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1. Introduction 

1.1 Rationale 

Palynology is the science that studies the ontogeny, structure, dispersal mechanisms, 
deposition and preservation of spermatophyte pollen grains and spores of fern, mosses and 
liverworts in different environments (Erdtman, 1943). In a wider sense it involves the study 
of palynomorphs, a term created by Tschudy & Scott (1969) to define the organisms resistant 
to drastic chemical treatments used in Palinology as, e.g., some microscopic algae. This is 
because the composition of the palynomorphs external wall, constituted by sporepollenin, 
an organic polymer composed of carbon, oxygen and hydrogen, probably is the most 
resistant organic matter of all living beings, and has remained unaltered for millions of 
years, even after the death of the cell content. Due to its chemical and microbiological 
degradation resistance, palynomorphs have the potential to become microfossils in 
sediments (von Post 1916, Zetzsche 1932, Chaloner 1976, Brooks & Shaw 1978, Moore et al. 
1991, Takahashi 1995).  

The palynological analysis of the sediments is essentially based on plants reproductive 
strategy of abundantly release pollen grains during the flowering season, and spores during 
the sporophytic phase, in some cases in billions per m². Apart from their different functions 
in plants, pollen and spores can be used in the reconstruction of recent and past vegetation, 
as they are easily carried by the wind due their minute size (ranging from a hundredth to a 
tenth of a millimeter in diameter) and be transported to high altitudes by vertical currents, 
remaining in the atmosphere for days, weeks or even months moving long distances to 
precipitate as “pollen rain” over land and water. After falling from the air to the soil or 
water, a number of factors affect their conversion into microfossils, before and during their 
sedimentation. Pollen grains and fern spores never accumulate in their original form when 
deposited in the sediments. This includes factors that can destroy spores and pollens in 
sedimentary deposits. Aware of these facts, researchers have developed several studies in 
order to observe the spore-pollen deposition in various current environments to serve as the 
basis for paleoecological studies. 

As previously stated, current and past vegetation records can be preserved only where 
pollen and spores have accumulated as microfossils through time. As oxygen is the main 
destructor of organic matter, the deposition environment has to be free of this element (or 
present in small concentrations only) in order for pollen grains and spores be preserved 
after sedimentation, i.e. an anaerobic environment such as the subaquatic one. They are 
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integrated in the water as silt and clay size particles and get exposed to the same laws of 
particle movement in fluids, subject to water circulation dynamics that function as 
transport agent before their sedimentation in rivers, deltas, estuaries, lakes, bays, lagoons 
and open seas.  

The accumulation of pollen and spores of recent and fossil deposits in sediments of aquatic 
ecosystems is a rich source of ecological information as the climatic evidence is indirectly 
contained in the biological data. The vegetational changes in the fossil record may have been 
caused by climate change. However, one should keep in mind that not all changes of pollen, 
spore and algae accumulation are necessarily caused by climatological factors. Sedimentary 
records can incorporate other kinds of evidence that can interfere in the palynological 
analysis of the vegetation changes. These interferences can mask the climatological data 
such as those caused by human activity in the vegetation or fire and insect infestations that 
require the analysis of other indicators, such as coal, which should be added to pollen 
spectra of anthropocoric plants.  

The inherent characteristics of each palynomorph also affect the accumulation in subaquatic 
deposits, both in space and time, in number and quality of the sedimented material, causing 
under- or over-representation of specific types, depending on the sample local. Changes of 
the depositional processes that result in alterations in the accumulation and preservation of 
the palynomorphs and changes on the water level affecting the local flora succession, among 
others, are examples of interferences in pollen and spore frequency that can challenge the 
interpretation of regional flora and climate by means of Palynology. After sedimentation, 
the resuspension of previously deposited palynomorphs, and the convergence of these to 
other parts of the drainage basin due to currents and winds, also cause alterations in their 
frequencies, both in the central area and margins. In addition, the preservation of 
sedimentary deposits differs with each palynomorph type, which can result in its 
destruction before or during its incorporation in the sediment (Stommel 1949, Cushing 1966, 
Davis 1968, Davis et al. 1971, Davis & Brubaker 1973, Peck 1973, Bonny 1980, Delcourt & 
Delcourt 1980, Davis et al. 1984, Campbell 1991, Moore et al. 1991, Campbell 1999). 

It is evident that defining the vegetation homogeneity or heterogeneity using pollen grains 
and spores is not a simple matter. As there is no constant between the release rate and the 
rate of spore and pollen grain accumulation it is not possible to make a direct correlation 
with the productivity of each parent plant. Even in underwater environments with stable 
sedimentation the inference regarding an aspect of certain vegetation based on 
palynological representation is inconsistent if the different processes that cause the possible 
spatial variations in the deposition of pollen, spores and algae aren’t taken in consideration. 
Here bathymetry has a fundamental role. Any change in the frequencies and concentrations 
of pollen and spores may indicate changes in bathymetry and in the water volume. 

This work aims to show the importance of an accurate spatial analysis of the deposition rate 
of pollen and spores in subaquatic sediments for a precise correlation with the source 
vegetation. In the preface is provided a brief description of the characteristics of pollen and 
spores, their different release mechanisms from the parent plants and possible factors that 
affect their conversion into microfossils. Details of the methods used for extracting 
palynological information in surface sediments and the criteria for data selection are defined 
in the next section. Finally, the results obtained from palynological analysis of surface 
sediments in some locals from the coast of Rio de Janeiro are compared and classified into 
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groups that represent the major influences in sedimentation of pollen and spores, i.e., the 
bathymetry, winds and currents.  

1.2 Primary Differential Processes – production and release mechanisms of pollen 
grains and spores of fern, mosses, liverworts and algae 

The “Primary Differential Processes” are composed of different ways of production and 
release mechanisms of pollen grains, spores and algae that are peculiar to each parent plant 
added to the initial depositional influences unique to each sedimentary environment. 

1.2.1 The pollen grains  

Pollen is the microgametophyte of Gymnosperms and Angiosperms. It is the fecundate 
element, the cell that contains the male reproductive nucleus. It is largely produced in 
flower anthers of monocots and dicots, and in male cones of Gymnosperms, both 
constituting the pollen grain contents of the pollen sack (= anther locules). The pollen grain 
is an essential element of the sexual reproduction of plants and it needs to reach the female 
part of the flower or cone to germinate and form the pollen tube that takes the male nucleus 
to the ovule (megagametophyte). The fusion of pollen and ovule nuclei originates the 
embryo and its involucres, constituting the seed which is the disperser agent of the species. 

Until de 17th century nothing was known about pollen and its role as a fecundate source. It 
was only in the 18th century that the first successful observations and experiments had 
begun and proved that fruit development did not happen without pollen (Wodehouse 
1935). In the 19th century, the microscope equipment was 500 times more efficient than 
magnifying glasses and made possible the visualization of the pollen external-wall (exine) 
which led to the discovery that it was ornamented and had apertures and other 
morphological characters, frequently similar within a species, allowing the identification of 
the plant that had produced it (Salgado-Labouriau 2007).  

