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1. Introduction 

A Shack-Hartmann sensor is one of the most important and popular wavefront sensors used in 
an adaptive optics system to measure the aberrations caused by either atmospheric turbulence, 
laser transmission, or the living eye [1-7]. Its design was based on an aperture array that was 
developed in 1900 by Johannes Franz Hartmann as a means to trace individual rays of light 
through the optical system of a large telescope, thereby testing the quality of the image.[8] In 
the late 1960s Roland Shack and Platt modified the Hartmann screen by replacing the 
apertures in an opaque screen by an array of lenslets [9-10]. The terminology as proposed by 
Shack and Platt was “Hartmann-screen”. The fundamental principle seems to be documented 
even before Huygens by the Jesuit philosopher, Christopher Scheiner [11]. 

The schematic of a Shack-Hartman wavefront sensor is shown in Figure 1. It consists of an 
array of lenses (called lenslets, see Figure 1) of the same focal length. Each is focused onto a 
photon sensor (typically a CCD array or quad-cell). The local tilt of the wavefront across 
each lens can then be calculated from the position of the focal spot on the sensor. Any phase 
aberration can be approximated to a set of discrete tilts. By sampling an array of lenslets, all 
of these tilts can be measured and the whole wavefront can be approximated. Since only tilts 
are measured, the Shack-Hartmann can not measure the discontinuous steps of wavefront. 

 

Fig. 1. Schematic of a Shack-Hartmann wavefront sensor 
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Tyler and Fried have obtained the theory expression, which evaluates the angular position 
error when a quadrant detector is used in the SHWFS [12]. The formula they obtained, based 
on circular aperture diffraction, is shown in Eq. (1) 

 
3 1

16 SNR D

    (1) 

where SNR is defined as the ratio of the signal’s photoelectron counts to the noise’s 
fluctuation intensity within the detection area, λ is the wavelength, and D is the diameter of 
the aperture. Their analysis did not discuss the size of the incoming light spot on the 
detection area in detail. The formula was obtained based on a quadrant detector alone. 
Generally, the theory expression obtained by Tyler and Fried is not suitable for describing 
the angular position error when the scale of the discrete detector arrays is greater than 2×2 
pixels. 

Hardy has described formulas that can be used to evaluate the angular position error [13], 
under the conditions that the photon shot noise of signal is dominant. Although his 
formulas discussed the size of the diffraction-limited spot on the discrete detector arrays, it 
is reliable only under the approximation condition that l/f>>λ/D or l/f<<λ/D is satisfied, 
where l is the length of a pixel, f is the focal length, and Vs is the count of signal 
photoelectrons. Eq. (2) shows the formulas based on square aperture diffraction. 
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Cao et al. have also analyzed the measurement error of a SHWFS. Their work emphasized 
the discrete sampling error of a CCD and obtained a formula which is used to describe the 
centroid position error induced by the readout noise of the CCD and the photon shot noise 
of the signal [14]. Their research results are only the approximation of some cases discussed 
in this article. Jiang et al. have partially analyzed the measurement error of SHWFS and 
performed their method by setting a fixed threshold to suppress the impact of the random 
noise [15].  

In this chapter, the wavefront error of a Shack-Hartmann wavefront sensor was analyzed in 
detail based on the research results of angular position error and wavefront error [16-17]. 
and the formula used to evaluate the wavefront error was derived, it concerns with the 
signal to noise ratio, number of photons and reconstruction matrix also.  

