
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Parallel Symbolic Analysis of Large Analog
Circuits on GPU Platforms *

Sheldon X.-D. Tan1, Xue-Xin Liu1, Eric Mlinar1 and Esteban Tlelo-Cuautle2

1Department of Electrical Engineering, University of California, Riverside, CA 92521
2Dapartment of Electronics, INAOE

1USA
2Mexico

1. Introduction

Graph-based symbolic technique is a viable tool for calculating the behavior or the
characterization of an analog circuit. Traditional symbolic analysis tools typically are
used to calculate the behavior or the characteristic of a circuit in terms of symbolic
parameters (Gielen et al., 1994). The introduction of determinant decision diagrams based
symbolic analysis technique allows exact symbolic analysis of much larger analog circuits
than any other existing approaches (Shi & Tan, 2000; 2001). Furthermore, with hierarchical
symbolic representations (Tan et al., 2005; Tan & Shi, 2000), exact symbolic analysis via DDD
graphs essentially allows the analysis of arbitrarily large analog circuits. Some recent
advancement in DDD ordering technique and variants of DDD allow even larger analog
circuits to be analyzed (Shi, 2010a;b). Once the circuit’s small-signal characteristics are
presented by DDDs, the evaluation of DDDs, whose CPU time is proportional to the sizes
of DDDs, will give exact numerical values. However, with large networks, the DDD size can
be huge and the resulting evaluation can be very time consuming.

Modern computer architecture has shifted towards designs that employ multiple processor
cores on a chip, so called multi-core processors or chip-multiprocessors (CMP) (AMD Inc.,
2006; Intel Corporation, 2006). The graphic processing unit (GPU) is one of the most powerful
many-core computing systems in mass-market use (AMD Inc., 2011a; NVIDIA Corporation,
2011a). For instance, NVIDIA Telsa T10 chip has a peak performance of over 1 TFLOPS
versus about 80–100 GFLOPS of Intel i5 series Quad-core CPUs (Kirk & Hwu, 2010). In
addition to the primary use of GPUs in accelerating graphics rendering operations, there has
been considerable interest in exploiting GPUs for general purpose computation (Göddeke,
2011). The introduction of new parallel programming interfaces for general purpose
computations, such as Computer Unified Device Architecture (CUDA) (NVIDIA Corporation,
2011b), Stream SDK (AMD Inc., 2011b) and OpenCL (Khronos Group, 2011), has made
GPUs a powerful and attractive choice for developing high-performance numerical, scientific
computation and solving practical engineering problems.

*This work is funded in part by NSF grants NSF OISE-0929699, OISE-1130402, CCF-1017090 and part by
CN-11-575 UC MEXUS-CONACYT Collaborative Research Grants.

6

www.intechopen.com

2 VLSI Design

In this chapter, we present an efficient parallel DDD evaluation technique based on general
purpose GPU (GPGPU) computing platform to explore the parallelism of DDD structures. We
present a new data structures to present the DDD graphs in the GPUs for massively threaded
parallel computing of the numerical values of DDD graphs. The new method explores data
parallelism in the DDD numerical evaluation process where DDD graphs are traversed in a
depth-first fashion. Numerical results show that the new evaluation algorithm can achieve
about one to two orders of magnitude speedup over the serial CPU based evaluations of
some analog circuits. The presented parallel techniques can be used for the parallelization
of many decision diagrams based applications such as logic synthesis, optimization, and
formal verification, all of which are based on binary decision diagrams (BDDs) and its
variants (Bryant, 1995; Minato, 1996).

This chapter is organized as follows. Section 2 reviews DDD-based symbolic analysis
techniques. Section 3 briefly review the GPU architectures and CUDA computing. Section 4
introduces the new parallel algorithm, and then the results are demonstrated in Section 5.
Lastly, Section 6 summarizes this chapter.

2. DDDs and DDD-based symbolic analysis

Before we introduce our GPU-base parallel analysis method, we first provide a brief overview
of determinant decision diagram (DDD) Shi & Tan (2000) in this section.

