[..] denotes the real part only. The second
line of (2) represents the effects of optical nonlinearity with a nonlinear refractive index ;.
The term o« d/0dt describes self-steepening and the two terms within the sum describe Kerr
and Raman nonlinearities. The Raman term contributes with a fraction fg to the overall
nonlinearity (fg = 0.18 for silica glass fibres) and contains the Raman mode overlap factors

SR [ dxdy [F} - F] [Fp - Fj] @
P [ dxdy |Fp|? [ dxdy [F|? [ dxdy [Fpl? [ dxdy [Fu[2]"?

as well as a convolution of the time dependent Raman response function /() with two mode
amplitudes

h s (AmAD) (2, 1) = /drh(r)Am(z,t _T)A% (2t — 1) 5)
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6 Recent Progress in Optical Fiber Research

The mode overlap factors responsible for the instantaneous Kerr effect are given by

C 2 1 [ dxdy [Fs-Fj] [Fn -]

5 + 3 '
P 3T S [ dxdy [Fpl2 [ drdy B2 [ dxdy B2 [ dxdy [Fa[2]"/2

Numerically, the mode functions of all the modes involved in the nonlinear effects under
consideration are first evaluated at wy and a table of overlap integrals is calculated. The
number of modes and overlap integrals can be greatly reduced based on mode symmetry
arguments (Poletti & Horak, 2008); all the applications discussed in the following will employ
such reduced sets of modes. Next, the dispersion curves for these modes are calculated.
Finally, the system of equations (2) is integrated numerically using a standard symmetrised
split-step Fourier method (Agrawal, 2001), where adaptive step size control is implemented by
propagating the nonlinear operator using a Runge-Kutta-Fehlberg method (Press et al., 2006).
In order to avoid numerical artifacts, we also found it necessary to further limit the maximum
step size to a fraction of the shortest beat length between all the modes considered. The
accuracy and convergence of the results is further checked by running multiple simulations
with increasingly small longitudinal step sizes.

The framework presented above still allows for modes of arbitrary polarisation. In most
practical situations, however, one is interested in a subset of modes representing only a
specific polarisation state which is determined by the pump laser. The two most common
cases are briefly discussed in the following.

2.1 Circular polarisation

Under the weak guiding condition, modes fall into groups of LP;;; modes containing either
two (m = 0) or four (m > 0) degenerate modes. Within each group, the modes can be
combined into modes that are either o or o circularly polarised at every point in the fibre. If
the light launched into the fibre is, for example, o} polarised, the form of the overlap integrals
(4) and (6) guarantees that no light is coupled into the o_ polarised modes during propagation
and those modes can therefore be eliminated entirely from the model. It is worth emphasising
that this is an exact result within the weak guiding limit. Using the properties of circular
polarisation vectors, the overlap integrals are then simplified to

- [ dxdy F,FFyF,
ek [fdxdyl—}%fdxdyFlZfdxdyF,%fdxdyF,%]l/z
sK _ ZgR 7)

where the mode functions have been written as F, = e F, for o polarised modes with
real-valued scalar mode functions Fj,.

2.2 Linear polarisation

The situation is slightly more complicated in the case of linearly polarised pump light. In
this case, nonlinear coupling between orthogonal polarisation modes is in principle allowed,
leading to, for example, birefringent phase matching and vector modulation instability
(Agrawal, 2001; Dupriez et al., 2007). However, for many practical situations where modes
can be described as LP;;; modes, if linearly polarised light is launched into the fibre, nonlinear
coupling to orthogonal polarisation states is effectively so small that most of the pulse energy
remains in its original polarisation throughout the entire pulse propagation. This allows
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Multimode Nonlinear Fibre Optics: Theory and Applications 7

halving the number of modes to be considered in the model with significant computational
advantage, and a simpler definition of the overlap factors (4) and (6). There are several
important practical situations where this approximation can be acceptable:

(i) For degenerate modes (no birefringence), the overlap factor (6) for four-wave mixing
(FWM) between modes of parallel polarisation is three times larger than that for orthogonal
polarisation. Since the dispersion properties, and therefore the phase matching conditions,
are the same, nonlinear gain is much higher for the same polarisation and thus will dominate
the dynamics.

(ii) For few-moded fibres power transfer to orthogonal modes by FWM can be negligible
if either the phase matching condition cannot be fulfilled at all, or if the phase matching
condition is achieved only for widely separated wavelength bands where the difference in
group velocities limits the effective interaction length due to walk-off effects.

In these situations one can therefore use an approximate theoretical description of pulse
propagation by restricting the MM-NLSE to the LP;;;, modes of the fibre with the same linear
polarisation everywhere. Assuming real-valued x-polarised mode functions F, = exF, the
overlap integrals then reduce to

[ dxdy FyFFyFy

SR :SK — .
[fdxdyP%fdxdyFlzfdxdyF,%fdxdyF%]l/z

plmn plmn

(8)

A further simplification is also sometimes possible. If linearly polarised light is predominantly
launched in an LPy, mode, power transfer into LP;;, modes with m > 0 can only be initiated
by spontaneous FWM processes. By contrast, other LPy, modes of the same polarisation can
be excited by stimulated processes, see Sec. 3.1. Thus, if the dominant processes within the
pulse propagation are stimulated ones, e.g., in the regime of high powers and relatively short
propagation distances, the study can be effectively restricted to LPy, modes with the same
polarisation.