Pollen grains are produced after meiosis, when each pollen mother cell divides into four 
haploid cells. These frequently split and each pollen grain remains isolated from the other. 
However, pollen grains of some species remain attached in groups of two, four, more than 
four and in pollinium (Fig. 1). Pollen grains are involved by exine, a sporopollenin external-
wall, composed by the sexine and nexine layers. Due to its resistance to chemical and 
microbiological attacks, pressure, and temperature changes, it is preserved for millions of 
years. In sedimentary rocks Gymnosperm pollen from  the Paleozoic Era, more than 300 
million years ago, can be found and Angiosperm pollen from the Upper Cretaceous, more 
than 100 million years ago (Traverse 1988). 

The morphological analysis of pollen grains involves a series of descriptions (Barth & 
Melhem 1988, Punt et al 2007). The literature is rich, including catalogs and treatises on 
pollen morphology (Erdtman 1952, 1957, 1965, 1971, Faegri & Iversen 1950, Melhem et al. 
1981, Roubik & Moreno 1991, Salgado-Labouriau 1973, among others). With this knowledge 
at hand it was possible to verify that unrelated plants can have similar pollen types and 
some plant families may have more than one morphological pollen type. There are 
monomorphic species, i.e., species with a basic morphological pollen type other that are 
dimorphic, with two types, or polymorphic with several. That’s why the identification of 
pollen grains remains in the “Pollen Type” category in microfossil studies. The pollen type 
represents an artificial grouping based on pollen morphological characteristics within or 
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between families. Frequently, similar species, varieties and subspecies within a species have 
the same pollen type (Salgado-Labouriau 1973). 

 

Fig. 1. Scanning electron microscope images of anthers, pollen grains and pollinarium.  

Top: anther with pollen grains of Zornia diphylla (L.) Pers. A single pollen grain of Z. diphylla. 
Middle: interior of the anther of Stryphnodendron adstringens (Mart.) Coville with polyads. 
Two polyads of S. adstringens. Bottom: general view of the pollinarium of Oxypetalum insigne 
(Decne.) Malme. Detail of the pollen grains inside the pollinium of Oxypetalum capitatum 
subsp. capitatum Mart. 

There are different mechanisms by which plants release their pollen grains through biotic 
and abiotic agents in a wide range of specializations in order to avoid genetic losses due to 
environmental interference. The transport of pollen grains from the anther to the stigma is 
called pollination, and it can happen directly or not. In Angiosperms there are different 
pollination mechanisms. Direct pollination occurs in autogamous plants (pollination of the 
same flower) where biotic or abiotic agents can help in pollination, but they are not essential 
since pollen is received on the stigmatic surface of the same flower. This is the case of 
cleistogamous plants, where flowers are still closed when pollination happens. The pollen of 
cleistogamous plants is rarely seen in sedimentary records. 

Indirect pollination occurs in allogamous plants (pollination between different flowers) 

where biotic and abiotic agents play an essential role. Abiotic agents can be water and wind, 

while biotic agents can be different groups of animals (Fig. 2). In hydrophilic plants pollen is 

taken to the stigma of another flower by water. A mass production of pollen is necessary, 
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however, pollen of this type of plant does not frequently show any sexine or nexine, thus 

not preserved in sediments.  

Zoophilous plants use animals as pollinators. For the efficiency of this type of pollination 
the production of pollen of these plants is generally reduced. Zoophilous and ambophilous 
taxa (plants pollinated by both wind and animals) frequently occur in the pollen assemblage 
of sedimentary rocks, but they are consistently underrepresented (absence of pollen in the 
sediment while the parent plant does exist in the vegetation or by the abundance of pollen is 
much smaller in the sediment than the abundance of the parent plant in the vegetation). If 
no abiotic agent interferes, the pollen concentration of zoophilous taxa can be high in the 
ground next to the plant, and its presence in the fossil sediment can indicate proximity of 
the parent plant. 

 

Fig. 2. Zoophilous pollen grains generally show complex sexine structures and use oils to 
stick to the body of the animal and may be a single grain or grouped into tetrad, polyad and 
pollinarium. The typical pollen grain pollinated by the wind has an aerodynamic shape with 
simple structures of sexine ornamentation and sometimes hollow spaces. 

Anemophilous plants use wind to disperse pollen grains and include all the Gymonsperms 
and a substantial number of Angiosperms. With very few exceptions most palynomorphs 
accumulated in Quaternary lacustrine sediments consist of terrestrial plants pollinated by 
wind (Jackson 1994). Anemophylous pollen dominates even in tropical regions where the 
trees pollinated by insects are more abundant in the forest canopy (Kershaw & Hyland 1975, 
Colinvaux et al. 1988). As a large part of the anemophilous pollen don´t fulfill their role in 
pollination, they are deposited in large amounts everywhere meanwhile zoophilous pollen 
enters the environment attached to animals that generally avoids landing in certain areas 
(for example, in water surfaces). Finally, anemophylous pollen is aerodynamic, light, with 
sizes between 5-100 m, and they are better suited for transport by the wind longer 
distances than zoophilous pollen, frequently big and dense, that tend to stick together with 
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other pollen grains (Whitehead 1969, 1983). This way, even if zoophilous pollen escapes 
from flowers to the air they will not travel long distances until deposition in the sediments. 

1.2.2 The spores 

Spores are the disperser cells of Cryptogams (mosses, liverworts, ferns, etc) which contain 
the genome and that asexually develops into a new gametophyte. In ferns (prothallus) the 
gametophyten is reduced, normally subterranean, and self-sufficient, while in mosses and 
liverworts the gametophyte represents the most developed generation, which we know as 
the “plant”. 

The gametophytes of mosses and liverworts’ produce antherozoids and eggs that give 
origin to the sporophyte once fecundated, which grow from its own archegonium (like the 
ovary in plants) in the shape of a capsule – the sporangium – at the edge of a peduncle. The 
sporophyte attached to the parent plant produces haploid spores that gives origin to new 
plants after dispersion. In ferns, on the other hand, the sporophyte is independent, which is 
what we know as the “plant”. The spores are produced in structures on the abaxial side of 
the leaf, or frond, called sorus, where the sporangia are found.  

 

Fig. 3. Scanning electron microscope images of fern spores and sporangia. Top: sporangium 
of Serpocaulon glandulosissimum (Brade) Labiak & J. Prado. Monolete spore of S. 
glandulosissimum covered with the perine layer. Middle: sporangium of Serpocaulon sehnemii 
(Pic. Serm.) Labiak & J. Prado. Monolete spore of S. sehnemii. Bottom: detail of the monolete 
spore laesura of Serpocaulon richardii (Klotzsch) A. R. Sm. Detail of the verrucae 
ornamentation of the monolete spore of S. richardii.  (Photos provided by Dr. Carolina 
Brandão Coelho and Dr. Luciano Mauricio Esteves, Instituto de Botânica, Brazil) 
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The spore, just like the pollen, has a resistant external wall composed by sporopollenin. Fern 

spores are found in sedimentary rocks from mid Silurian, more than 400 million years ago 

(Traverse 1988). The palynological analysis of Cryptogam spores is very similar to that from 

pollen grains, but there is less morphological variance and specific nomenclature (Barth 

2004, Erdtman & Sorsa 1971, Tryon & Lugardon 1990, Lellinger 2002). The spore is usually a 

spherical, tetrahedral or reniform structure, frequently with elaborated ornamentation 

patterns (Fig. 3). Mature spores are always in isolated grains, and can have leasures on the 

proximal face. These leasures are important for its identification. Monolete spores have only 

one leasure, trilete spores show a leasure in a Y shape, and aletes do not have leasures and 

are commonly found in mosses (Cruz 2004).  