Determinant decision diagrams (DDDs) was introduced to represent determinants
symbolically Shi & Tan (2000). A DDD is essentially a zero-suppressed Binary Decision
Diagrams (ZBDDs) — introduced originally for representing sparse subset systems Minato
(1993). A ZBDD is a variant of a Binary Decision Diagram (BDD) introduced by Akers Akers
(1976) and popularized by Bryant Bryant (1986). BDDs have brought great success to
formal verification and testing for combinational and sequential digital circuits Bryant
(1986); Hachtel & Somenzi (1996). DDD representation has several advantages over both the
expanded and arbitrarily nested forms of a symbolic expression.

• First, similar to the nested form, DDD representation is compact for a large class of analog
circuits. A ladder-structured network can be represented by a diagram where the number
of vertices in the diagram (called its size) is equal to the number of symbolic parameters.
As indicated by Shi & Tan (2000), the typical size of DDD is dramatically smaller than that
of product terms. For instance, 5.71×1020 terms can be represented by a diagram with 398
vertices.

• Second, similar to the expanded form, DDD representation is canonical, i.e., every
determinant has a unique representation, and is amenable to symbolic manipulations.
This property of canonical representation for matrix determinants is similar to BDD for
representing binary functions and ZBDD for representing subset systems.

A key observation is that the circuit matrix is sparse and that for many times, a
symbolic expression may share many sub-expressions. For example, consider the following
determinant

det(M) =

∣

∣

∣

∣

∣

∣

∣

∣

a b 0 0
c d e 0
0 f g h
0 0 i j

∣

∣

∣

∣

∣

∣

∣

∣

= adgj − adhi − ae f j − bcgj + cbih. (1)

114 VLSI Design

www.intechopen.com

Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms 1 3

i

1 0

a

c

bfg

j e

d

1 edge

0 edge

h

Fig. 1. A ZBDD representing {adgi, adhi, a f ej, cbgj, cbih} under ordering
a > c > b > d > f > e > g > i > h > j

Note that sub-terms ad, gj, and hi appear in several product terms, and each product
term involves a subset (four) out of ten symbolic parameters. Therefore, we view each
symbolic product term as a subset, and use a ZBDD to represent the subset system
composed of all the subsets each corresponding to a product term. Fig. 1 illustrates
the corresponding ZBDD representing all the subsets involved in det(M) under ordering
a > c > b > d > f > e > g > i > h > j. It can be seen that sub-terms ad, gj, and ih have been
shared in the ZBDD representation.

Following directly from the properties of ZBDDs, we have the following observations. First,
given a fixed order of symbolic parameters, all the subsets in a symbolic determinant can be
represented uniquely by a ZBDD. Second, every 1-path in the ZBDD corresponds to a product
term, and the number of 1-edges in any 1-path is n. The total number of 1-paths is equal to
the number of product terms in a symbolic determinant.

We can view the resulting ZBDD as a graphical representation of the recursive application
of the determinant expansion with the expansion order a, c, b, d, f , e, g, i, h, j. Each vertex
is labeled with the matrix entry with respect to which the determinant is expanded, and
it represents all the subsets contained in the corresponding sub-matrix determinant. The
1-edge points to the vertex representing all the subsets contained in the cofactor of the current
expansion, and 0-edge points to the vertex representing all the subsets contained in the
remainder.

To embed the signs of the product terms of a symbolic determinant into its corresponding
ZBDD, we associate each vertex v with a sign, s(v), defined as follows:

115Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms

www.intechopen.com

4 VLSI Design

Fig. 2. A signed ZBDD for representing symbolic terms from matrix M

• Let P(v) be the set of ZBDD vertices that originate the 1-edges in any 1-path rooted at v.
Then

s(v) = ∏
x∈P(v)

sign(r(x)− r(v)) sign(c(x)− c(v)), (2)

where r(x) and c(x) refer to the absolute row and column indices of vertex x in the original
matrix, and u is an integer so that

sign(u) =

{

+1, if u > 0,
−1, if u < 0.

• If v has an edge pointing to the 1-terminal vertex, then s(v) = +1.

