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1. Introduction 

Remote sensing techniques  in real time could be a major tool for bathymetry mapping 
which could produce synoptic data overlarge areas at extremely low cost. In contrast, 
conventional techniques such as single- or multi-beam ship-borne echoes are  costly and 
time-consuming, especially when large areas are being surveyed (Marghany et al., 2009b). 
The ocean bathymetry features can  image by radar in coastal waters with strong tidal 
currents (Vogelzang et al., 1992; Vogelzang et al., 1997; Hesselmans et al., 2000, Marghany et 
al., 2010). Under practical circumstances, synthetic aperture radar (SAR) is able to detect 
shallow ocean bathymetry features (Alpers and Hennings 1984; Shuchman et al. 1985; and 
Vogelzang 1997). According to Alpers and Henning (1984) ocean bathymetry can determine 
indirectly based on means of sea surface variations that caused by the gradient current 
overflowing the submarine features. Therefore, this concept is valid with the presence of 
strong current associates with capillary waves. Under this circumstance, SAR antenna 
receives a strong backscatter from ocean surface. Nevertheless, multi-beam ship-borne 
echoes provide bathymetry to water depths above 100 m whereas SAR data are limited to 
less than 25 m. Under local circumstances such as strong tidal gradient and wind speed 
higher than 3 m/s, SAR data can detect shallow ocean bathymetry features down to 20 m ( 
Marghany et al., 2009b). 

1.1 Principle of SAR ocean bathymetry imaging 

Several theories concerning the radar imaging mechanism of underwater bathymetry have 
been established, such as by Alpers and Hennings (1984); Shuchman et al. (1985); and 
Vogelzang (1997). The physical theories describing the radar imaging mechanisms for ocean 
bathymetry are well understood as three stages: (i) the modulation of the current by the 
underwater features, (ii) the modulation of the sea surface waves by the variable surface 
current, and (iii) the interaction of the microwaves with the surface waves (Alpers and 
Hennings, 1984) (Fig. 1). The imaging mechanism which reflects sea bottom topography in a 
given SAR image consists of three models. These models are a flow model, a wave model 
and the SAR backscatter model. These theories are the basis of commercial services which 
generate bathymetric charts by inverting SAR images at a significantly lower cost than 
conventional survey techniques (Wensink and Campbell, 1997). In this context, Hesselmans 
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et al. (2000) developed the Bathymetry Assessment System, a computer program which can 
be used to calculate the depth from any SAR image and a limited number of sounding data 
points. They found that the imaging model was suitable for simulating a SAR image from 
the depth map.  

It showed good agreement between the backscatter in both the simulated and airborne-
acquired images, when compared, with accuracy (root mean square) error of + 0.23 m of 
order of  10 m within a coastal bathymetry range of 25-30 m. Recently, Li et al., (2009) are 
utilized RADARSAT-1 and ENVISAT synthetic aperture radar (SAR) images for mapping 
sand ridges  with 30 m water depth. In doing so, they used modelled tidal current as to an 
advanced radar-imaging model to simulate the SAR image at a given satellite look angle 
and for various types of bathymetry. In this regard, the shallow-water bathymetry is 
acquired in a 2-D space. Finally, they reported that the sand ridge can be imaged when 
strong ocean currents exist. On the contrary, Lyzenga et al., (2006) used a simple method of 
estimating water depths from multispectral imagery, based on an approximate shallow-
water reflectance model. They found that a single set of coefficients derived from a set of 
IKONOS images produces the good performance with an aggregate RMS error of + 2.3 m 
which is higher than bathymetry retrieved from SAR (Hesselmans et al. 2000). Coastal 
bathymetry mapping by using optical remote sensing data, however, can be only fully 
utilized in the clearest water, and considerably less in turbid water (Vogelzang et al., 1992). 
Indeed, as the different wavelengths pass through the water column they become 
attenuated by the interaction with suspended particles in water (Mills, 2008). 

 

Fig. 1. SAR ‘s concept for imaging ocean bathymetry ((Alpers and Hennings, 1984).  

1.2 Speckle impact on SAR ocean bathymetry imaging 

The high speckle noise in SAR images has posed great difficulties in inverting SAR images 
for simulating coastal bathymetry. Speckle is a result of  coherent interference effects among 
scatterers which are randomly scattered within each resolution cell. The speckle size, which 
is a function of the spatial resolution, induces errors in bathymetry signature detection. 
Reducing the speckle effects, require appropriate filters, i.e. Lee, Gaussian, etc. (Lee et al 
2002, Marghany and Mazlan 2010), could be used in the pre-processing stage. The 
effectiveness of these speckle-reducing filters is however much influenced by cause's factors 
and application. Since the SAR images  the sea surface, all speckles in SAR images are to 
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function of local changes in the surface roughness because, direct reduction of the wave 
height (because of slicks), wind impelled roughness changes (atmospheric effects) or wave-
current interactions (fronts and bathymetry).  