3. Supercontinuum generation in multimode fibres

One of the first applications where the MM-NLSE presented in the previous section can
provide deep insights is that of supercontinuum (SC) generation in multimode fibres. As
already mentioned, the complex dynamic underlying SC generation in singlemode fibres is by
now well understood. Octave spanning SC in suitably designed fibres arises as a combination
of various nonlinear phenomena, including soliton compression and fission, modulation
instability, parametric processes, intrapulse Raman scattering, self phase modulation (SPM)
and cross phase modulation (XPM) (Dudley et al., 2006). As the fibre diameter is increased
though, as required for example to increase the SC power spectral density without destroying
the fibre, the fibre starts to support multiple modes. Previous theoretical models were
usually restricted to two polarisation modes of a birefringent fibre (Agrawal, 2001; Coen et al.,
2002; Lehtonen et al., 2003; Martins et al., 2007) or included a maximum of two spatially
distinct modes (Dudley et al., 2002; Lesvigne et al., 2007; Tonello et al., 2006). Using the full
MM-NLSE, however, fibres with arbitrary modal contents can be studied, for which a rich
new list of intermodal nonlinear phenomena emerges, causing the transfer of nonlinear phase
and/or power between selected combinations of modes (Poletti & Horak, 2009).

In this section, using simulations of a specific few-moded fibre as an illustrative example, we
will discuss how modal symmetries and launch conditions can have a drastic influence on
intermodal power transfer dynamics. For pump peak powers in the range of tens to hundreds
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8 Recent Progress in Optical Fiber Research

of kW, if the nonlinear length of the pump pulses is shorter than the walk-off length between
the modes involved, significant power transfer into high-order modes with the appropriate
symmetry can occur, which can be beneficial, for example, to further extend the SC spectrum
to shorter wavelengths. Even if conditions for significant intermodal power transfer are not
met, it is found that intermodal XPM can still play a significant role in the SC dynamics by
broadening the spectrum of modes which would not otherwise present a significant spectral
broadening if pumped on their own.
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Fig. 1. GVD curves and transverse mode functions, calculated at 850nm, of the 7 circularly
polarised modes guided in a HF with A =2.7uym and d = 2.5um .

To discuss the intermodal nonlinear dynamics leading to SC generation we focus on a
moderately multimoded holey fibre (HF) consisting of two rings of large circular air holes with
pitch A = 2.7um and relative hole size d/ A = 0.93, surrounding a solid core with a diameter
of a few optical wavelengths (D = 2A —d = 2.9um ), see Fig. 1. From 400nm to 2000nm the
fibre supports 14 modes with effective areas ranging between 3.6 and 6.1um?. To reduce the
computational time it is possible to combine these modes into 7 pairs of circularly polarised
modes and to exploit the forbidden power exchange between modes with opposite circular
polarisation (see Sec. 2.1), only to focus on the 7 right-handed circularly polarised modes M1,
M2,..., M7 shown in Fig. 1. The group velocity dispersion (GVD) curves of these modes are
significantly different from each other, with a first zero dispersion wavelength (ZDW) ranging
from A7 = 550nm for M7 to Ay = 860nm for M1.

3.1 Effect of modal symmetries and launch conditions on intermodal power transfer
Equation (2) shows that the transfer of power between modes is mediated by FWM terms of

the form SI;l mn A1 Am A}, with I, m # n. If only a single mode [ is initially excited with a narrow

spectral line, the strongest power transfer to mode p and therefore the first to be observed in
the nonlinear process is the one controlled by degenerate FWM terms of the form S?I mA1AIAS-

If both modes p and n are initially empty, power transfer starts with a spontaneous FWM
process and is therefore slow. If one of the generated photons is however returned into
the pump ! by stimulated emission, the process becomes much faster and tends to dominate
the nonlinear dynamics in the limit of high-power pulse propagation over short distances.

Interestingly, these Sgl 1A1A1 A} processes produce automatic phase-locking of mode p to the
pump mode /, similarly to what happens in non-phase matched second and third harmonic
generation processes (Roppo et al., 2007). However, processes SX, require (i) that modes p

pll
and / belong to the same symmetry class, and (ii) that they present a large overlap. For the HF
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under investigation these conditions are only fulfilled for the two LPj, modes M1 and M6,
and therefore one would expect significant power transfer only between them.

(@) (b)
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Fig. 2. Simulations of multimode nonlinear propagation in the HF of Fig. 1 after 7.5mm (top
row) and 30mm (bottom row), for a 100fs sech-shaped pump centred at 850nm. (a) Only M1
is excited and (b) both M1 and M2 are excited with a 50kW peak power pulse.

This expected behaviour is indeed confirmed by the numerical simulation shown in Fig. 2(a),
where a hyperbolic secant pump pulse with temporal profile A, (0, t) = /Py sech(t/Tp) with
To = 100fs (full width at half maximum 176fs) and centred at A, = 850nm is launched into
M1 only and propagated through 30mm of the HF. Here the pulse peak power P is set to
50kW, corresponding to a 10nJ pulse and, for mode M1, to a soliton of order N = 166. As
one would expect from single mode SC theory (Dudley et al., 2006), besides SPM-induced
spectral broadening, such a high-N pulse develops sidebands which grow spontaneously
from noise, through an initial modulation instability (MI) process. The characteristic distance
of this phenomenon Ly ~ 16Ly; = 16A/ (37Tn25{<111P0) = 6.9mm correlates well with the
simulation results. As expected, of all the other 6 modes only M6 is significantly amplified
at wavelengths around A,, and subsequently develops a wide spectral expansion and an
isolated peak at 360nm. Further analysis of spectrograms and phase matching conditions
indicates that this peak is a dispersive wave in M6, phase matched to a soliton in M1 and
slowly shifting to shorter wavelengths as the soliton red-shifts due to the effect of intrapulse
Raman nonlinearity. Under these launching conditions the study can thus be restricted to the
LPy, modes of the fibre without loss of accuracy. Simulations also show that if either M2, M3,
M4, M5 or M7 are selectively launched, no power is transferred to any of the other modes,
and each of them evolves as in the single mode case.