This is called the sign rule. For example, in Fig. 2, shown beside each vertex are the row and
column indices of that vertex in the original matrix, as well as the sign of that vertex obtained
by using the sign rule above. For the sign rule, we have following result:

Theorem 1. The sign of a DDD vertex v, s(v), is uniquely determined by (2), and the product of all
the signs in a path is exactly the sign of the corresponding product term.

For example, consider the 1-path acbgih in Fig. 2. The vertices that originate all the 1-edges are
c, b, i, h, their corresponding signs are −, +, − and +, respectively. Their product is +. This is
the sign of the symbolic product term cbih.

With ZBDD and the sign rule as two foundations, we are now ready to introduce formally
our representation of a symbolic determinant. Let A be an n × n sparse matrix with a set of
distinct m symbolic parameters {a1, ..., am}, where 1 ≤ m ≤ n2. Each symbolic parameter ai

116 VLSI Design

www.intechopen.com

Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms 2 5

1 0

a

c

bfg

j e

dd(gj-hi)-f(ej)
-c(b(gj-hi)]

a[d(gj-hi)-f(ej)]-c[b(gj-hi)]

gj-hi -f(ej) b(gj-hi)

je-hij

1 edge

0 edge

-

-

-

h

i

h

Fig. 3. A determinant decision diagram representation for matrix M

is associated with a unique pair r(ai) and c(ai), which denote, respectively, the row index and
column index of ai. A determinant decision diagram is a signed, rooted, directed acyclic graph
with two terminal vertices, namely the 0-terminal vertex and the 1-terminal vertex. Each
non-terminal vertex ai is associated with a sign, s(ai), determined by the sign rule defined
by (2). It has two outgoing edges, called 1-edge and 0-edge, pointing, respectively, to Dai

and Dai
. A determinant decision graph having root vertex ai denotes a matrix determinant D

defined recursively as

• If ai is the 1-terminal vertex, then D = 1.

• If ai is the 0-terminal vertex, then D = 0.

• If ai is a non-terminal vertex, then

D = ais(ai)Dai
+ Dai

(3)

Here s(ai)Dai
is the cofactor of D with respect to ai, Dai

is the minor of D with respect to
ai, Dai

is the remainder of D with respect to ai, and operations are algebraic multiplications
and additions. For example, Fig. 3 shows the DDD representation of det(M) under ordering
a > c > b > d > f > e > g > i > h > j.

To enforce the uniqueness and compactness of the DDD representation, the three rules of
ZBDDs, namely, zero-suppression, ordered, and shared are adopted. This leads to DDDs
having the following properties:

• Every 1-path from the root corresponds to a product term in the fully expanded symbolic
expression. It contains exactly n 1-edges. The number of 1-paths is equal to the number of
product terms.

117Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms

www.intechopen.com

6 VLSI Design

• For any determinant D, there is a unique DDD representation under a given vertex
ordering.

We use |DDD| to denote the size of a DDD, i.e., the number of vertices in the DDD.

Once a DDD has been constructed, its numerical values of the determinant it represents can
be computed by performing the depth-first type search of the graph and performing (3) at
each node, whose time complexity is linear function of the size of the graphs (its number of
nodes). The computing step is call Evaluate(D) where D is a DDD root.

For each vertex, there are two values, vself and vtree. As above mentioned, vself represents
the value of the element itself; while vtree represents the value of the whole tree (or subtree).
For each vertex, the vtree equals vself multiplying vtree of 1-subtree plus vtree of 0-subtree as
shown in (3). In this example, the value of the determinant equals vtree of a; while vtree of a
equals vself of a multiplying vtree of b plus vtree of c. In a serial implementation, the tree value
of a is computed by recursively computing all vtree of subtrees, which is very time-consuming
when the tree becomes large.

One key observation for DDD structure is that the data dependence is very clear. The data
dependency is very simple: a node can be evaluated only after its children are evaluated.
Such dependency implies the parallelism where all the nodes satisfying this constraint can
be evaluated at the same time. Also, in frequency analysis of analog circuits, evaluation of a
DDD node at different frequency runs can be performed in parallel. In the following section
we show how we can explore such parallelism to speed up the DDD evaluation process.