In the mosses and liverworts where the sporophyte production is high, spores are 

produced and released over many months (e.g. Anthoceros). Generally in terrestrial plants, 

spores are dispersed by the wind and capable of resisting long period of drought. 

However, it is only when they fall over humid and suitable surfaces that they will absorb 

water and germinates.  

According to Tuomisto & Poulsen 1994 (apud Graçano et al. 1998) edaphic specializations in 

some fern species justify its use as soil fertility indicators, where patterns of geographical 

distribution should be considered in ecological studies. 

1.2.3 Chlorococcales algae 

There are relatively few algae taxa with spores, cysts or other resistant forms that are 

preserved in sediments, that stands out in the geological history, from 500 million years ago 

(Brenner & Foster 1994, Jansonius & Mcgregor 1996). Algae are relatively recently used in 

paleoecological interpretations (van Geel 1976, van Geel & van Der Hammen 1978, Salgado-

Labouriau & Schubert 1977, Luz et al. 2002). Algae from the Chlorococcalles order are the 

most abundant microfossils found in lake and swamp sediments, due their resistant external 

wall of sporopollenin. It is an order of green algae that includes both unicellular and 

colonial species (Fig. 4). 

All Chlorococcales have an endogenous asexual reproduction (vegetative), where the 

number of daughter cells or colonial cells is determined by the number of cleavages of the 

mother cell. Some have solitary cells isolated inside the colony (Botryococcaceae for 

example), while others have directly united cells that form a coenobium (Coelastraceae, 

Hydrodictyaceae and Scenedesmaceae, for example).  

The life period of unicellular algae is probably measured in hours or days. Asexual 

reproduction in algae usually occurs under favorable conditions, while sexual reproduction 

occurs when conditions are less favorable. If the algae doesn´t reproduce the protoplast dies 

and the remaining cell wall sinks and deposits in the sediment. In some species there is also 

a type of vegetative reproduction where somatic cells can change by adding a thick wall, 

and these cells can function as resistance spores (cysts), dormant during hostile periods, 

while all other somatic cells die.  The dimensions of individual cells and the coenobium 

depend on the growth rate which in turn depends on environmental factors (Brenner & 

Foster 1994, Jansonius & Mcgregor 1996). 
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Fig. 4. Light photomicrographs of Chlorococcales algae. Top: colonies of Botryococcus sp1, 
Botryococcus sp2 and Coelastrum proboscideum Bohlin. Middle: detail of the coenocytes of 
Pediastrum sp, coenobium of Pediastrum sp and Pediastrum duplex var. subgranulatum. Bottom: 
colonies of Scenedesmus protuberans, S. magnus and S. ohauensis. Scale = 10 µm. 

 

Fig. 5. Light photomicrographs of Zygnematales and others algae. Top: zygospores of 
Debarya (De Bary) Wittrock, Mougeotia C. A. Agardh and Spirogyra Link sp1. Middle: 
zygospores of Spirogyra Link sp2, Zygnema C. A. Agardh and a not identified algae. Bottom: 
Other forms of algae. Grain of Incertae sedis (Pseudoschizaea rubina Rossignol ex Christopher) 
and two forms of Tetraedriella jovetti (Bourelly) Bourelly (Xanthophyceae). Scale: 10 µm. 
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1.2.4 Zygnematales algae 

Just like the Chlorococcales, many zygospores from the Zygnemataceae family have a 
resistant external wall, composed of sporopollenin (Fig. 5). This family unites the algae 
formed by cylindrical cells associated to filaments, floating and free-living, although 
Mougeotia, Spirogyra and Zygnema may also grow adhered to substrates (Smith 1955, 
Kadlubowska 1984 apud Dias 1997). They are inhabitants of shallow waters of freshwater 
lakes and ponds. However, they have also been found in brackish and saline environments. 
They easily grow in lentic environments (shallow and stagnant waters or in higher 
waterbodies, permanent or temporally), lotic, phytotelmic, terrestrial bromeliculous and 
subaerials (wet soil and peat) (Dias 1997). 

1.2.5 Vegetational representation in surface sediments 

Knowing that the assemblage of pollen and spores recovered from the sedimentary record 
cannot be directly interpreted as an accurate reflection of parental vegetation, researchers 
recognized the need to know in detail the source area of pollen and spores (the vegetation 
area from which most pollen and spores derives) to interpret the patterns observed in the 
palynological diagram curves. The concept of source area originated from considerations of 
von Post (1967) from a transect in Sweden regarding location and spacing of the 
depositional site in relation to long-distance pollen transport. Differences in the efficiency of 
the dispersion of pollen grains and spores mean that many of them found in the 
depositional site may have originated in plants located in a wide geographical area, 
transported by winds or rivers. Therefore, the percentage analysis of the pollen grains 
record requires knowledge of the abundance of plants found at the depositional site, both 
locally and regionally, helping to better understand issues regarding overrepresentation 
(abundance of pollen in the sediment is much higher than the abundance of the plant at 
vicinity) and underrepresentation of certain spore and pollen types. The abundance of the 
parent plant in the landscape can be perceived and described in a variety of ways. The 
ecologist expresses abundance of plants per unit area in terms of stem density, total 
biomass, coverage area projected vertically, etc. The intensity of pollen and spores of the 
source area is another way of describing the abundance of the plant. Intensity of spore-
pollen in the source area depends on many factors, however, in many cases, it is inversely 
measured by the distance of the depositional site to the vegetation where the taxon in 
question is located. Several authors have developed studies on the source area (Tauber 1965, 
Janssen 1966, Andersen 1970, Janssen 1973, Tauber 1977, Bradshaw 1981, Jacobson & 
Bradshaw 1981, Parsons & Prentice 1981, Prentice 1985, Prentice 1988, Calcote & Davis 1989, 
Jackson 1990, Jackson 1991). Since these studies used “pollen and spores traps” to relate to 
the sedimentary basins, which offer a “sedimentary environment” very different from 
reality, quantification is limited. Comparative studies of pollen deposited today and existing 
vegetation in the vicinity highlighted the importance of certain choices of parameters for the 
calibration of the relationship pollen/vegetation and for the interpretation of spore-pollen 
records as a whole (Webb et al. 1978, Parsons et al. 1980, Bradshaw & Webb 1985, Prentice et 
al. 1987, Jackson 1990). The selection of the size of the depositional site and the choice of 
Spore-pollen Sum (i.e. which taxon to be included in the diagrams) are very important for 
the analysis of the sedimentary record of the vegetation. The variations between the spore-
pollen assemblages can, in many cases, be related to vegetation patterns in the spatial scale 
from 102 to 103m, however, the size of the drainage basin affects the pollen representation of 
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this vegetation. The results of simulations on the vegetation spatial scale represented by 
pollen grains and spores deposited in lake sediments indicated that this scale may seem 
homogenous in palynological records even when its actual pattern is heterogeneous and 
uneven. This will depend on the size of the depositional site in relation to the size of the 
vegetation patches existing in the surroundings. The larger the lake, the more the pollen 
assemblage will be influenced by the extra-local and regional components (Janssen 1966, 
1984; Andersen 1970; Calcote & Davis 1989; Jackson 1994). The data obtained corroborate the 
empirical knowledge that smaller lakes are especially suitable for the reconstruction of local 
vegetation, while larger lakes are more appropriate for the reconstruction of regional 
vegetation and climate. 