When two or more modes contain a significant amount of power, they can all act as pumps
for weaker modes. Moreover, if these modes belong to different symmetry classes, additional
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10 Recent Progress in Optical Fiber Research

FWM terms come into play, giving rise to a much richer phenomenology. As an example,
Fig. 2(b) shows what happens when both M1 and M2 are simultaneously excited with a
Py = 50kW sech pulse. This pulse corresponds to an N = 27 soliton for M2, due to its

much larger value of [Bgz) at the pump wavelength. As a result, the SC generated in M2
has a more temporally coherent nature, as it originates from soliton compression and fission
mechanisms (the fission length Lgss = N - Ly is around 16mm). Due to a shorter ZDW than
M1, the final SC in M2 also extends to much shorter wavelengths than the one in M1 (400nm
versus 550nm, respectively), which can be one of the benefits of using multimode fibres for SC
generation. Moreover, in addition to M6, also M3 and M4 are amplified from noise, generating
a complex output spectrum, where the final relative magnitude of different modes is a strong
function of wavelength. This is reminiscent of early experimental results (Delmonte et al.,
2006; Price et al., 2003).

3.2 Non-phase matched permanent intermodal power transfer

To understand the complex dynamics of intermodal power transfer it is useful to refer to the
approximate analytical theory of cw pumped parametric processes, which neglects the effects
of GVD and pulse walk-off but still provides a valid reference (Stolen & Bjorkholm, 1982).
Within this framework, parametric gain leading to exponential signal amplification requires
the propagation constant mismatch AB,;,,, = B (w;) + B (wp) — ,B(P)(wp) — B (w,) to
be smaller than a few times the average inverse nonlinear length 1/Ly1 = 7F.

5 @) M4 200000 (b)
10
4 M3
! I m eV
g 10’ | v v “ f=
8 e 8 100000 M4
M7
10’
o M5
10 M1/ M2 0
0 0.1 0.2 0.3 0.4 0 1 2 3 4
Distance (mm) Distance (mm)

Fig. 3. (a) Dynamic gain evolution for each individual mode when M1 and M2 are
simultaneously excited at launch as in Fig. 2(b), showing the oscillatory behaviour typical of
non-phase matched parametric processes. (b) Permanent power transfer to M4 despite the
lack of parametric phase matching due to walk-off between the pumps in M1 and M2 and
the signal in M4.

For multimode processes, an estimate of 7 can be obtained by averaging all the intermodal
nonlinearities 7,1y = 37}"2 S?lmn which contribute to SPM and XPM between the relevant
modes. However, in most practical situations involving SC generation in highly nonlinear
multimode fibres, AByj, > 7Py for all the relevant FWM processes considered. Thus,
no parametric gain is typically observed and each FWM term leads to an oscillatory power

exchange between modes, as shown by the dynamic gain curves of high order modes when
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only M1 and M2 are initially pumped, reported in Fig. 3(a). The oscillation periods are given
by the beat lengths L, ~ 27t/|AB|. For example, for the process leading to amplification of
M6, ABg111 = 4.1-10° m~1, corresponding to a value of L, = 15.3ym in agreement with the
simulation. For modes amplified by a cascade of intermodal FWM processes, such as M5 and
M?7 in the example, the signature of multiple beating frequencies can be clearly observed.
Despite the non-phase matched nature of most FWM processes, simulations show that after
long enough propagation some power is permanently transferred into the weaker modes. This
is shown, for example, in Fig. 3(b) extending the propagation distance of M4 from 0.4mm to
4mm. A more detailed analysis excluding XPM and Raman effects found this behaviour to
be uniquely caused by the temporal walk-off between the pulses involved. The typical length
scale of this permanent power transfer is therefore of the order of the walk-off length of all the
pulses involved, given by L] = To/\l/vép) - 1/v§q)] =To/ ]ﬁgp) - ﬁgm for modes p and 4.
For the example in Fig. 3(b), L%,\Z/ = 3mm, L% = 2.4mm and L%,é = 1.3mm, which correlate
well with the simulation.

In conclusion, nonlinear intermodal power transfer is governed by two length scales, a beat
length leading to fast initial power oscillations and a walk-off length leading to permanent
power transfer. In order to observe in practice intermodal nonlinear effects, the nonlinear
length of the pump pulses must be shorter than the walk-off length, i.e., high peak powers are
required. Otherwise, nominally multimode fibres can exhibit the same nonlinear behaviour
as singlemode ones. Scaling a fixed fibre structure to larger core sizes allows for larger power
throughput, but at the same time longer beat and walk-off lengths lead to much stronger mode
coupling, and significant amounts of power can be transferred into higher order modes. In
this case, as shown in Fig. 2, higher order modes may also serve to extend the SC spectral
extension to much shorter wavelengths.