3. Review of GPU architectures

CUDA (short for Compute Unified Device Architecture) is the parallel computing architecture
for NVIDIA many-core GPU processors. The architecture of a typical CUDA-capable GPU
is consisted of an array of highly threaded streaming multiprocessors (SM) and comes with
more than 4 GBytes DRAM, referred to as global memory. Each SM has eight streaming
processor (SP) and two special function units (SFU), and possesses its own shared memory
and instruction cache. The structure of a streaming multiprocessor is shown in Fig. 4.

As the programming model of GPU, CUDA extends C into CUDA C, and supports tasks such
as threads calling and memory allocation, which makes programmers able to explore most
of the capabilities of GPU parallelism. In CUDA programming model, threads are organized
into blocks; blocks of threads are organized into grids. CUDA also assumes that both the host
(CPU) and the device (GPU) maintain their own separate memory spaces in DRAM, referred
to as host memory and device memory, respectively. For every block of threads, a shared
memory is accessible to all threads in that same block. And the global memory is accessible
to all threads in all blocks. Developers can write programs running millions of threads with
thousands of blocks in a parallel approach. This massive parallelism forms the reason that
programs with GPU acceleration can be multiple times faster than their CPU counterparts.

One thing to mention is that for some series of CUDA GPU, a multiprocessor has eight
single-precision floating point ALUs (one per core) but only one double-precision ALU
(shared by the eight cores). Thus, for applications whose execution time is dominated by
floating point computations, switching from single-precision to double-precision will decrease
performance by a factor of approximately eight. However, this situation is being improved

118 VLSI Design

www.intechopen.com

Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms 3 7

Fig. 4. Structure of streaming multiprocessor.

in NVIDIA T20 series, the Fermi family. These most recent GPU from NVIDIA can already
provide much better double-precision performance than before.

4. New GPU-based DDD evaluation

In this section, we present the new GPU-based DDD evaluation algorithm. Before the details
of GPU-based DDD evaluation method, we first discuss the new DDD data structure for GPU
parallel computing.

One key observation for DDD structure is that the data dependence is very clear. The data
dependency is very simple: a node can be evaluated only after its children are evaluated.
Such dependency implies the parallelism where all the nodes satisfying this constraint can be
evaluated at the same time. Also, in frequency analysis of analog circuits, evaluation of a DDD
node at different frequency runs can be performed in parallel. In the following subsections
we show how we can explore such parallelism to speed up the DDD evaluation process.

4.1 New data structure

To achieve the best performance on GPU, linear memory structure, i.e., data stored in
consequent memory addresses, is preferable. For CPU serial computing, the data structure
is based on dynamic links in a linked binary tree. For parallel computing, the data will be
stored in linear arrays which can be more efficiently accessed by different threads based on
thread ids.

As we discussed above, the DDD representation stores all product terms of the determinant
of the MNA matrix in a binary linked tree structure. The vertex in the tree structure is known

119Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms

www.intechopen.com

8 VLSI Design

Fig. 5. Illustration of the data structure for serial method

Fig. 6. Illustration of the data structure for parallel method

as DDD node that represents element in MNA matrix which is identified by its index. For
each DDD node, the data structure includes the sign value, the MNA index, the RCL values,
corresponding frequency value, vself, and vtree. In the serial approach, these values are stored
in a data structure and connected through links, as shown in Fig. 5. On the other side, in
the parallel approach, all of these data are stored separately in corresponding linear arrays
and each element is identified by the DDD node index (not necessarily the same as the MNA
element index). Figure 6 illustrates the new data structure.

120 VLSI Design

www.intechopen.com

Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms 4 9

Two choices are available for vself data structure. One is similar to the data structure of vtree.
The vself value for each DDD node is stored consecutively. This data structure is called the
linear version of vself data structure. The other method is as shown in Fig. 6. The array is
organized per MNA element. Due to the fact that some of the DDD nodes share the same
MNA element value, the second data structure is more compact in memory than the linear
version. So it is called the compact version of vself data structure. The compact version is
suitable for small circuits because it reduces the global memory traffic when computing vself.
However, for large circuits, the calculation of vtree dominates the time cost. And we can
implement a strategy to reduce the global memory traffic for computing vtree using the linear
version of vself data structure to further improve the GPU performance. Therefore, for larger
circuits, the linear version is preferable. The performance comparison is discussed later in the
next section.