In contrast, Yu and Scott (2002) stated several restrictions of the speckle filtering approach. 
They reported size and shape of the filter window can affect the accuracy of despeckle 
filters. For instance, extremely large window size will form a blurred  image, while a small 
window will decrease the smoothing competence of the filter and will leave speckle. They 
also found that window size can change the  physical characteristics of targets in  SAR 
image. For instance a square window (as is typically applied) will lead to corner rounding of 
rectangular features. Despite using despeckle filters to perform edge enhancement, speckle 
in the neighborhood of an edge (or in the neighborhood of a point feature with high 
contrast) will remain after filtering. Additionally, the thresholds used in the enhanced filters, 
although motivated by statistical arguments, are ad hoc improvements that only demonstrate 
the insufficiency of the window-based approaches. The hard thresholds that enact 
neighborhood averaging and identity filtering in the extreme cases lead to blotching artifacts 
from averaging filtering and noisy boundaries from leaving the sharp features unfiltered 
(Yu and Scott 2002). 

In the case of bathymetry mapping not all the filters stated in the literature are suitable for 
bathymetry application. In fact, SAR data have discontinuities and lower grey levels 
gradient (Marghany et al., 2009a). Besides, by applying some kinds of filter such as Lee, 
most of bathymetry signature information will be lost. In this perspective, Inglada and 
Garello, (1999) and Marghany et al., (2009b) stated that an anisotropic diffusion filter is more 
appropriate for speckle reduction in the case of  bathymetry signature detection in a SAR 
image. They concluded that  it produced the highest smoothed image as the anisotropic 
diffusion filter preserves the mean grey-level and maintains the bathymetry signature 
compared to Lee filter. Nevertheless, Inglada and Garello, (1999 and 2002) were not able to 
state the accuracy rate of utilizing the Volterra model (Section 4.2) and anisotropic diffusion 
filter for SAR.  

1.3 Hypothesis of study 

Concerning  with above prospective, we address the question of  despeckles’ impact on the 
accuracy of retrieving ocean bathymetry without needing to include any sounding data 
values. This was demonstrated with airborne SAR data (namely the TOPSAR) using 
integration of the Volterra kernel (Inglada and Garello, 1999) and fuzzy B-spline algorithm 
(Marghany and Mazlan 2005 and Marghany et al., 2007). Nonetheless, the studies of 
Marghany and Mazlan (2006) and Marghany et al., (2007) have failed to derive accurate 
bathymetry depth with single Cvv band although the root mean square error is ± 9 m. Five 
hypotheses are examined:  

 the Volterra model can use to detect tidal current pattern from TOPSAR polarised data,  

 anisotropic diffusion algorithm can reduce the speckle in SAR data and determine 
sharp bathymetry feature;  

 there are significant differences between the different bands in detecting ocean currents,  

  the continuity equation can be used to obtain the water depth, and  

 fuzzy B-splines can be implemented to invert the water depth values determined by the 
continuity equation into 3-D bathymetry.  
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2. Study area 

The study area is located in the coast of Kuala Terengganu, on eastern part of Malaysia 
Peninsula. This area is approximately 20 km along the north of Kuala Terengganu coastline, 
located between 5⁰ 21’ N , 103⁰ 10’ E and  5⁰ 30’ N, 103⁰ 20’ E). Sand materials make up the 
entire of this beach (Marghany 1994). The east coast of Peninsular Malaysia is annually 
subjected to the northeast monsoon wind (November to January) (Marghany et al., 2010) 
showed that the mean, and longer significant wave periods were 8 to 10 seconds.  

Significant wave height maximum were reported as 4 m and 2.4 m, respectively in February 
and March. However, during the south-west monsoon wave height was ranged between 
0.4m -0.7m (Marghany et al., 2010). During the inter- monsoon period (September to mid of 
November), the wave height was ranged between 0.37 m to 1.6 m  (Marghany  et al., 2010). 
According to Marghany et al., (2010) the coastal water less than 50 nautical miles from shore 
is quite shallow with the deepest area being approximately 50 m (Fig. 2). The bottom has 
gentle slopes, gradually deepening towards the open sea. A clear feature of this area is the 
primary hydrologic communications between the estuary and the South China Sea which is 
the largest estuary along the Kuala Terengganu (Marghany et al., 2009b).  

 

Fig. 2. Bathymetry along the coastal waters of Kuala Terengganu. 