3.3 Effect of intermodal cross phase modulation

Intermodal power transfer mediated by FWM terms, which can permanently exchange power
between modes even in the absence of proper phase matching, is not the only intermodal
nonlinear effect which can occur in a multimode fibre. Intermodal XPM can also play a role
in significantly broadening the spectrum of a mode which would not undergo a significant
spectral expansion if propagated on its own (Chaipiboonwong et al., 2007; Schreiber et al.,
2005).

To illustrate this phenomenon, we simulate the propagation of a pulse launched in M1 and/or
M2 at 725nm, where M1 is in the normal dispersion region and M2 is in the anomalous region.
In order to observe significant spectral expansion and intermodal effects within the distance
where the pulses are temporally overlapped, we increase the input power up to a value of
Py = 500kW, close to the estimated fibre damage threshold.

Figs. 4(a) and (b) show that when M1 is individually launched, only some SPM-based spectral
expansion is visible, whereas if only M2 is launched, a wide MI-based SC develops. On the
other hand, if the same input pulse is launched simultaneously in both modes as in Fig. 4(c),
a much wider output spectrum is developed also in M1. Under these operating conditions
the intermodal power transfer is negligible, as confirmed by nearly identical spectral results

obtained when all SKl . and SRI . coefficients responsible for intermodal FWM are set to

zero. Therefore, the increased spectral expansion in M1 must be generated by intermodal
XPM effects alone. This is indeed confirmed by the simulation in Fig. 4(d), showing that when
all intermodal XPM effects are artificially switched off, M1 and M2 produce a very similar
spectrum to that of their individual propagation.
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Fig. 4. Spectral output after 2mm propagation in the HF of Fig. 1 of a Tp = 100fs and

Py = 500kW sech pulse centred at 725nm and launched in: (a) M1 only (blue, solid line); (b)
M2 only (green, dashed-dot line); (c) both M1 and M2, and (d) both M1 and M2 when all
intermodal XPM coefficients are artificially set to zero. The input pulse is shown as a black
dotted line.

4. Self-focusing in optical fibres in a modal picture

For laser powers larger than discussed in the previous section and into the MW regime, the
nonlinear refractive index induced in the glass by the laser may become strong enough to
introduce significant spatial reshaping of the beam in the transverse direction. The refractive
index of a material is given by ng 4 n>1, including both the linear, 1y, and nonlinear term,
np, and where I is the position-dependent intensity of the laser. Thus, if the beam has a
Gaussian-like transverse profile and the optical Kerr nonlinearity 1, is positive, as is the case
in most of the commonly used transparent materials, the induced nonlinear refractive index
is maximum at the centre of the beam and decreases towards the pulse edges. Therefore,
the induced index profile forms a focusing lens, acting back on the laser beam itself. This
effect is known as self-focusing and has been studied extensively in bulk materials for nearly
50 years (Askaryan, 1962; Chiao et al., 1964). For input powers P below a critical power P, ;;,
self-focusing is finally overcome by the beam divergence. In the case of P > P,;;, however, the
pulse undergoes catastrophic collapse leading to permanent damage of the material (Gaeta,
2000). The critical power is given by

22
47'[11()1’12 ’

©)

PCTit — 186

where the numerical factor slightly depends on the beam profile in a bulk material
(Fibich & Gaeta, 2000). Numerically, self-focusing in bulk media is most commonly modelled
by slowly-varying envelope models or, more accurately, by a nonlinear envelope equation
(NEE) describing the dynamics of the transverse beam profile ®(x, t) (Brabec & Krausz, 1997;
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Ranka & Gaeta, 1999),

0 i i 9\ ! npnow i 0
5@ = Duar{®} + 20 (1 + w_()E) V2D +i 22; 0 <1 + w_()E) 2@,  (10)
where Dy, {®} is a dispersion term similar to (3) describing the effect of material dispersion
and V2 is the transverse Laplace operator. The NEE incorporates many features similar
to the MM-NLSE (2), e.g., higher order dispersion, Kerr nonlinearity and self-steepening
terms. However, even in the presence of rotational symmetry, the envelope function ® is a
two-dimensional object (radial and temporal coordinate), in contrast to the MM-NLSE which
only uses a finite number of one-dimensional (temporal) envelope functions to describe the
same situation. If the number of modes is small, the MM-NLSE is thus computationally
significantly more efficient, both in terms of reduced memory requirements and faster
dynamics simulation.

It is now well established that the same process of self-focusing occurs in optical waveguides
and fibres and that the same power threshold for catastrophic collapse applies (Farrow et al.,
2006; Gaeta, 2000). However, for powers below P,,;; the observed light propagation behaviour
is qualitatively different from that observed in bulk media, since here the light is additionally
bound by total internal reflection at the core-cladding interface, which can lead to additional
spatial and temporal interference and dispersion effects, such as periodic oscillations of the
beam profile or catastrophic pulse collapse even when the launched peak power is below
the critical value. In this section we will discuss these effects within the framework of the
MM-NLSE, which leads to an easy understanding of fibre-based self-focusing within a modal
picture (Horak & Poletti, 2009; Milosevic et al., 2000). Such an interpretation is particularly
useful in the context of high-power fibre lasers, which now achieve peak powers close to the
critical power with pulse lengths approaching the nanosecond regime (Galvanauskas et al.,
2007).