4.2 Algorithm flow

The parallel evaluating process consists of two stages. First, the vself values for all DDD nodes
are computed and stored. In this stage, a set of 2D threads are launched on GPU devices. The
X-dimension of the 2D threads represents different frequencies; the Y-dimension represents
different elements (for compact vself) or DDD nodes (for linear vself). Therefore, all elements
(or DDD nodes) can be computed under all frequencies in massively parallel manners. In
the second stage, we simultaneously launch GPU 2D threads to compute all the vtree values
for DDD nodes based on (3). Notice that a DDD node vtree value becomes valid when all its
children’s vtree values are valid. Since we compute all the vtree for all the nodes at the same
time, the correct vtree values will automatically propagate from the bottom of the DDD tree
to the top node. The number of such vtree iterative computing are decided by the number of
layers in DDD tree. A layer represents a set of DDD nodes whose distance from 1-terminal
or 0-terminal are the same. The number of layers equal to the longest distance between
non-terminal nodes and 1-terminal/0-terminal. Algorithm 1 shows the flow of parallel DDD
evaluation using compact vself data structure.

Line 3 and Line 4 load frequency index and element index respectively with CUDA built-in
variables (Thread.X and Thread.Y are our simplified notations). These built-in variables are
the mechanism for identifying data within different threads in CUDA. Then, line 5 and Line 6
compute the vself with the RCL value of the element under given frequency. From line 8, loop
for computing vtree is entered. Line 13 and Line 14 load vtree values for left/right branch
using function Then()/Else(). Line 15 through Line 26 explains themselves. Line 27 computes
vtree with vself and Left/Right and ends the flow.

4.3 Coalesced memory access

The GPU performance can be further improved by making proper use of coalesced global
memory access to prevent the global memory bandwidth from being performance limitation.
Coalesced memory access is one efficient method reducing global memory traffic. When all
threads in a warp execute a load instruction, the hardware detects whether the threads access
the consecutive global memory address. In such case, the hardware coalesces all of these
accesses into a consolidated access to the consecutive global memory. In the implementation
of GPU-accelerated DDD evaluation, such favorable data access pattern is fulfilled for the
linear version of vself data structure to gain performance enhancement. The vself data structure
is in a linear pattern so that the vself values for a given DDD node under a series of frequency

121Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms

www.intechopen.com

10 VLSI Design

Algorithm 1 Parallel DDD evaluation algorithm flow

1: if Launch GPU threads for each node then
2: {Computing vself:}
3: FreqIdx ← Thread.X
4: ElemIdx ← Thread.Y
5: (R, C, L) ← GetRCL(ElemIdx)
6: vsel f ← (R, C ∗ Freq + L/Freq)
7: end if
8: for all lyr such that 0 ≤ lyr ≤ NumberO f Layers do
9: {Computing vtree:}

10: if Launch GPU threads for each node then
11: FreqIdx ← Thread.X
12: DDDIdx ← Thread.Y
13: Le f t ← Then(DDDIdx)
14: Right ← Else(DDDIdx)
15: if is 0 − terminal then
16: Le f t ← (0, 0)
17: Right ← (0, 0)
18: else
19: if is 1 − terminal then
20: Le f t ← (1, 0)
21: Right ← (1, 0)
22: end if
23: end if
24: if sign(DDDIdx) < 0 then
25: vsel f ← −1 ∗ vsel f
26: end if
27: vtree ← vsel f ∗ Le f t + Right
28: end if
29: end for

values are stored in coalesced memory. Therefore, threads, in the same block, with consecutive
thread index will access consecutive global memory locations, which ensure that the hardware
coalesces these accessing process in just one reading operation. In this example, this technique
reduces the global memory traffic by a factor of 16. However, for the compact version of vself
data structure, the vself values are stored per elements, which means that for consecutive DDD
nodes, their respective vself values are not stored in consecutive locations. So, for the compact
version of vself data structure, the global memory access is not coalesced. The performance
comparison for both of versions is discussed in experimental result section.