Sugita (1993) points put the importance of recognizing the differences between the areas of 
pollen source in the central part of the depositional site and the pollen deposited over the 
entire surface. The author constructed a differential deposition model based on the model of 
pollen transport to depositional basins suggested by Prentice (1985, 1988). Several 
assumptions and mathematical equations suggest that the local distribution of plants 
around the lake has great influence on the pollen assemblage found throughout the lake 
basin, and that pollen deposition decreases slowly from the margin to the center of the 
basin, and the center tends to present a lower deposition, since it is farther from the closer 
area of pollen source. In this model, the mean of pollen input of the entire basin would 
involve the effect of higher accumulation of pollen near the margins. However, for the 
author, even in locations without significant pollen input from aqueous streams and 
tributaries entering the basin, the re-suspensions and redirection of the sediment to the 
deepest part can generate high rates of pollen deposition in the deeper areas increasing 
differences in pollen deposition in the entire basin. 

Regarding local components, it is assumed that much of the pollen deposited in aquatic 

plants derives from plants that grow in the lake. As pollen and spores of local plants are 

usually overrepresented in the depositional site, any change in their frequencies and 

concentrations may indicate changes in bathymetry and in the water volume. Still, the 

representation of aquatic plants in spore-pollen assemblage is highly variable, depending on 

its abundance, lake extent as well as if the sample was obtained from benthic or coastal 

sediments (Janssen 1966). The pollen analysis of coastal sediments can indicate changes in 

aquatic vegetation resulting from disturbances in the ecological succession and in the water 

level, because their percentage in the assemblage is reduced when horizontal dimension of 

the water body decreases (Janssen 1967, Birks et al. 1976, Jackson et al. 1988). According to 

Jackson (1994), many submerged and floating aquatic plants are pollinated by insects or 

have their pollen dispersed by water. Although many important taxa are anemophilous 

(Cook 1988), the pollen production of these plants is low and dispersal is often limited. In 

other emerging aquatic plants, pollination is anemophilous and they are high-pollen 

producers (e.g., Typha, Poaceae and Cyperaceae) and, thus, high amounts of pollen are 

observed where these plants grow. The challenge is to determine how much pollen of these 

taxa represents local aquatic plants or how much originates from regional terrestrial plants. 

The phytoplanktonic community in watersheds is conditioned to dynamic processes related 
to the physical and chemical instability of their waterbodies, among which salinity 
fluctuations and variations in the concentration of nutrients stand out. These factors will 
regulate populations and interfere with the phytoplankton succession. These fluctuations 
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are related to the water circulation which is a reflex of the hydrography and the 
concentration of the suspended material, besides being conditioned to the annual cycle of 
entry and exit of water in the system (evaporation relation/precipitation). The succession of 
Algae usually begins with green algae, and then by blue algae in eutrophication processes. 
In large scale, fluctuations in phytoplankton populations in coastal lakes and lagoons were 
linked to variations in the sea level from its origins to the present. If in any moment there 
was a water entry with a higher salinity than the lacustrine environment, it would have 
caused a total change of the richness, diversity and density of certain algae genera. The 
characteristics of phytoplankton in these environments, when under direct marine influence, 
show high values of biomass, a high productivity and low diversity (Margalef 1969(Comin 
1984, Margalef 1969 and Odebrecht 1988, apud Huszar & Silva 1992). 

1.3 Secondary Differential Processes – differential sedimentation, preservation and 
reworked palynomorphs in rivers, lakes, estuaries and deltas 

The “Secondary Differential Processes” are the various depositional influences after 
sedimentation of pollen and spores, each one unique to a specific sedimentary environment. 

The interest in palynological sequences that record the dynamics of vegetation in the 

Quaternary period has led palynologists to seek depositional environments of good 

preservation for pollen and spores with stable, continuous and datable deposition. Overall, 

it is assumed that in these environments, variations of palynological records attributed to 

depositional processes are small compared with changes in the abundance of plant species 

and in the production and release of pollen and spores. However, even in environments 

with stable sedimentation, palynological studies show that in the horizontal gradient 

(transect) the deposition of palynomorphs display different patterns of location. The spatial 

differences in the abundance of sedimented pollen grains, fern spores and algae are striking, 

even in lakes without tributaries and located nearby each other. Moreover, in certain basins, 

depositional processes are the main causes of interference in the palynological records. In 

aquatic environments, depositional processes occur because spatial variations in rates of 

fern spores and pollen grains accumulation over time (“influx” = amount of pollen that falls 

each year in cm2 of soil) are influenced, among other factors, by the seasonal differences in 

the “input” of pollen and spores and the hydraulic selectivity (“sorting”) the various types 

of palynomorphs suspended in water, according to their different morphologies and 

densities, which cause differences in the sinking speed. In addition, there are physical and 

chemical characteristics inherent to each aquatic environment such as the intensity of water 

currents and vertical movements of water (seasonal and daily) caused by variations in 

temperature and density. Types of sediments deposited at the bottom and their movements 

to another part of the basin as well as the bathymetry and the intensity/direction of 

dominant winds that can cause resuspension of previously deposited material, also 

influence the pollen and spores sedimentation. Thus, the hydrodynamic distribution of 

pollen grains and fern spores, as well as other particles, produces differences in the quality 

and in the total of accumulation rates of these particles in different locations of the basin. 

Therefore, the spatial analysis of fern spores, pollen grains and algae deposition in the 

surface sediments of the bottom of water bodies show different patterns from place to place 

and can help in sedimentological studies (Davis 1968, Davis et al. 1971, Peck 1973, Lehman 

1975, Bonny 1980, Davis et al. 1984, Moore et al. 1991, Sugita 1993).  
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Jackson (1994) highlighted the care to be taken in interpreting the temporal changes 
observed in the recent and fossil spore-pollen assemblages in sediments, because to directly 
correspond to the respective changes in the intensity of the spore-pollen taxon involved 
(number of pollen grains or fern spores produced by a taxon, per unit of land area, per unit 
time) all other aspects should remain constant (e.g. spore-pollen dispersion and spore-pollen 
deposition), which never occurs.  