4.1 Continuous wave limit
We start our discussion with the case of cw propagation, which in practice is also a good
approximation to the behaviour of long pulses (ps to ns regime) near the pulse peak, and use
the MM-NLSE restricted to the linearly polarised LPy, modes, as discussed in Sec. 2.2. The
MM-NLSE thus reduces to

My _

L=ilp — BN Ay + i Y S ALAA; (1)

plmn
I,mmn

with S?I . Siven by (8). Specifically, we assume propagation in a short piece of a step-index

fibre with a pure silica core of 40um diameter and a refractive index step of 0.02 between
core and cladding. This fibre is similar to photonic crystal large-mode area fibres which
are commercially available, where the index step has been increased such that the fibre
supports eight LPy, modes. The zero-dispersion wavelength of this fibre is at 1.26ym, and
we assume a pump laser operating at 1300nm wavelength. The critical power (9) for silica at
this wavelength is P.,;; = 5.9MW. Note that at this power level pulses up to approximately
100ps length can be transmitted through the fibre without fibre damage (Stuart et al., 1996).

Figure 5 shows the dynamics of light propagation along this fibre when cw light is launched
into the fundamental LP); mode with a power of 0.7P,,;;=4.84MW. The curves in Fig. 5(a)
show the power |Ap|2 in the lowest order modes obtained by solving Eq. (11). Power
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Fig. 5. Propagation of cw laser light at 1.3ym wavelength through a multimode silica
step-index fibre with 40um core diameter and core-cladding index difference of 0.02. The
launched power is 0.7P,,;;=4.84MW in the fundamental LP;; mode. (a) Power in the lowest
four fibre modes versus propagation distance. (b) 2D (transverse and longitudinal) spatial
intensity profile of the beam. (c) Dynamics of the transverse beam width (FWHM),
normalised to the width of the fundamental fibre mode.

from the fundamental mode is quickly transferred over sub-mm propagation distances into

higher order modes by FWM processes, most prominently by induced FWM involving three

pump photons as described by terms of the form 9A,/dz « iAZAj, see Sec. 3.1. However,
(0)

because of the phase mismatch ,B(()p ) — By~ between the fundamental mode and the higher
order modes the initial FWM gain is reversed after a certain propagation distance (about Imm
for the chosen parameters) and power is coherently transferred back into the pump from the
higher order modes. This process is repeated subsequently leading to a periodic exchange of
power between modes. The phase mismatch increases for increasing mode order and thus the
maximum transferred power decreases.

In Fig. 5(b) we depict the corresponding 2D beam intensity |E(x,z)|~ calculated by summing
the modal contributions (1), normalised to the maximum field |E(0,0)|? at the fibre input. The
tield experiences significant periodic enhancement on the beam axis at positions where large
fractions of the total power propagate inside higher order LPj, modes. At these positions of
enhanced intensity, the full width at half maximum (FWHM) of the beam profile is strongly
reduced, as shown in Fig. 5(c). The intermodal FWM processes together with the modal
phase mismatch are therefore responsible for periodic beam self-focusing and defocusing
in a fibre. This complements the standard interpretation of self-focusing in a bulk medium
using Gaussian beam propagation, which describes the same phenomenon as focusing by
a Kerr-induced lensing effect, followed by beam divergence and subsequent total internal
reflection at the core-cladding interface. We finally note that a stationary solution can be
obtained for the cw MM-NLSE in which the modal amplitudes and phases are locked in
such a way that no oscillations occur. In the bulk interpretation this corresponds to the
situation where nonlinear focusing and diffraction are perfectly balanced, thereby generating
a stationary spatial soliton.

It may seem that this modal description of self-focusing is only possible in multimode fibres
but breaks down in singlemode fibres, for example in large-mode area photonic crystal fibres

| 2
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designed for endlessly single mode operation (Mortensen et al., 2003). However, in this case
the role of the higher order bound modes of a multimode fibre is taken over by the cladding
modes, and it is the FWM-induced power exchange between the guided mode of a singlemode
fibre and its cladding modes which provides a modal interpretation of self-focusing.

1
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Fig. 6. Minimum beam diameter during the first period of self-focusing oscillation under cw
pumping vs pump power for the same fibre parameters as in Fig. 5. The curves correspond
to MM-NLSE simulations involving the lowest 2, 3, 6 modes only, and all 8 LPy,, modes (from
top to bottom). The crosses indicate simulation results using the nonlinear envelope
equation.

Using only a finite number of modes in the simulation of the MM-NLSE necessarily limits
the transverse spatial resolution that can be achieved by this method. For example, the LPy,
mode function exhibits # maxima and n — 1 zeros along the radial direction within the fibre
core region. With simulations using n different modes one can therefore expect a maximum
resolution of the order of R/n where R is the core radius. Simulations with pump powers
approaching the critical power P.,;; will thus require a larger number of modes in order
to correctly describe the increasingly small minimum beam diameter. We investigate this
behaviour in Fig. 6. Here we show the minimum beam diameter achieved during the first
period of self-focusing and diffraction, i.e., at approximately Imm of propagation for the
parameters of Fig. 5, when the MM-NLSE is restricted to different numbers of modes. For
clarity, the beam diameter is normalised to the diameter of the launched beam (LP;; mode).
We observe that simulations with 2, 3, and 6 modes are accurate up to pump powers of
approximately 0.2P.,;;, 0.4P,;;, and 0.8P,,;;, respectively, compared to simulations involving
all 8 bound fibre modes of this sample fibre. For comparison, we also show the results of
the NEE beam propagation method (10). This confirms the accuracy of the MM-NLSE with 8
modes up to 0.95P,,;; corresponding to a nearly five-fold spatial compression of the beam.
For the simulations shown in Fig. 6 we used the same 4th-5th order Runge-Kutta integration
method with adaptive step size control (MATLAB R2010b by MathWorks, Inc.) for both
the MM-NLSE and the NEE. Each data point required approximately 0.9s of CPU time on a
standard desktop computer with the 8-mode MM-NLSE and <0.2s with 6 modes. In contrast,
the corresponding NEE simulations with 1024 radial grid points required 101s, that is, two to
three orders of magnitude slower than the MM-NLSE.
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4.2 Short pulse propagation