3. Data sets   

Airborne data acquired in this study were derived from the Jet Propulsion Laboratory (JPL) 

airborne Topographic Synthetic Aperture Radar (TOPSAR) data on December 6 ,1996. 

TOPSAR is a NASA/JPL multi-frequency radar imaging system aboard a DC-8 aircraft and 

operated by NASA’s Ames Research Center at Moffett Field, USA. TOPSAR data are fully 
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polarimetric SAR data acquired with HH-,VV-, HV- and VH-polarized signals from 5 m x 5 

m pixels, recorded for three wavelengths: C band (5 cm), L band (24 cm) and P band (68 cm). 

The full set of C-band and L-band have linear polarizations (HH, VV, HV), phase differences 

(HHVV), and circular polarizations (RR, RL).  

In addition, the TOPSAR sensor uses two antennas to receive the radar backscatter from the 
surface. The difference in arrival times of the return signals at the two antennas is converted 
into a modulo -2π phase difference. Further, TOPSAR data with C-band provides digital 
elevation model with rms error in elevation ranging from about 1 m in the near range to 
greater than 3 m in the far range. A further explanation of TOPSAR data acquisition is given 
by Melba et al. (1999). This study utilizes both Cvv and LHH bands for 3-D bathymetry 
reconstruction because of the widely known facts of the good interaction of VV and HH 
polarization to oceanographic physical elements such as ocean wave, surface current 
features, etc. Elaboration of such further explanation can be found in (Alpers and Hennings 
1984; and Inglada and Garello 2002; Marghany et al., 2010).  

4. Model for 3-D bathymetry retrieving  

Three models involved for 3-D bathymetry retrieving from TOPSAR polarized data: 
anisotropic diffusion, algorithm the Volterra model and the fuzzy B-spline model. The 
Volterra model is used to assimilate the tidal current flow from TOPSAR data. The 
simulation current velocity  aims  to retrieve water depth gradients under tidal current flow 
spatial variations. The fuzzy B-spline used to remodel the three-dimensional (3-D) water 
depth from a 2-D continuity equation. 

4.1 Anisotropic diffusion algorithm 

Anisotropic diffusion is technique that aims  at reducing image noise while preserving  

edges, lines and other details that are important for the image interpretation (Perona and 

Malik 1990). Formally, let 2  denote a subset of the TOPSAR image plane 

(., ) :TOPSARI t  which is part of TOPSAR intensity. Therefore, anisotropic diffusion is 

given by  

 
( ( , , ) )

              = . ( , , )

TOPSAR
TOPSAR

TOPSAR TOPSAR

I
div c i j t I

t
c I c i j t I


 


   

  (1) 

where, c(i,j,t) is the diffusion coefficient and c(i,j,t) controls the rate of diffusion that is 

usually chosen as a function of the TOPSAR image intensity gradient TOPSARI  to  preserve  

bathymetry edge in TOPSAR data. Besides, Δ denotes the Laplacian,  denotes the gradient, 

and div (.......)is the divergence operator. Following Perona and Malik (1987), two functions 

for the diffusion coefficient are considered: 

 
2( / )

( TOPSARI K
TOPSARc I e

           (2)       

and  

 1( (1 )TOPSAR TOPSARc I I        (3) 
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the constant K controls the sensitivity to edges and is usually chosen as a function of the 

speckle variations in TOPSAR data. In this regard, ( 0TOPSARc I  if    TOPSARI K  that 

leads to all-pass filter. Besides isotropic diffusion (Gaussian filtering achieves under boundary 

condition  of ( 1TOPSARc I  when TOPSARI K  . Anisotropic diffusion resembles the 

process that creates a scale-space, where an image generates a parameterized family of 

successively more and more blurred images based on a diffusion process (Sapiro 2001). 

4.2 Volterra algorithm     

According to Marghany et al., (2010), the Volterra algorithm can use to express the SAR 

image intensity as a series of nonlinear filters on the ocean surface current. This means the 

Volterra algorithm can use to study the image energy variation as a function of parameters 

such as the current direction, or the current magnitude. A generalized, nonparametric 

framework to describe the input–output x and y signals relation of a time-invariant 

nonlinear system is provided by Inglada and Garello (1999). Additional, the input x 

corresponds to the different TOPSAR band intensities i.e., (C and L bands) whereas y 

corresponds to Volterra series of the different bands. In discrete form, the Volterra series for 

input, TOPSAR data intensities X (n), and output of TOPSAR signals in form of Volterra 

series, Y (n) as given by Inglada and Garello (2002) can be expressed as: 

 

1 1 2

1 2 3

1 2

0 1 1 1 2 1 2 1 2
1 1 1

3 1 2 3 1 2 3
1 1 1

1 2 1 2
1 1 1

( ) ( ) ( ) ( , ) ( ) ( )

( , , ) ( ) ( ) ( ) ..........