5. Numerical results

We have implemented both CPU serial version and GPU version of the DDD-based evaluation
programs using C++ and CUDA C, respectively.

The serial and parallel versions of programs have been tested under the same hardware
and OS configuraions. The computation platform is a Linux server with two Intel Xeon
E5620 2.4 GHz Quad-Core CPUs, 36 GBytes memory, equipped with NVIDIA Tesla S1070

122 VLSI Design

www.intechopen.com

Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms 5 11

Fig. 7. Performance comparison

1U rack-mounted system (containing four T10 GPUs). The software environment is Red Hat
4.1.2-48 Linux, gcc version 4.1.2 20080704, and CUDA version 3.2.

For the purpose of performance comparison, the programs with CPU-serial and GPU-parallel
algorithm are both tested for the same set of circuits. The testing circuits include: µA741 (a
bipolar opamp), Cascode (a CMOS Cascode opamp), ladder7, ladder21, ladder100 (7-, 21-,
100-section cascade resistive ladder networks), rctree1, rctree2 (two RC tree networks), rlctest,
vcstest, ccstest, bigtst (some RLC filters).

In the two implementations, the same DDD construction algorithm is shared. The numerical
evaluation process is done under serial and parallel version separately. The performance
comparison for each of the given circuit is listed in Table 1 and illustrated in Fig. 7. In our
experimental results, the overhead for data transferring between host and GPU devices are
not included as their costs can be amortized over many DDD evaluation processes and can be
partially overlapped with GPU computing in more advanced parallelization implementation.
The statistics information for DDD representation is also included in the same table. The first
column indicates the name of each circuit tested. The second to fourth columns represent the
number of nodes in circuit, the number of elements in the MNA matrix and the number of
DDD nodes in the generated DDD graph, respectively. The number of determinant product
terms is shown in fifth column. CPU time is the time cost for the calculation of DDD evaluation
in serial algorithm. The GPU time is the computing time cost for GPU-parallelism (the kernel
parts). The final column summerizes the speedup of parallel algorithm over serial algorithm.

123Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms

www.intechopen.com

12 VLSI Design

Fig. 8. The circuit schematic of µA741

Fig. 9. The small signal model for bipolar transistor

Now let us investigate one typical example in detail. Fig. 8 shows the schematic of a µA741
circuit. This bipolar opamp contains 26 transistors and 11 resistors. DC analysis is first
performed by SPICE to obtain the operation point, and then small-signal model, shown in
Fig. 9, is used for DDD symbolic analysis and numerical evaluation. The AC analysis is
performed using both CPU DDD evaluation and GPU parallel DDD evaluation proposed in
our work. In Fig. 10 plots the frequency responses of the gain and the phase at the amplifier’s
output node from the two comparison methods. It can be observed that GPU parallel DDD
evaluation provides the same result as it CPU serial counterpart does. We measured the run

124 VLSI Design

www.intechopen.com

Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms 6 13

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

10

20

30

40

50

60

Freq (Hz)

G
a
in

 (
d
B

)

CPU

GPU

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−100

−80

−60

−40

−20

0

Freq (Hz)

P
h
a
s
e
 (

d
e
g
re

e
)

CPU

GPU

Fig. 10. Frequency response of µA741 amplifier. The red solid curve is the result of CPU DDD
evaluation, while the blue dashed line is the result of GPU parallel DDD evaluation.

time of these two methods: the program of CPU evaluation costs 0.84 second, while the GPU
parallel version only takes 0.029 second. For this benchmark circuit, we can judge that the
parallel computation can easily achieve a speedup of 29 times. As the size of the circuit and
the number of DDD nodes grow larger, more speedup can be expected.