Stommel (1949) studied the behavior of particles affected by the action of water currents 
produced by winds and demonstrated that the number of long-axis vertices in parallel 
formed at the water surface and the direction of dominant winds cause different types of 
distribution of these particles. This distribution occurs according to the sinking speeds of 
each, and the particles can only sink if the sinking speed is close to the maximum upward 
speed of the water. Potter (1967) found that even with the influence of dominant winds in a 
single direction, the pollen grains deposition in the sediment of the bottom of water 
reservoirs varies among the taxa, at the banks as well as in the center of the reservoir. 
Contrary to the expectation that dominant winds could cause higher pollen concentration at 
the opposite margin, results show a complex differentiation of pollen accumulation in 
bottom sediments. 

Hopkins (1950) investigated the spatial differential sedimentation in lakes regarding the 
sinking speed of certain pollen grains and found that the Pinus pollen sinks less quickly than 
the Quercus pollen suggesting that this is due to differences in the size of pollen grains. 
Bradley (1965) pointed out that the sinking speed of many particles in a lake, such as the 
diatoms, is too slow to allow them to reach the bottom of deep lakes in the same year that 
they were formed and are, thus, subject to various transport mechanisms. Davis (1968) 
observed that the pollen types with low sinking speed (smaller sizes) are preferentially 
deposited in shallow areas of the coast of a lake. The author also showed that in the bottom 
sediment, more than 80% of the pollen was derived from sediments that had previously 
been deposited elsewhere in the lake (redeposition). Davis & Brubaker (1973) based on the 
Stommel theory to affirm that water circulation in a lake affects pollen sedimentation 
according to the different morphological types, and even small differences in sinking speed 
of each pollen type would cause great effects on the distribution of these in aquatic 
environments and, therefore, the total accumulated pollen grains are different, for example, 
in several parts of a lake. 

Merilainen (1969) suggested that the epilimnion current (top-most warmer and less dense 

layer in a thermally stratified lake) affect the deposition patterns of diatoms in sediments. 

Davis et al. (1984) demonstrated that there is a tendency for deeper areas of a lake to 

accumulate sediments faster than the shallower ones, thus resulting in large variations in 

accumulation rates of pollen among samples. Faegri et al. (1989) reported that the 

differential spatial distribution is due to bathymetric differences and the effective capacity of 

pollen grains and spores to accumulate in accordance to their sinking speeds. Sugita (1993) 

suggested that the pollen “input” proportion of a total area in a lake basin is higher than the 

pollen deposition at the center. The author also noted that the diameter radius of the spore-

pollen deposition is often longer in lighter pollen grains and spores than in the heavier ones, 

which may have more pronounced differences in the deposition percentages in relation to 

the total area of a lake basin.   

www.intechopen.com



 
Palynology as a Tool in Bathymetry 

 

131 

Pollen reworking is generally an indicator of an unstable environment, and instabilities can 
always occur on a time scale. Several authors (Davis 1968; Davis et al. 1971; Peck 1973; 
Bonny 1980; Davis et al. 1984), concerned with palynological analyses of lake cores based on 
estimates of pollen deposition from a single central point of the sedimentary basin, 
highlighted that the internal processes of a lake redistribute the pollen originally deposited 
on the bottom surface. These may causes mixtures through the resuspension of previously 
deposited pollen and the pollen existing in the water prior sedimentation through the 
"sediment focusing" to the deeper area of the basin. These processes of secondary 
importance generate the differential deposition and an assembly of palynomorphs in which 
each type has a differential preservation (Campbell 1999). Dupont (1985) suggested that a 
differential removal of pollen in aquatic environments would be solely due to the water 
movement as surrounding areas have different incidences of pollen grains and spores, as in 
the case of a canal bed and its margin. However, Campbell (1999) explained in detail the 
reworking process of pollen grains and spores, and the removal of the oldest ones from the 
deposit would operate in four ways:  

 a complete removal of the deposit and total redeposition.  

 a partial removal and total deposition of the reworked fraction.  

 a complete removal of the deposit and partial deposition (in this case, a fraction of 
pollen grains and spores could be destroyed by transport as suggested by Fall (1987) in 
the case of a fluvial transport).  

 a partial removal and partial deposition.  

The author suggested four fundamental processes that could occur in the differential 
reworking:  

 differential resuspension of the original deposit.  

 differential transport.  

 differential capture in the receiving area.  

 differential preservation during transport.  

As an example, the passage of water or wind over a surface could resuspend the pollen 
grains and spores in a different way, leaving the heavier ones in relation to hydrodynamic 
(or aerodynamic) behind and moving the lighter ones to a new deposit. This type of 
resuspended pollen assemblage presumably occurs constantly in the environment. In cases 
where redeposited palynomorphs are not obviously older than those of the original deposit, 
their presence becomes very difficult to detect. 

For Chmura et al. (1999) the fluvial transport of palynomorphs provides a more inclusive 
vision of the vegetation than the aerial transport alone, corresponding to a palynological 
assemblage of the vegetation found in the drainage basin, including high amounts of 
pollen and spores that would not be readily available to the anemophilous transport (such 
as herbaceous plants). The author noted that, on the contrary, deposits of pollen and 
spores in lakes without tributaries and located far from estuaries are much more 
influenced by anemophilous plants, particularly wind-pollinated tree species. The author 
suggested that in the fluvial transport, the deposits of banks, sand and bars existing in the 
way, can also introduce spores and pollen of local plants (local component) to the pollen 
assemblage, as well as lead to the resuspension of these deposits. Obviously, this supply 
of pollen and spores directly from rivers is dependent on its geomorphology. A sinuous 
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river will be much more exposed and receive more pollen and spores from the banks than 
a straight course river. 

Muller (1959), Cross et al. (1966), Traverse & Ginsburg (1966), Heusser & Balsam (1977), 
Heusser (1978) and Traverse (1988) when studying the ocean transport of pollen and spores 
found that they are transported by currents and deposited together with silt preferably at 
the river mouths. The contribution of plants growing on the river banks dominates the 
spore-pollen assemblage, since most of it is introduced into the ocean by fluvial transport. In 
the absence of ocean currents, abundance of pollen and spores decreases with the distance 
from the coast, but the turbulence of the sea water and waves are important factors in the 
redistribution of palynomorphs. Those that settle far from the coast are those able to float 
longer, such as the bisaccate pollen grain of conifers that have hollow cavities formed by an 
expansion of the exine. But Wang et al. (1982) observed that the surface sediments of the 
Yangtze River mouth (China) showed a low concentration of palynomorphs, while high 
concentrations were found far from the coast. Traverse (1988) suggested that this pattern 
could be explained by the local hydraulic turbulence, since the pollen deposition at river 
mouths is primarily controlled by currents and hydraulic sorting according to the sizes of 
pollen grains and, therefore, the ordering of the pollen assemblage should follow a distance 
gradient from the delta (Fig. 6). 