Next, we consider the propagation of short pulses in the regime of peak powers close to the
critical power, where in addition to transverse spatial effects the pulse may exhibit complex
temporal dynamics related to intermodal and intramodal dispersion, self-steepening and
nonlinear effects. As an example we consider sech-shaped pulses with a temporal FWHM of
100fs launched with a peak power of 0.8P,,;; into the fundamental mode of the multimode
fibre considered above. The pump wavelength is again set to 1.3uym. The simulations
discussed in the following used a 6-mode MM-NLSE with 2048 temporal grid points solved
with a split-step Fourier method (Poletti & Horak, 2008; 2009).
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Fig. 7. Propagation of a 100fs sech-shaped pulse with 0.8P.,;; peak power at 1.3ym
wavelength with the same fibre parameters as in Fig. 5 after (a) Imm and (b) 2mm of
propagation. The bottom part of the figure shows the overall temporal pulse profile (thick
solid line) as well as its contributions from the fundamental mode (thin solid), first (dashed)
and second (dash-dotted) higher order modes. The top part of the figure shows the spatial
FWHM beam diameter along the pulse, normalised to the FWHM of the fundamental mode.

The initial dynamics of the pulse propagation are shown in Fig. 7. After Imm of propagation,
Fig. 7(a), a significant amount of power has been transferred from the fundamental mode into
the higher order modes, leading to a transverse beam focusing to approximately 40% of the
input beam width. The transverse beam size depends on the pulse power and thus varies
along the pulse shape: the beam diameter is smallest near the temporal peak of the pulse, but
remains unchanged in the trailing and leading edges where the power is low. Propagating
further to 2mm, Fig. 7(b), most of the power has been converted back into the fundamental
mode, similar to the cw case of Fig. 5. However, the transfer is not complete and is not
uniform along the pulse. This is related to the walk-off of the higher order modes because of
intermodal dispersion as well as a slight dependence of the beam oscillation period on power.
Therefore, the spatial FWHM of the beam at 2mm propagation length is below that of the
fundamental mode in some parts of the pulse while it exceeds it in other parts.

Continuing the propagation of Fig. 7, the spatial beam variations persist, but the deviations
from a simple oscillation become more prominent. This is shown clearly in Fig. 8(a) in the
beam properties after 7mm of propagation. At this point the initial sech-shaped temporal
profile has steepened on the trailing edge and an ultrashort pulse peak is forming due to the
interference of the modal contributions. In particular, the first high order mode exhibits a
similar power level as the fundamental mode. Simultaneously, the beam diameter is strongly
reduced. At 7.4mm of propagation, Fig. 8(b), this peak has narrowed further and reaches
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Fig. 8. Continuation of the pulse propagation of Fig. 7 to (a) 7mm and (b) 7.4mm of fibre
length exhibiting simultaneous spatial and temporal collapse.

the critical power for catastrophic collapse while the beam diameter has reduced to 20%
of the fundamental mode. For even longer propagation lengths the simulations show the
pulse breaking up into many ultrashort high-intensity parts around this initial instability,
however the MM-NLSE with 6 modes becomes invalid at this point due to its limited spatial
and temporal resolution. Simulations with the MM-NLSE restricted to the fundamental
mode reveal only a very small amount of pulse reshaping due to self-steepening over this
propagation distance (a shift of the pulse peak by about 10fs) and exhibit none of the complex
dynamics seen in Fig. 8. We therefore conclude that the simultaneous spatial and temporal
collapse of the pulse observed here is a pure multimode effect, driven by FWM-based
power exchange together with modal dispersion and self-steepening, in agreement with
investigations based on beam propagation methods (Zharova et al., 2006).