From Table 1, we can make some observations. For a variety of circuits tested in the
experiment, the GPU-accelerated version outperforms all of their counterparts. The maximum
performance speedup is 38.33 times for bigtst. The time cost of the serial version is
growing fast along the increasing of circuit size (nodes in the circuit). On the other side,
however, the GPU-based parallel version performs much better for larger circuits. And
more importantly, the larger the circuit is, the better performance improvement we can gain
using GPU-acceleration. This trend is illustrated in Fig. 11. This result implies that the

circuit # nodes # elements # DDD nodes # terms CPU time (s) GPU time (s) speedup

bigtst 32 112 642 2.68 × 107 9.21 0.240 38.33
cascode 14 76 2110 2.32 × 105 6.65 0.369 18.00
ccstest 9 35 109 260 0.32 0.014 23.40

ladder100 101 301 301 9.27 × 1020 11.31 0.323 35.00
ladder21 22 64 64 28657 0.55 0.021 25.69
ladder7 8 22 22 34 0.08 0.007 10.86
rctree1 40 119 211 1.15 × 108 2.53 0.076 33.30
rctree2 53 158 302 4.89 × 1010 4.76 0.134 35.51
rlctest 9 39 119 572 0.01 0.001 8.82
µA741 23 89 6205 363914 0.84 0.029 29.14
vcstst 12 46 121 536 0.28 0.013 20.74

Table 1. Performance comparison of CPU-serial and GPU-parallel DDD evaluation for a set
of circuits

125Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms

www.intechopen.com

14 VLSI Design

Fig. 11. The performance speedup of GPU-acceleration vs. circuits size (number of nodes)

GPU-acceleration is suitable to overcome the performance problem of DDD-based numerical
evaluation for large circuits.

Fig. 12. Performance comparison for two approaches of vself data structure (the x-axis is in
logarithm scale)

126 VLSI Design

www.intechopen.com

Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms 7 15

In this experiment, both of data structures for storing vself are implemented. The performance
comparison is listed in Table 2. The GPU parallel version under both of the two data structures
for vself outperforms the serial version. And the performance speedup is clearly related to
the number of product terms in MNA matrix, as shown in Fig. 12. For small circuits with
less MNA matrix product terms, the compact version of vself is more efficient due to the
lowering of global memory traffic when calculating vself. However, for large circuits with
bigger number of MNA matrix product terms, the linear version of vself outperforms the
compact version comp vself owing to the effect of coalesced memory access as discussed in
the prior section.

circuit # terms CPU (s) GPU time (s) speedup
w/ comp vself w/ linear vself w/ comp vself w/ linear vself

bigtst 2.68 × 107 9.21 0.240 0.223 38.33 41.21
cascode 2.32 × 105 6.65 0.369 0.452 18.00 14.70
ccstest 260 0.32 0.014 0.033 23.40 9.65

ladder100 9.27 × 1020 11.31 0.323 0.097 35.00 116.92
ladder21 28657 0.55 0.021 0.028 25.69 19.40
ladder7 34 0.08 0.007 0.025 10.86 3.20

rctree1 1.15 × 108 2.53 0.076 0.057 33.30 44.71

rctree2 4.89 × 1010 4.76 0.134 0.076 35.51 62.93
rlctest 572 0.01 0.001 0.002 8.82 4.40
µA741 363914 0.84 0.029 0.029 29.14 29.27
vcstst 536 0.28 0.013 0.029 20.74 9.62

Table 2. Performance comparison for two implementations of vself data structure

6. Summary

In this chapter, a GPU-based graph-based parallel analysis method for large analog circuits
has been presented. Two data structures have been designed to cater the favor of GPU
computation and device memory access pattern. Both the CPU version and the GPU version’s
performance has been studied and compared for circuits with different number of product
terms in MNA matrix. The GPU-based DDD evaluation performs much better than its
CPU-based serial counterpart, especially for larger circuits. Experimental results from tests on
a variety of industrial benchmark circuits show that the new evaluation algorithm can achieve
about one to two order of magnitudes speedup over the serial CPU based evaluations on some
large analog circuits. The presented parallel techniques can be also used for the parallelization
of other decision diagrams based applications such as Binary Decision Diagrams (BDDs) for
logic synthesis and formal verifications.