.............. ( , ,........, ) ( ) ( )......
k

i i i

i i i

k k
i i i

Y n h h i X n i h i i X n i X n i

h i i i X n i X n i X n i

h i i i X n i X n i

  

  

  

  

  

  

      

    

 

  

  

   ....... ( )kX n i

  (4)  

where, n, i1, i2,...,ik  are discrete time lags. The function hk (i1 ,i2 ,...,ik) is the kth-order 

Volterra kernel characterizing the system. h1 is the kernel of the first order Volterra 

functional, which performs a linear operation on the input and h2, h3,...,hk capture the 

nonlinear interactions between input and output TOPSAR signals. In this context, the 

nonlinearity is expressed as the relationship between different TOPSAR band intensities 

and ocean surface roughness. Consequently, surface current gradients in shallow waters 

can be imaged by TOPSAR different bands through energy transfer towards the waves. 

Indeed, the radar system is restricted to measure surface roughness. The order of the non-

linearity is the highest effective order of the multiple summations in the functional series 

(Marghany et al., 2009b). 

Following Marghany and Mazlan (2006); Marghany et al., (2009b) and Marghany et al., (2010) 
Fourier transform is used to acquire nonlinearity function from equation 4 as given by 

 2( ) [ ( )] ( ) j vnY v FT Y n Y n e dn          (5) 

where, v  is frequency and 1j    (Marghany et al., 2010). Domain frequency of TOPSAR 

image ( , )TOPSARI v   can be described by using equation 5 with following expression 
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( / ) ( , )

0( , ) [ ( , ) ]dj R V u r a
TOPSARI v FT I r a e       (6) 

where ( , )I r a  is the intensity TOPSAR image pixel of azimuth (a) and range (r), respectively,  

0 is the wave spectra energy and R/V is the range to platform velocity ratio, in case of 

TOPSAR equals 32 s and ( , )dU r a   is the radial component of surface velocities (Inglada and 

Garello 2002). Marghany et al., (2010) stated that equation 6 does not satisfy the relationship 

between TOPSAR data and ocean surface roughness. More precisely, the action balance 

equation (ABE) describes the relationship between surface velocity U


, and its gradient and 

the action spectral density   of the short surface wave i.e. Bragg wave (Alpers and 

Hennings 1984). In reference to Inglada and Garello (1999), the expression of ABE into first-

order Volterra kernel 1( , )a rH v v  of frequency domain for the current flow in the range 

direction can be described as: 

          

1
1

1
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2 1 2
0
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
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




  

  
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               (7) 

where, U

   is the mean current velocity, ru


is the current flow along the range direction 

while au


is current gradient along the azimuth direction. Kr is the wave number along the 

range direction,  K


 is the spectra wave vector, 0 is the angular wave frequency, gc


is 

the group velocity,   is the wave spectra energy, v stands for the Volterra kernel 

frequency along the azimuth and range directions  and R/V is the range to platform 

velocity ratio.  

Then, the domain frequency of TOPSAR data ( , )TOPSARI v   can be expressed by using 

Volterra model for ABE into equation 6  

 0
0

1
( , ) [( ( , ) ( )). ( ( , )) ]

!
N

TOPSARV r
N

R
I v FFT a r Y n j u a r

n V




       (8) 

where N = 1,2,3,……….k and ( , )TOPSARVI v  represents Volterra kernels for the TOPSAR 

image in frequency domain in which can be used to estimate mean current flow (0, )rU r


in 

the range direction (r) with the following expression (Inglada and Garello, 2002) 

 1(0, ). ( , )TOPSARV r r a rI U r H v v


                         (9) 

The mean current movement along the range direction can be calculated by using the 

formula was proposed by Vogelzang et al. (1997)   

 
1

1

( )

( , )
( , )

i

TOPSARV
j

r a r
r a r

FFT I t

U v v
H v v



 
 

 


   (10) 
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where 
1

( )
i

TOPSARV
j

FFT I t


 
 

 
 is the linearity of the Fourier transform for the input TOPSAR 

image intensity ( )TOPSARVI t i.e. t is time domain. The inverse filter ( , )a rP v v is used since 

1 ( , )r a rH v v  has a zero for ( , )r a rU v v


which indicates that the mean current velocity should 

have a constant offset. The inverse filter ( , )a rP v v can be given as 

 
1

1[ ( , )]
( , )

0
r a r

a r

H v v
P v v

 


               
( , ) 0,

Otherwise.
a rif v v 

   (11) 

Then, the continuity equation is used to estimate the water depth as given by Vogelzang et 
al. (1992)  

 .{( ) (0, )} 0r rd U v
t

 
   




       (12) 

where   is the surface elevation above the mean sea level, which is obtained from the tidal 

table, t is the time and d is the local water depth. The real current data was estimated from 

the Malaysian tidal table of 6 December, 1996 (Malaysian Department of Survey and 

Mapping  1996). 