Another point that deserves attention is the pollen and spores destruction before or even 
during sedimentation. Pollen grains and spores are subject to various weathering and decay 
processes, from the time of anther dehiscence and sporangia until the deposition time 
(Campbell 1999). During periods of soil erosion, pollen and spores can become incorporated 
into river and lake sediments. As a result, the contemporary vegetation may be poorly 
represented by the palynomorphs in the sediments because of the reworked component of 
in washed pollen and spores. This assemblage of reworked palynomorphs generally 
presents itself with several levels of exine deterioration. The differential preservation is often 
recognized by the tendency that the assemblage of pollen grains and spores shows in terms 
of their poorly preserved condition and abundance. Analysis of the level and type of 
deterioration is very important in assessing the sedimentation conditions to which pollen 
and spores have been exposed because changes in taphonomic process can influence the 
composition of the palynological assemblage, producing variations independent from 
changes in vegetation (Pennington 1996). Differences in the preservation of pollen grains 
and spores during transport have been reported in many studies, particularly those related 
to damage caused by collisions of the pollen grains and spores in fluvial transport (Catto 
1985, Fall 1987). However, Campbell (1991) showed that this type of damage is minimal, 
because the greater damages occurred during fluvial transport are likely to be originated 
from oxidation and dryness in temporal deposition areas along the time. 

It is known that the endexine is more resistant to oxidation than the exine (Rowley 2001). 
The type of deposit, to which pollen grains and spores are eventually incorporated, will 
affect the assemblage of palynomorphs, meaning that the differential degradation may 
continue after the deposition. The oxidative-reduction potential (Eh) of the depositional 
environment is affected when the sediments with low Eh are more favorable for the pollen 
preservation. The adverse effect of soil pH on the pollen and spores preservation occurs in 
soils with pH above 6.0 (alkaline) where the pollen is not usually preserved and when 
preserved the identification to the taxonomic level becomes impossible due to the poor  
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Fig. 6. General representation of differential deposition of palynomorphs in a river mouth: 

large size grains are deposited in the delta, near to the river mouth; medium size grains are 

deposited at sites of transitional depths of the delta and the smallest ones or those with 

hollow cavities such as bisaccate pollen grains of Pinus and Podocarpus continue to float 

longer, placing it farther away with the currents or, in the case of shallow lakes, on the 

opposite side of the dominant direction of the wind. 

visualization of the exine (Pennington 1996). In the destruction process of pollen grains and 

spores, the biochemical attack of bacteria and fungi also plays a very important role (Elsik 

1971). The speed and damage extent caused by all these factors are in many cases related to 

the genetics of pollen and spores such as the low amount of sporopollenin of the exine that 

generates greater instability in their preservation in the sediment (Havinga 1964). The 

sculpturing elements of the exine may also provide greater or lesser resistance to the attacks, 

as in psilate pollen grains (usually with thin exine) that are less resistant to oxidation. 

Moore et al. (1991) noted the importance of observing the level and type of pollen 
deterioration of any palynological sample.  

They summarized the work of Cushing (1967) and Delcourt & Delcourt (1980) on four 
deterioration types of pollen grains and spores (Fig. 7): 

 Corrosion is characterized by the completely perforated exine, as a network of circular 
holes or all the tectum (layer of the sexine) is removed, leaving an exposed surface of 
scabrate appearance. Sometimes only the outermost layer of the sexine is affected and 
may be slightly excavated. This type of deterioration is more intense in peat bogs 
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deposits. The most usual cause for it is the microbial activity. Provided that the growth 
of bacteria and fungi activity occurs in conditions of, at least, periodical aeration, the 
implication of such deterioration in aquatic environments is that before or after the 
deposition the pollen grains and spores were exposed to oxygen. The microbial attack, 
particularly by anaerobic bacteria, can remain in humid and flooded sediments, but 
with a lower rate. 

 A general reduction in exine thickness characterizes degradation. This type of 
deterioration occurs more frequently in pollen grains and spores with thinner exine. In 
its extreme form, this can result in a condition where the sculpturing elements of exine 
become undefined, or apparently become a uniform mass, without structures. The 
degradation involves exposure of pollen grains and spores to the air, resulting in 
chemical oxidation. In peat bogs and lakes, pollen grains can undergo this type of decay 
due to dry periods. 

 Mechanical damages cause ruptures breaks or creases in the exine, but they do not 
necessarily show reductions, thinning and perforations. The cause of this type of 
deterioration is usually the physical stress to which the pollen grains and spores were 
exposed in the course of their depositional process such as collisions due to fluvial 
transport; as the result of digestion observed in invertebrate coprolites whose pollen 
grains and spores are extremely wrinkled or even because of the compaction of 
sediments that may have occurred after their deposition. 

 Obscured pollen grains and spores may be infiltrated with crystallized minerals in situ, 
or opaque debris may occur in the microscope slides affecting the visualization of 
palynomorphs. 

 

Fig. 7. Light photomicrographs of pollen and spore types of deterioration. Top: two 
examples of pollen corrosion. Bottom: examples of pollen degradation and of mechanical 
damage in a trilete fern spore. Scales in the figures= 10 µm. 

Therefore, the pollen transport is different in different aquatic environments which will 

influence the overrepresentation or underrepresentation of certain pollen and spore taxa in 

the assemblage of the sediments. In general, there are: 
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 In rivers and streams a large amounts of pollen and spore can be transported by the 

currents and generally correspond to the vegetation of large surface areas where these 

currents flowed. Studies have shown that the sediments collected from within the main 

channel have a pollen assemblage representative of the distant mountains (regional 

elements) where the river passed by. Instead, the sediments adjacent to the main 

channel represent the vegetation near the sampling site (local elements). 

 In lakes, during fluctuation, pollen and spores are subjected to the action of the winds 

along the water. Types of low sinking speed (smaller sizes) are preferentially deposited in 

the shallow areas of the coast. The sediment containing pollen, spores and algae can move 

to the deep parts of the lake (“sediment focusing”), below the region of wave action.  

 In deltas and estuaries pollen and spores are transported by ocean currents and 

deposited together with the silt sediment. The pollen grains and spores carried by 

perennial rivers are deposited usually near the river mouth, in deltas. From the river 

mouth to the deeper parts of the ocean, the pollen grains and spores are deposited in 

decreasing gradients in relation of the grain size and concentration. In the spore-

pollen assemblage, there can be high percentage of corroded, degraded and 

mechanically damaged pollen grains and spores. In estuaries, the mixing and 

reworking of sediments caused by the turbulence of the waves makes it almost 

impossible to pollen analysis. In general, you should be very careful when searching 

in marine environments because of the distortions in the palynomorphs spectra due 

to the complexity of the depositional patterns. 

2. Sampling methods and analyses 

Recent underwater deposition of pollen and spores can be studied by collecting surface 

sediment (first 2 cm) performed by equipment such as dredges, bottles, plastic tubes or with 

a modified free-fall valve corer (Davis et al. 1971). In collecting short cores, if there have not 

been rework or material loss, the top sediment corresponds to deposition of the last decades. 