5. Multimode effects in gas-filled waveguides

As discussed above, the peak power that can be transmitted in optical fibres is limited by the
critical power for self-focusing and catastrophic collapse to levels of a few MW. According to
Eq. (9), for a fixed laser wavelength P.,;; only depends on the material linear and nonlinear
refractive index. In general, the linear refractive index does not vary much across transparent
media, between 1 for vacuum and ~4 for some non-silica glasses (Price et al., 2007) and
semiconductors, whereas the nonlinear index 7, can span many orders of magnitude. A
common method for guiding extremely high power pulses is thus in hollow-core capillaries
or fibres, where most of the light propagates in a gas. For example, 1, ~ 5 x 1072> m?/W in
air, compared to 2.5 x 1072 m?/W in silica glass, thus pushing P.;; into the GW regime.
In contrast to solid-core fibres, gas-filled capillaries do not support strictly bound modes,
but all modes are intrinsically leaky with losses scaling proportional to A2/R3 where A is
the light wavelength and R is the radius of the capillary hole (Marcatili & Schmeltzer, 1964).
Hence, the capillary hole must be sufficiently large in order to allow for transmission of light
over long distances. For example, 800nm wavelength light propagating in the fundamental
LPy; mode of a silica glass capillary with a 75um radius hole experiences losses of ~3dB/m.
For such a large hole compared to the laser wavelength, the capillary is multimoded, and
this is the situation we will consider in the following. It should be noted, however, that
single-mode guidance in hollow-core fibres is in principle possible using bandgap effects in
photonic crystal fibres (Knight et al., 1998; Petrovich et al., 2008).
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Using fs pulses at 800nm wavelength from commercial Ti:sapphire laser systems it is possible
to reach peak powers large enough to observe nonlinear effects, and even self-focusing,
in gases. Capillary guidance is used in this context for several high-power applications.
One of these is pulse compression, where the nonlinearity of the gas in the capillary is
exploited to spectrally broaden a pulse by self-phase modulation, which allows the pulse to
be compressed after the capillary by purely dispersive means such as gratings or dispersive
mirrors (Sartania et al., 1997). For intensities above ~10'3W/cm?, the electric field of the
laser is large enough to start ionising the gaseous medium. The generated plasma exhibits
a negative refractive index, which can counteract the self-focusing effect of the neutral gas
and lead to pulse filamentation (Couairon & Mysyrowicz, 2007). In another application,
ionisation and recombination effects are used for high harmonic generation of XUV and soft
X-ray radiation, processes whose efficiencies can be enhanced significantly by phase matching
techniques in capillaries (Rundquist et al., 1998).

In the following we will therefore discuss how the MM-NLSE can be extended to include
these important effects and demonstrate a few sample effects related to the multimode nature
of hollow capillaries typically used for such high-power applications.

5.1 lonisation and plasma effects in the multimode nonlinear Schrédinger equation

The starting point for this derivation is the capability of high-intensity light to ionise the gas
inside the capillary. Two effects contribute to the ionisation: (i) direct multiphoton ionisation,
where several photons are absorbed simultaneously to eject one electron from its orbit, and
(ii) tunneling ionisation, where the electric field of the laser is so strong that it deforms the
electric potential of the nucleus and allows an electron to tunnel through the potential barrier.
Tunneling ionisation occurs at higher field strengths than multiphoton ionisation, and is the
dominant process for the effects we want to discuss here. The rate of tunneling ionisation W
can be calculated using Keldysh theory (Popov, 2004) as

3 * x 2
w2 |3 ~2 o2n 1.5-2n _
W(x,t) = Wk ﬂCKIZ F(x,t) exp ( 3F(x,t)> , (12)

where x? = I,/ I}y is the ratio of the ionisation potential I, of the gas species over the ionisation
potential for hydrogen Iy = 13.6eV, Wy = mee* /h> = 4.13 x 1010571, F(x,t) = E/(x, 1)/ (x°E,)
is the reduced electric field of the laser with E;, = 5.14 x 1011V /m the atomic unit of field
intensity and E’(x, t) the real-valued electric field in units of V/m corresponding to E(x, 1),
Eq. (1). The dimensionless parameters C,; and n* are specific for the gas and can be looked
up in tables (Popov, 2004). For the case of argon, which we will use as our example here, we
have I, = 15.76eV, C,; = 0.95, and n* = 0.929.

Given the modal amplitudes A,(z,t) we can calculate the electric field E(x,t) and thus the
ionisation rate W(x, t) at every point and time in the capillary. From this we obtain the fraction
of neutral atoms r((x, t) and the fraction of ionised atoms 1 (x,t) = 1 — ry(x, t) by solving

arg(x, 1)
ot

= —W(x, t)ro(x,t). (13)
The generated plasma modifies the refractive index of the gas to

2
nt) = 1)1 A (14)

w?
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where the plasma frequency is given by

o (X, t)€2

1
- (15)

wpl(x, t) =

Here p is the gas density and e and m, are the electron charge and mass, respectively. The
MM-NLSE thus aquires a new nonlinear term dAy(z,t)/9z o« Ny { Ap} with

9\ i Fy(x,y)* - E(xt) wpy(x,t)?
N {Ay} = — (1— l) fko/dxdy P ; (16)
TC wodt ) 2 ([ ddy R,

which includes a self-steepening correction term and the projection of the modified laser field
onto mode p via a spatial overlap integral.

In addition to the effect of the plasma induced refractive index, we also have to consider
the loss of energy from the propagating laser pulse due the ionisation process itself
(Courtois et al., 2001). In the modal decomposition, this leads to a nonlinear loss term in the
propagation of the mode envelope A, of the form

1 Fu(x,y)" - E(x,t) pro(x, t)W(x,t)I
Lion{Ay} = —= [ dxdy—L - (17)
ion{Ap} > Yy [fdxdyIFle/z [E(x, 1)|2

The full MM-NLSE in the presence of gas ionisation by tunneling in the strong-field limit thus
becomes (Chapman et al., 2010)

o4y
0z
where the individual terms are given by (2), (3), (16) and (17).

= D{AP} +N{AP} +Npl{AP} + Eion{AP} (18)

5.2 Ultrashort pulse propagation in capillaries

In the following we present simulation results of the extended MM-NLSE (18) for a specific
experimental situation (Froud et al., 2009). In particular, we consider a 7cm long capillary with
a 75um radius hole filled with argon at a pressure of 80mbar in the central 3cm of the capillary;
the Ar pressure tapers down over 2cm to Ombar at the input and output. Laser pulses of 40fs
length at 780nm wavelength are launched with a Gaussian waist of 40um centred into the
capillary. For the simulations, 20 linearly polarised LF;, modes are considered, as discussed
in Sec. 2.2.