4.3 The fuzzy B-splines method 

The fuzzy B-splines (FBS) are introduced allowing fuzzy numbers instead of intervals in 

the definition of the B-splines. Typically, in computer graphics, two objective quality 

definitions for fuzzy B-splines are used: triangle-based criteria and edge-based criteria 

(Marghany et al., 2009a). A fuzzy number is defined using interval analysis. There are two 

basic notions that we combine together: confidence interval and presumption level. A 

confidence interval is a real values interval which provides the sharpest enclosing range 

for current gradient values.  

An assumption   -level is an estimated truth value in the [0, 1] interval on our knowledge 

level of the gradient current (Anile 1997). The 0 value corresponds to minimum knowledge 

of gradient current, and 1 to the maximum gradient current. A fuzzy number is then 

prearranged in the confidence interval set, each one related to an assumption level     [0, 

1]. Moreover, the following must hold for each pair of confidence intervals which define a 

number: '' d d    .  

Let us consider a function ':f d d , of N fuzzy variables 1 2, ,...., nd d d . Where nd  are the 

global minimum and maximum values of the water depth of the function on the current 

gradient along the space. Based on the spatial variation of the gradient current, and water 

depth, the fuzzy B-spline algorithm is used to compute the function f  (Marghany et al., 2010). 

Marghany et al., (2010) assumed that d(i,j) is the depth value at location i,j in the region D 

where i is the horizontal and j is the vertical coordinates of a grid of m times n rectangular 

cells. Let N be the set of eight neighbouring cells. The input variables of the fuzzy are the 

amplitude differences of water depth d  defined by (Anile et al. 1997): 
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 0 , 1,........,8N id d d N        (13) 

where the id , N=1, 8 values are the neighbouring cells of the actually processed cell d0 along 

the horizontal coordinate i. To estimate the fuzzy number of water depth dj which is located 

along the vertical coordinate j, we estimated the membership function values   and ' of 

the fuzzy variables id  and jd , respectively by the following equations were described by 

Rövid et al. (2004) 

   max min ( ) : ; 1....,9pl i i im d d N N        (14) 

    ' max min ( ) : ; 1....,9LNl i i im d d N N          (15) 

where plm and LNlm  correspond to the membership functions of fuzzy sets. From equations 

11 and 12, one can estimate the fuzzy number of water depth jd  

 ( 1)j id d L          (16) 

where  is '   and 1{ ,..........., }NL d d  . Equations 15 and 16 represent water depth in 

2-D, in order to reconstruct fuzzy values of water depth in 3-D, then fuzzy number of water 
depth in z coordinate is estimated by the following equation proposed by Russo (1998) and 
Marghany et al., (2010), 

 1, , , 1 ,{ , }z LA i j i j LA i j i jd MAX m d d m d d         (17) 

where zd  fuzzy set of water depth values in z coordinate which is function of i and j 

coordinates i.e. ( , )z i jd F d d . Fuzzy number OF  for water depth in i,j and z coordinates then 

can be given by 

 
0 0

{min( ,..........., ),max( ,..........., )}O z z z zF d d d d
 

     (18) 

where  =1, 2, 3, 4, 

The fuzzy number of water depth OF  then is defined by B-spline in order to reconstruct 3-D of 

water depth. In doing so, B-spline functions including the knot positions, and fuzzy set of 

control points are constructed. The requirements for B-spline surface are set of control points, 

set of weights and three sets of knot vectors and are parameterized in the p and q directions.  

Following Marghany et al., (2009b) and Marghany et al., (2010), as in the Volterra algorithm, 

data are derived from the TOPSAR polarised backscatter images by the application of a 2-

dimensional fast Fourier transform (2DFFT). First, each estimated current data value in a fixed 

kernel window size of 512 x 512 pixels and lines is considered as a triangular fuzzy number 

defined by a minimum, maximum and measured value. Among all the fuzzy numbers falling 

within a kernel window size, a fuzzy number is defined whose range is given by the minimum 

and maximum values of gradient current and water depth along each kernel window size. 

Furthermore, the identification of a fuzzy number is acquired to summarize the estimated 

water depth data in a cell and it is characterized by a suitable membership function. The choice 
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of the most appropriate membership is based on triangular numbers which are identified by 

minimum, maximum, and mean values of water depth estimated by continuity equation. 