It is important that collections of the surface sediments be carried out in a horizontal 

gradient (“transect”) and along the direction of dominant winds, taking into account the 

direction of prevailing currents, including material at the margins as well as at the center of 

the depositional site. The number of samples is determined by the extent of the site. The 

chemical preparation employs a series of reagents in order to remove organic and inorganic 

residues in order to concentrate the palynomorphs in microscope slides (Faegri & Iversen 

1950, Ybert et al 1992, among others). In order to assess the relative and absolute frequency 

of palynomorphs, pollen are counted, either by volume measurements (Cour 1974) or by 

introduction of exotic spores or pollen (Stockmarr 1971, Salgado-Labouriau & Rull 1986), 

making sure to perform observations in more than one slide, seeing both at the edges as at 

the center. It is common to count 300 grains of pollen per sample, but at the tropics, in 

general, this number needs to be larger in order to be noticed, even the rare grains (pollen 

types underrepresented in the sediment). The diagrams show the curves of Relative 

Frequency and Concentration of each palynomorph for each category and according to 

established Pollen-spore Sum, separating the regional elements from local elements which 

are indicators of humid environments. These diagrams may be plotted in different software 

programs (Polldata, Tilia, Coniss, C2, among others).  
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3. The influence of bathymetry associated with prevailing wind and fluvial 
currents - case study: Palynological depositional patterns in coastal lakes of 
the northern region of the Rio de Janeiro state, Brazil  

The coastal plain of Campos dos Goytacazes municipality, northern coastal region of the Rio 
de Janeiro State, is an important area for palaeoenvironmental studies. This region presents 
several shallow lakes, which are relict bays of a large palaeolagoon system that was isolated 
from the sea during the Quaternary by sediments from the Paraíba do Sul River (e.g., Lagoa 
de Cima lake), by sand barriers or beach ridges (e.g., Lagoa Salgada lake), or by alluvial fans 
of the Barreiras Formation (e.g., Lagoa do Campelo lake).  

The Lagoa de Cima Lake is embedded in a valley (Imbé River basin) located between the 
Barreiras Formation (Tertiary sediments) and the Precambrian crystalline basement, 50 km 
west from the coastal line and with about 30 m high. This lake may have been formed by an 
obstruction of a palaeolagoon called Ururaí Bay, and, therefore, represents the oldest lake in 
this region. The water is fresh and presents diatomite deposits at its margins. It is 
conditioned by the inflow of the Urubu and Imbé Rivers and presents an outlet called 
Ururaí that flows towards the Lagoa Feia Lake that is connected to the sea by a narrow 
passage. Nowadays, the Lagoa de Cima Lake drainage basin occupies an area of circa 986 
km2 and does not present industrial activities but intense sugar-cane agriculture, 
pastureland, and a small remnant fragment of the Atlantic forest bordering the lake. The 
evergreen rainfall forest covers the high mountains of the drainage basin, especially inside 
the Parque Estadual do Desengano, a governmental area for the protection of the forest that 
is located 5 km west from the Lagoa de Cima Lake. 

The Lagoa do Campelo Lake is located at 17 km away from the coastal line, with about 8 m 

high, bordering the Barreiras Formation and reaching the flattened sediments of the coastal 

plain, which cover the Cretaceous layers of the Campos Basin. Its drainage basin is not well 

limited and occupies an area of circa 98 km2. Without a tributary and an affluent, the lake 

receives fresh water and sediments from several swamps and bogs connected to the Paraíba 

do Sul River. The water of the lake was not naturally drained into the Atlantic Ocean 

because in 1950 the government carried out several changes in the Campos dos Goitacazes 

municipality in order to control the natural floods in this region. The building of a channel 

connecting this lake to the Paraíba do Sul River and another channel towards the sea was 

not good to its hydrological balance. A small remnant of the seasonal semideciduous forest 

can be observed at 5 km southwest of the lake, and a small swampy forest fragment of 

“restinga” vegetation in the northeastern margin of the lake. Pastureland, sugar-cane 

agriculture and subsistence plantations constitute the regional landscape of the drainage 

basin. The marsh vegetation at the lake borders presents Cyperaceae, Poaceae, some 

additional plant taxa, and a characteristic large belt of cattail (Typha). 

Aiming to support the reconstruction of the temporal dynamics of the vegetation during the 
last 7,000 years (Luz et al. 2011), palynological studies of surface sediment samples were 
performed to elucidate the current dynamics that have influenced the sedimentation of 
palynomorphs inside these lakes. Fifteen surface samples were collected with a hand dredger 
in the top five centimeters of the Lagoa de Cima Lake sediments and four of the Lagoa do 
Campelo Lake, in a transect of 500 m steps from one to the opposite side, in the NE/SW 
direction, which is the same direction of the dominant wind (Luz et al. 2002, 2005, 2010). 
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Pollen grains occurring in samples obtained in the surface sediments from the transect 
across the Lagoa de Cima Lake reflect the extant vegetation around the lake and along the 
Imbé and Urubu Rivers, with an expressive contribution of arboreal regional taxa, as well 
as an important contribution of hydrophylous/swampy plant species and ruderal plants 
from the wide-ranging pasturelands in this region. In the Lagoa de Cima Lake, the 
ressuspended sediments (with corroded pollen and fern spores) take a preferential 
direction of deposition caused by water currents that generate high pollen rates in less 
deep and decentralized areas.  

The smaller pollen grains and spores (5-25 μm) showed preferential deposition in the region 
of the water outlet of the lake (the Ururaí River) while the larger size grains, near the 
entrance of rivers Imbé and Urubu. The central region did not show a consistent pattern of 
deposition by grain size and presented also sand deposition at the most central point 
(sample 7) which prevented the preservation of palynomorphs in the sediment, making it 
sterile (Fig. 8).  

 

Fig. 8. Differential deposition of pollen and ferns spores in Lagoa de Cima lake, Rio de 
Janeiro, Brazil, through the frequency analysis of grain size. 

Pollen and spores preservation was sometimes poor in the superficial sediments of the 

Lagoa do Campelo Lake, evidencing their exposition to the air during the partial drying of 

the lake and corrosion by microorganisms. The pollen spectra indicate a major performance 

of the local vegetation and the preferential deposition of regional pollen types at the 

southwest margin of the lake, reflecting the action of a dominant NE wind. The smaller 

pollen grains and spores (5-25 μm) showed preferential deposition in the central and 

deepest area of the transect, while the larger size grains were deposited preferentially near 

to the cattail belt at the north east margin of the lake (Fig. 9).  
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Fig. 9. Differential deposition of pollen and ferns spores in Lagoa do Campelo lake, Rio de 

Janeiro, Brazil, through the frequency analysis of grain size. In the right side image below: the 

pollen grains of autochthonous Typha (cattail) and Cyperaceae were deposited preferentially 

on the side of the source-plant, according to the direction of the prevailing wind. 