Results from two sets of simulations with different launched pulse energies, 0.5m]J and 0.7m],
respectively, are presented in Fig. 9. The distribution of ArT ions in the capillary is shown
in Figs. 9(a) and (b). As expected, ionisation mainly occurs on axis where the laser intensity
is maximum. Moreover, because the transverse beam size of the launched laser pulses is not
ideally matched to the fundamental mode of the capillary, power is also coupled into the first
higher order mode, which leads to mode beating and thus to the periodic ionisation pattern
along the capillary length with a periodicity of ~2cm, observed most clearly at lower powers,
Fig. 9(a). At higher powers, the nonlinear ionisation processes become much stronger and a
spate of additional radial and longitudinal structures are found in the ionisation pattern, Fig.
9(b). In Fig. 9(c) the partial Art pressures of (a) and (b) are averaged over the transverse
cross section of the capillary. The distribution shown in this figure can be easily verified
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Fig. 9. Propagation of 40fs pulses at 780nm wavelength in a hollow-core capillary (length
7cm, hole radius 75um) filled with argon with partial ionisation. (a), (b) Partial pressure of
Ar™ ions (in dB of mbar) vs position z and radius r inside the capillary for launched pulse
energies of 0.5m]J and 0.7m], respectively. (c) Art pressure averaged over the capillary cross
section vs z. (d) Corresponding integrated pulse energy vs z. The total gas pressure in the
capillary centre is 80mbar.

experimentally as it is proportional to the intensity of the Ar™ ion fluorescence observed at
488nm (Chapman et al., 2010; Froud et al., 2009). Finally, in Fig. 9(d) the pulse energy summed
over all modes is presented versus the propagation distance for these two simulations. The
effect of propagation losses due to ionisation, described by the term L;,,{A,} in Eq. (17),
is clearly visible with strong losses associated with the peaks of large ionisation in Fig. 9(c).
Because of the highly nonlinear nature of tunneling ionisation, losses at slightly higher input
energies (0.7m] instead of 0.5m]) are several times larger.
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Fig. 10. Pulse spectra and modal contributions at the capillary output for launched pulse
energies in the range 0.3mJ to 0.7mJ. Other parameters as in Fig. 9.
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The spatial and temporal distribution of ions generated by the propagating laser pulse acts
back on the pulse through its (negative) refractive index, according to the term NPZ{AP}
given in Eq. (16). Because of the strong localisation of the regions with high ionisation,
different capillary modes are affected differently resulting in strong intermodal scattering
and mode-specific spectral broadening, as is demonstrated in Fig. 10. At a relatively low
pulse energy of 0.3m] where ionisation is weak, a slight blue-shift of the spectral contribution
of the excited LPy mode is observed, but no higher order mode excitation. Increasing
the pulse energy to 0.5-0.7m]J, more and more light is scattered into higher order modes.
Moreover, the spectrum first develops a small peak at the long-wavelength side of the pump
(790-800nm) and then a very broad and high-intensity shoulder at short wavelengths. It is
interesting to note that these short wavelength parts of the spectrum are more pronounced in
the higher order modes LPy, and LPy3 of the capillary, in fact they contain more power than
the fundamental mode at these wavelengths for launched pulse energies above 0.6m]. This
finding has again been confirmed by experiments, where a strong position-dependence of the
spectrum was observed in the far field beyond the capillary (Chapman et al., 2010).

These selected results demonstrate clearly that mode interference and mode coupling, i.e.,
transverse spatial effects, play a significant role in the propagation of high-intensity laser
pulses in regimes where ionisation becomes important. This also impacts other applications
of such systems, for example the angular dependence of high harmonic generation as recently
observed in a capillary-based XUV source (Praeger et al., 2007).

6. Conclusions and outlook

To summarise, we presented an analysis of nonlinear effects of short laser pulses propagating
in multimode optical fibres. We developed a general theoretical framework which is based
on the modal decomposition of the propagating light and takes the form of a multimode
generalised nonlinear Schrodinger equation. This approach provides new insights into the
significance of fibre properties, e.g., modal dispersion and mode overlaps, for nonlinear
pulse propagation, and for moderately multimode fibres and waveguides it has been
shown to be numerically significantly more efficient than beam propagation methods. We
subsequently discussed several applications of the model covering laser peak powers in the
kW (supercontinuum generation), MW (self-focusing effects) and GW regime (ionisation and
plasma nonlinearities) highlighting the importance of multimode effects throughout.

While we focused our discussion here on the high-power regime, we emphasise that
there is also rapidly growing interest in the application of multimode fibres at low,
W-level peak powers. A fast emerging area of interest comes, for example, from optical
telecommunications, where in an attempt to increase the fibre capacity researchers are
now considering the use of several fibre modes, or several cores within a single fibre, as
independent channels. Intermodal nonlinear effects are expected to pose an ultimate limit
to the maximum information capacity of the link, which we believe could be estimated by
simulations using our model. Various sensing and imaging applications can also benefit
from multimode fibres. Moreover, new sources in the mid-IR spectral region are currently
being developed for spectroscopy and sensing applications that require novel waveguides
such as soft glass fibres or semiconductor-based waveguides and fibres, some of which
are intrinsically multimoded at near-IR pump wavelengths. We therefore expect that the
multimode nonlinear Schrédinger equation discussed in this work will provide a valuable
tool in the analysis and investigation of many future photonics applications.
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