Furthermore, the membership support is the range of water depth data in the cell and whose 

vertex is the median value of water depth data (Anile et al. 1997). 

5. Three-dimensional ocean bathymetry from TOPSAR data 

Figure 3 shows the signature of the underwater topography. The signature of underwater 
topography is obvious as frontal lines parallel to the shoreline. The backscattered intensity is 
damped by -2 to -10 dB compared to the surrounding water environment in L –band with 
HH polarization and -6 to -14 dB in C-band with VV polarization data (Fig. 3).  

 
             (a)                    (b) 

Fig. 3. Bathymetry Signature with Different Bands of (a) CVV and (b) LHH bands. 

Figure 4 shows the clearer  bathymetry signature is extracted by utilizing anisotropic 
diffusion algorithm. LHH band has clear bathymetry feature than CVV band. In fact, 
anisotropic diffusion algorithm is able to extract boundary edge for both horizontal and 
vertical direction. Otherwise said, it is synthesized boundary edge (Maeda et al. 1997 and 
Marghany et al., 2009b). In this regard, anisotropic diffusion resembles the process that 
creates a scale-space, where an image generates a parameterized family of successively more 
and more blurred images based on a diffusion process. Each of the resulting images in this 
family are given as a convolution between the image and a 2-D isotropic Gaussian filter, 
where the width of the filter increases with the parameter (Fig. 4). This diffusion process is a 
linear and space-invariant transformation of the original image. Anisotropic diffusion is a 
generalization of this diffusion process: it produces a family of parameterized images, but 
each resulting image is a combination between the original image and a filter that depends 
on the local content of the original image. As a consequence, anisotropic diffusion is a non-
linear and space-variant transformation of the original image. 

In addition, both Cvv and LHH bands show bathymetry signature  is concided with water 
depths which are ranged between 5 m to 20 m (Fig.4). The results show the potential of 
TOPSAR data for ocean bathymetry reconstruction where TOPSAR LHH band backscatter 
across bathymetry signature pixels agrees satisfactorily with previous published results 
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(Vogelzang et al. 1992; Inglada and Garello 1999; Marghany et al., 2007). This is due to the 
fact that the ocean signature of the boundary is clear in the brightness of a radar return, 
since the backscatter tends to be proportional to wave height (Vogelzang et al. 1992). In C-
band with VV polarization, this feature is clearly weaker than at L–band with HH 
polarization. In fact, LHH band has higher backscatter value of 2 dB than CVV band. In this 
context, it is possible that the character of the current gradient is such that the LHH band 
surface Bragg waves are more strongly modulated than for CVV band. This may provide an 
explanation for weaker bathymetric signatures at CVV band. The finding is similar to that of 
Romeiser and Alpers (1997). 

 
          (a)              (b) 

Fig. 4. Result of anisotropic diffusion algorithm for bathymetry signature from  (a) CVV and 
(b) LHH bands. 

Comparison between Figs. 5 and 6 showed that the LHH band captured a stronger tidal 
current flow than the CVV band. The maximum tidal current velocity simulated from the LHH 
band is 1.6 m s-1 while the ones is simulated from CVV band is 1.4 m s-1. This is because 
different bands with differrent polarizations. The major axis of tidal current is towards the 
south and approximately moving parallel to shoreline (Figs. 5 and 6). In addition, it is 
obvious that both bands are imaging the major axis of tidal current in the range direction.  

This is because December represents the northeast monsoon period as the coastal water 

currents in the South China Sea tend to move from the north towards the south (Marghany 

1994). The travelling the of current is caused by the weak non-linearity due to the smaller 

value of R/V. The weak non-linearity was assisted by the contribution of the linear Volterra 

kernels of the range current. This means that the range current will be equal to zero when 

the Volterra kernels 1 ( , )y x yH v v of the frequency domain has a zero for xv and yv . 

However, the inversion of the linear kernel of the Volterra algorithm allowed us to map the 

current movements along the range direction. This result confirms the study of Inglada and 

Garello (1999). The results of the Volterra algorithm showed that there was an interaction 

between water flow from the mouth of the Kuala Terengganu River and the near South 

China Sea water flow which appeared to be close to the mouth of the Kuala Terengganu 

River (Marghany 2009 and Marghany et al., 2010). 
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Fig. 5. Tidal Current Ellipses Simulated from CVV band. 