The dynamic of deposition was different in the areas of the two studied lakes. At Lagoa de 

Cima Lake, it reflects the response to the sea level, always presenting a strong grouped 

influence of regional and local forest, grassland and swampy vegetation. Nevertheless, the 

dynamic of deposition in the Lagoa do Campelo Lake is in innermost dependence of the 

dominant wind and bathymetry. The high number of pollen types is attributed to the local 

plants. 

4. The influence of bathymetry associated with tidal currents - case study: 
Palynological depositional patterns in Baia de Guanabara bay, Rio de Janeiro 
state, Brazil  

The Guanabara Bay has a narrow entrance, approximately 1.6 km wide, which stretches 

towards S-N to its bottom, reaching a maximum diameter of 28 km, with a perimeter of 131 

km. The water surface measures 373 km2, excluding its islands and considering only its 

outer limits. Its basin covers approximately 4,600 km2, including almost all the metropolitan 
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areas of the municipalities of Rio de Janeiro and Niterói, among others. Around 35 rivers 

culminate into the bay and the longest ones (The Macacu and the Caceribu rivers) are 

born in the “Serra do Mar” mountain range. In the narrow entrance, there is a large sand 

bank, located at 22°56'48 "S/43°07'54" W, which rises from a depth of 20 m to 11 m. This 

feature promotes the canalling of the currents and acts as an obstacle to free movement of 

tidal currents. In the bottom topography of the bay, a feature that deserves mention is the 

center canal, general N-S orientation, stretching from the entrance neighborhood to near 

Ilha do Governador island. The most common depths of this canal are around 30 and 40 

m, and near the Ilha Lage island, there is a depression which reaches 58 m of depth. The 

tides of the Guanabara Bay are classified as semi-daytime, with a period of about 12.5 h 

and differences in the high and low tides, whose amplitudes range from 0.20 to 1.40 m 

and with an average syzygy amplitude of about 1.20 m. The propagation of the tidal wave 

into its interior undergoes changes in phase and amplitude depending on the geometry of 

the Guanabara Bay.  

The type of remaining vegetation in the region of the Guanabara bay is represented by the 

Rainforest (Atlantic forest domain), currently located in rugged topography (mountain 

slopes), mainly, and in a few forestry reserves. The areas of mangrove vegetation that, in the 

past, covered almost all of its edge, are currently limited to a continuous patch on the 

bottom of the bay and very sparse occurrences on its east coast.   

A total of 27 surface samples were collected with a hand dredger in the top centimeters of 

the Guanabara Bay sediments (Barreto et al. 2006). The palynological results obtained 

showed a high percentage of herbaceous vegetation and a high richness of pollen grains 

from the mixed rainforest. The differential distribution of palynomorphs followed a pattern 

that was influenced by the bathymetry associated to the guidance of tidal currents, which 

originated the highest concentration of palynomorphs in the deeper and topographical 

obstructed areas (e.g., the islands) (Fig. 10).  

Despite the complexity of currents that create resuspensions in the unconsolidated sediment 

surface in the entire Guanabara Bay and on the coast with an individualized morphology, 

differential deposition of palynomorphs followed a pattern of higher percentage of 

accumulation of small sizes at greater depths in the main canal, while the larger sizes 

preferably deposited in protected areas along the islands, laterally in lower depths and at 

the bottom of the bay after the discharge of major rivers. In the middle sector near Ilha do 

Governador island and at the bottom of the bay, concentrations of total palynomorphs were 

the highest in all samples analyzed. As the currents in the main canal near the mouth of the 

Baia de Guanabara Bay has a higher speed, it is assumed that in this area, the resuspended 

palynomorphs are constantly taken by the tides making their sedimentation difficult, which 

was observed in the analysis as a low total concentration of palynomorphs. This also 

explains the higher percentages of smaller sizes found there, once they are easier to be 

carried because they float longer. The islands with their points, coves and areas of less 

bathymetry favored the “capture” of palynomorphs in transit, resulting in a higher 

deposition there. The higher deposition of larger palynomorphs at the bottom of the bay, 

region of the culmination of several major rivers corroborates the idea of differential 

deposition in a gradient due to the grain size as postulated by several authors. 
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Fig. 10. Differential deposition of pollen and ferns spores in Baia de Guanabara bay, Rio de 
Janeiro, Brazil, through the frequency analysis of grain size. 

5. Conclusions 

The foundations of differential sedimentation in aquatic environments have been long 

investigated by palynologists, but their exact implications for the preservation of spore-

pollen records are usually not fully taken into account in interpretations of changes in 
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vegetation and climate through cores. The approach on the variable “space” in palynological 

research of the Quaternary is still neglected, both because there is a greater concern with the 

temporal dimension of vegetation obtained by the analysis of samples obtained at one single 

place and because there is usually no preliminary assessment of horizontal space of spore-

pollen deposition in the study area. The lack of knowledge on this variable often leads to a 

poor choice of place for probing sample collection causing interpretation problems due to 

reversals of sedimentary layers and absence of palynomorphs deposition (Luz et al. 1996, 

Barth et al. 2001, Luz et al. 2011). Even between areas very close to each other or in two 

samplings obtained from the same site on a time-scale, disparate climate interpretations are 

seen through Palynology. The effects of this relation to local sedimentation problems of 

palynomorphs are often not explicitly addressed in the literature. However, in the last ten 

years, spatial analysis has been identified as a breakthrough in making ecology (hence, 

paleoecology) a more robust science (Pinto et al. 2003). Of course, factors such as differences 

in the pollen and spores productivity by the parent plant, modes of pollination and release 

of spores from each of them and their locations in the landscape with respect to the 

depositional site, present as significant problems to climate and paleoclimate reconstruction. 

However, one of the key points to understand is that in water transport, there is no uniform 

and continuous dispersion of palynomorphs, and they may suffer ressuspensions or 

temporary deposition beyond the sampling site, and may also go through various stages of 

wear and tear. This worn and broken material is an important environmental indicator and 

should be analyzed for its proportion in perfect and whole grains, because they provide 

important paleoecological information regarding temporal variations of the energy of water 

flows and possible droughts, exposing them to air. The disturbances in the sedimentation 

caused by hydrological and climatic changes alter both the quantity and the quality of the 

material deposited over time, such as interbedded sands amid packs of silt and clay, 

horizontal redistribution of previously deposited material causing reversals in the 

chronology of layers, higher occurrence of palynomorphs of large or small size at certain 

areas, etc., and should be taken into account especially where the compaction of the material 

is not yet big. An undisturbed laminar sedimentation is very rare in the tropics where there 

are no demarcated four seasons and where torrential rains are constant. Therefore, even if 

the Quaternary palynologist has a remarkable knowledge and is able to identify the family, 

genus or even the species to which the pollen and spore fossils belong, correct identification 

is only one side of the coin. Climate reconstruction over an image of the primitive vegetation 

that flourished in a given region through the palynology of sediments is a very difficult 

problem and, equally important is to know the possible causes of spatial variations in 

deposition of pollen grains, fern spores and algae, including undoubtedly the influence of 

bathymetry. 
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