7. References

Akers, S. B. (1976). Binary decision diagrams, IEEE Trans. on Computers 27(6): 509–516.
AMD Inc. (2006). Multi-core processors—the next evolution in computing (White Paper).

http://multicore.amd.com.
AMD Inc. (2011a). AMD developer center, http://developer.amd.com/GPU.
AMD Inc. (2011b). AMD Steam SDK, http://developer.amd.com/gpu/ATIStreamSDK.
Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation, IEEE Trans.

on Computers pp. 677–691.

127Parallel Symbolic Analysis of Large Analog Circuits on GPU Platforms

www.intechopen.com

16 VLSI Design

Bryant, R. E. (1995). Binary decision diagrams and beyond: enabling technologies for formal
verification, Proc. Int. Conf. on Computer Aided Design (ICCAD).

Gielen, G., Wambacq, P. & Sansen, W. (1994). Symbolic analysis methods and applications for
analog circuits: A tutorial overview, Proc. of IEEE 82(2): 287–304.

Göddeke, D. (2011). General-purpose computation using graphics harware,
http://www.gpgpu.org/.

Hachtel, G. D. & Somenzi, F. (1996). Logic Synthesis and Verification Algorithm, Kluwer
Academic Publishers.

Intel Corporation (2006). Intel multi-core processors, making the move to quad-core and
beyond (White Paper). http://www.intel.com/multi-core.

Khronos Group (2011). Open Computing Language (OpenCL),
http://www.khronos.org/opencl.

Kirk, D. B. & Hwu, W.-M. (2010). Programming Massively Parallel Processors: A Hands-on
Approach, Morgan Kaufmann Publishers Inc., San Francisco, CA.

Minato, S. (1993). Zero-suppressed BDDs for set manipulation in combinatorial problems,
Proc. Design Automation Conf. (DAC), pp. 272–277.

Minato, S. (1996). Binary Decision Diagrams and Application for VLSI CAD, Kluwer Academic
Publishers, Boston.

NVIDIA Corporation (2011a). http://www.nvidia.com.
NVIDIA Corporation (2011b). CUDA (Compute Unified Device Architecture).

http://www.nvidia.com/object/cuda_home.html.
Shi, C.-J. & Tan, X.-D. (2000). Canonical symbolic analysis of large analog circuits with

determinant decision diagrams, IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems 19(1): 1–18.

Shi, C.-J. & Tan, X.-D. (2001). Compact representation and efficient generation of s-expanded
symbolic network functions for computer-aided analog circuit design, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems 20(7): 813–827.

Shi, G. (2010a). Computational complexity analysis of determinant decision diagram, IEEE
Trans. on Circuits and Systems II: Analog and Digital Signal Processing 57(10): 828 –832.

Shi, G. (2010b). A simple implementation of determinant decision diagram, Proc. Int. Conf. on
Computer Aided Design (ICCAD), pp. 70 –76.

Tan, S. X.-D., Guo, W. & Qi, Z. (2005). Hierarchical approach to exact symbolic analysis of
large analog circuits, IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems 24(8): 1241–1250.

Tan, X.-D. & Shi, C.-J. (2000). Hierarchical symbolic analysis of large analog circuits via
determinant decision diagrams, IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems 19(4): 401–412.

128 VLSI Design

www.intechopen.com

VLSI Design

Edited by Dr. Esteban Tlelo-Cuautle

ISBN 978-953-307-884-7

Hard cover, 290 pages

Publisher InTech

Published online 20, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present

some open problems and challenges with important topics ranging from design tools, new post-silicon devices,

GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts,

with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated

circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU

platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded

problems, etc.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Sheldon X.-D. Tan, Xue-Xin Liu, Eric Mlinar and Esteban Tlelo-Cuautle (2012). Parallel Symbolic Analysis of

Large Analog Circuits on GPU Platforms, VLSI Design, Dr. Esteban Tlelo-Cuautle (Ed.), ISBN: 978-953-307-

884-7, InTech, Available from: http://www.intechopen.com/books/vlsi-design/parallel-symbolic-analysis-of-

large-analog-circuits-on-gpu-platforms

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