 

Fig. 6. Tidal Current Ellipses Simulated from LHH band. 
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In addition, during the data acquisition time, the wind was blowing at about 8 m s-1 from 

northeast and swell system was propagated from the northeast. In this regard, the 

quality of bathymetry map simulated  from C-band degrades because the image 

modulation become weaker relative to the speckle noise, and they are smeared out over a 

larger area due to the effect of long waves, which also add noise. As L-band data suffer 

less from these drawbacks, using of L-band provides more accurate results. In fact L-

band has higher signal-to-noise ratio compared to C band. This confirms the study of 

Vogelzang (1997). Furthermore, the HH polarization has a larger tilt modulation 

compared to the VV polarization. Tilt modulation explains that the Bragg scattering is 

dependent on the local incident angle. The long wavelength of L-band HH polarization 

modulates this angle, hence modifying the Bragg resonance wave length. It might be due 

to the fact that the first – order Bragg Scattering gives good results for long radar 

wavelengths (L-band), but for shorter radar wavelength (C-band) the effects of waves 

longer than the Bragg waves must be taken into account (Shuchman et al., 1985 and 

Romeiser and Alpers, 1997). This could be due to strong current flow from the mouth 

river of the Kuala Terengganu. This study confirms the studies of  Li et al., (2009) and 

Marghany et al., (2010). 

Figure 7 shows the comparison between the 3-D bathymetry reconstruction from the 

topographic map , the LHH band data, and the CVV band data. 3-D topographic map was 

created using fuzzy concept by converting the 2-D topographic map into fuzzy interval 

number of [0,1]. It is obvious that the coastal water bathymetry along the Sultan Mahmud 

Airport has a gentle slope and the bathymetric contours are parallel to the shoreline. Close 

to the river mouth, the bathymetry at this location shows a sharp slope. The LHH band 

captured a more real bathymetry pattern than the CVV band. Further, Fig. 8 shows a clear 

discrimination between smooth and rough bathymetry where the symmetric three-

dimensional structure of the bathymetry of a segment of a connecting depth. This can be 

noticed in areas A, B, C, D, E in real and LHH band data compared to CVV band. Smooth 

sub-surfaces appear in Figure 6 where the near-shore bathymetric contour of 5 m (area E) 

water depth runs nearly parallel in 3D-space to the coastline which is clear in Figure 6. 

Further, statistical analysis using regression model (Fig. 7) has confirmed that LHH band 

tends to get closer to the true mean of real bathymetry map i.e. it is actual measured as 

more real, as compared to CVV band data. A rough sub-surface structure appears in steep 

regions of 20 m water depth (areas of B, C, and D). This is due to the fact that the fuzzy B-

splines considered as deterministic algorithms which are described here optimize a 

triangulation only locally between two different points (Anile et al. 1995). This 

corresponds to the feature of deterministic strategies of finding only sub-optimal 

solutions.  

This result could be confirmed using linear regression model (Fig. 8). In this regard, Fig. 8a 

shows the regression relation between the observed bathymetry and the results obtained 

using the CVV band TOPSAR data. Figure 8b shows a similar regression relationship for LHH 

TOPSAR data. The scatter points in Fig. 8b are more close to the regression line than those in 

Fig. 8a. The bathymetry simulation from LHH band with r2 value of 0.95 and accuracy (root 

mean square) of ±0.023 m is more accurate than that obtained by using CVV band with 

accuracy of (root mean square) ±0.03 m 
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  (a)        (b) 

 
(c) 

Fig. 7. Three-Dimensional Bathymetry Reconstructions from (a) Real Topography Map (b) 
LHH Band and (c) CVV Band.  

It is clear that involving of fuzzy B-spline in 3-D bathymetric mapping has produced 

accurate bathymetry visualization. Therefore, the sharp visualization of 3-D bathymetry 

with the different TOPSAR polarised bands and real data due to the fact that each operation 

on a fuzzy number becomes a sequence of corresponding operations on the respective  -

levels, and the multiple occurrences of the same fuzzy parameters evaluated as a result of 

the function on fuzzy variables (Anile, 1997, Anile et al. 1997). It is very easy to distinguish 

between smooth and jagged bathymetry. Typically, in computer graphics, two objective 

quality definitions for fuzzy B-splines were used: triangle-based criteria and edge-based 

criteria. Triangle-based criteria follow the rule of maximization or minimization, 
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respectively, of the angles of each triangle (Fuchs et al. 1997) which prefers short triangles 

with obtuse angles. This finding confirms the studies of Keppel (1975), Anile (1997), and 

Marghany et al., (2010).  

  

   

Fig. 8. Regression model between real water bathymetry from bathymetry Chart and (a) 
water Bathymetry from CVV band ( r2=0.85;  y=0.95x+1.89 ;rms=±0.03 m) and (b) LHH band 
(r2=0.95; y=1.01 x+0.121; rms=±0.023 m). 

The three-dimensional bathymetry construction is not similar to the study of Inglada and 

Garello (1999), such that in the latter the bathymetry was constructed in the shallow sand 

waves (Garello 1999)due to the limitation of the inversion of the linear kernel of the Volterra 
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algorithm. The integration of the inversion of the Volterra algorithm with fuzzy B-splines 

improved the three-dimensional bathymetry reconstruction pattern. The result obtained in 

this study disagrees with the previous study by Inglada and Garello (1999 and 2002) who 

implemented two-dimensional Volterra model to SAR data. 3-D object reconstruction is 

required to model variation of random points which are function of x,y, and z coordinates 

rather than using two coordinates i.e. (x,y). In addition, finite element model is required to 

discretize two-dimensional Volterra and continuity models in study of Inglada and Garello 

(1999 and 2002) to acquire depth variation in SAR image without uncertainty. Previous 

studies done by Alpers and Hennings (1984); Shuchman et al. (1985); Vogelzang (1997); 

Romeiser and Alpers (1997); Hesselmans et al., (2000); and Li et al., (2009) were able to 

model spatial variation of sand waves.  

Splinter and Holman (2009) have developed  algorithm that is based on the changing 

direction of refracting waves to determine underlying bathymetry gradients function of the 

irrotationality of wavenumber condition. In this context, Splinter and Holman (2009) 

claimed that depth dependences are explicitly introduced through the linear dispersion 

relationship. Further, they used spatial gradients of wave phase and integrated times 

methods between sample locations (a tomographic approach) to extract wave number and 

angle from images. They found that synthetic bathymetries of increasing complexity 

showed a mean bathymetry bias of 0.01 m and mean rms of 0.17 m. Nevertheless, refraction-

based algorithm has limitations in which it can be applied only within 500 m from the 

shoreline. In this circumstance, bathymetry of complex  rough sea surface interaction cannot 

be determined. This suggests that the refraction-based algorithm is best suited for shorter 

period swell conditions in intermediate water depths such as a semi-enclosed sea. Further, 

the refraction-based algorithm cannot be implemented in SAR data. In fact, the shortest 

wavelength less than 50 m cannot be estimated in SAR data due to the limitation of using 

two dimensional (2D) Fourier transform (Romeiser and Alpers, 1997). 

In this study, fuzzy B-spline algorithm produced 3-D bathymetry reconstruction without 
existence of shallow sand waves. In fact fuzzy B-spline algorithm is able to keep track of 
uncertainty and provide tool for representing spatially clustered depth points. This 
advantage of fuzzy B-spline is not provided in Volterra algorithm and 1-D or 2-D 
continuity model.  

6. Conclusions 

Coastal bathymetry is tremendous information for coastal engineering, coastal navigation, 
economic activities, security and marine environmental protection. Single- or multi-beam 
ship-borne echo sounders are the conventional techniques used to map ocean bathymetry. 
Indeed, SAR data can reduce the root mean square error of bathymetry mapping from 
conventional methods by  overall of 40 %. In this paper, we address the question 
despeckles' impact on the accuracy of depth determination in  TOPSAR data without 
needing to include any sounding data values. This verified with airborne SAR data 
(namely the TOPSAR) using integration of the anisotropic diffusion algorithm ,the 
Volterra kernel  and the fuzzy B-spline algorithm. Incidentally, the inverse of Volterra 
algorithm then performed to retrieve   2-D tidal current flows from CVV and LHH bands. 
Besides, the 2-D continuity equation then used to retrieve  the water depth. To retrieve  3-
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D bathymetry pattern,  the fuzzy B-spline has performed to 2-D water depth information 
which estimated using 2-D continuity equation. 

The study shows that  anisotropic diffusion algorithm provides a clear bathymetry signature 

in LHH band data compared to CVV band data. Further, the maximum tidal current flow 

simulated from the CVV band was 1.4 m s-1 while the ones was simulated from LHH band was 

1.6 m s-1. This was assisted LHH band to capture more accurately bathymetry features with r2 

value of 0.95, standard error mean of ±0.023 m. In comparison with SAR satellite data, LHH 

band performs better because of  TOPSAR data acquired with HH-,VV-, HV- and VH-

polarized signals from 5 m x 5 m pixels. Further, TOPSAR data provides digital elevation 

model (DEM) with RMSE ± 1 m in the near range to greater than ±3 m in the far range. 

Conventional survey, however, has lower resolution than  LHH band. Indeed, the 

conventional survey cover swath width of 37.5 m to 400 m. Nevertheless, LHH band has 

limitation to detect more than 20 m water depth. 

It can be said that the LHH band provides a better approximation to the real shallow 

bathymetry than does the CVV band. In conclusions, the integration between anisotropic 

diffusion algorithm, the Volterra algorithm and the fuzzy B-splines could be an excellent 

tool for 3-D bathymetry determination from TOPSAR polarized data.  
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