2. The angular position error caused by random noise 

The wavefront to be measured is segmented into many subwavefronts by lenslet arrays, and 
the light spots at the focal plane of the subapertures are detected by the CCD. Particularly, 
the analysis is based on the notion that the wavefront is essentially flat over each 
subaperture and r0>D (r0 is the coherent length of incoming wavefront). The centroid 
position can be calculated by Eq. (3) [18]. The detection area of the subaperture is L1×L2 
pixels, and xnm and ynm are the (n,m)th pixel’s X coordinate and Y coordinates, respectively. 
Inm is the total intensity in the (n,m)th pixel, including the signal photons and all other noises.  
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The formulas which evaluate the centroid error associated with the signal’s photon shot 
noise and the readout noise of the detector, respectively, have been derived by Cao et al. 
When the photon shot noise of the signal is considered alone, the centroid fluctuation error 
was obtained by introducing the Gauss width of the signal. When the readout noise of the 
detector is considered alone, the centroid fluctuation error was also obtained, and its results 
are shown in Eq. (4) and Eq. (5), respectively [14]. Nr is the rms error induced by the 
fluctuation of the readout noise in each pixel (with units of photoelectron counts). Vr is the 
sum of the readout noise’s photoelectron count among all of the pixels within the 
corresponding subaperture. 
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2
cs is the variance of the centroid fluctuation in one direction ( X or Y), induced by the 

photon shot noise of signal itself, and 2
cr  is the variance of the centroid fluctuation in one 

direction ( X or Y), induced by the readout noise of the detector. 2
cr and 2

cs  are both 

defined in pixel2 units. sG  is the equivalent Gauss width of the signal spot and is defined in 

pixel units by the expression: 

 s
f

G
l D

  (6) 

where η is the positive constant.  η is 0.353 when the diffraction aperture is square and 0.431 
when the diffraction aperture is circular. 

Based on Eq. (3), the centroid position in the X direction can be expressed by Eq. (7). The 
detailed derivation process of this expression is shown in  appendix 1.1. 

 
1

1 1
c cs cb

sbr
x x x

sbr sbr
 

 
 (7) 

where cx  is the calculated centroid position of the signal in the X direction, csx  is the real 

centroid position of the signal in the X direction, and cbx  is the centroid position induced by 

the total noise, except for the signal in the X direction, where the total noise largely includes 

the readout noise of the detector and the heterogeneous light noise. 

, ,/n m n msbr S B      , <Snm> is the collective average of the signal intensity in the 

(n,m)th pixel, and <Bnm> is the collective average of the total noise intensity in the (n,m)th 

pixel (with units of ADU). 

www.intechopen.com



 
Topics in Adaptive Optics 

 

200 

Based on the error transition principles, the rms error of centroid measurement induced by 
random noise in the X direction can be written in Eq. (8) as: 

 2 2 2 2 1/21
[( ) ( ) ]

1 1
c cs cb

sbr

sbr sbr
   

 
 (8) 

where cs  is the rms error of centroid measurement in the X direction induced by the 

signal’s photon shot noise  and cb is the rms error of centroid measurement in the X 

direction induced by all the other noise. The signal is mostly comprised of heterogeneous 

light and readout noise. 

If there were no heterogeneous light and readout noise in the detection area, the signal’s 

photon shot noise should be the unique noise resource which affects centroid measurement. 

Based on Eq. (4) and Eq. (6), when the discrete sampling error of the detector is ignored, the 

rms error of angular position in the X direction caused by the photon shot noise of the signal 

can be written as: 
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When the photon shot noise of the signal is small compared with the readout noise and the 

heterogeneous light noise, the heterogeneous light noise and the readout noise become the 

primary noise, which affects centroid calculation. When the heterogeneous light noise can be 

considered as a uniform noise, like the readout noise of the detector, it exists in each pixel 

and it has the same fluctuation characteristics among the pixels in the detection area. So, the 

noise in one pixel (including the heterogeneous light noise and the readout noise of the 

CCD) can be summed and described by bN . bN  is defined as the rms error of the 

heterogeneous light noise and the readout noise photoelectron count in one pixel, and it has 

the same fluctuation characteristics as the readout noise of the detector. bN  has units of 

ADU. Subsequently, the rms error of centroid measurement in the X direction caused by the 

heterogeneous light noise and the readout noise of the CCD can be written as: 
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 (10) 

where max( ) /nm bsnr S N , b nmV B , and max( )nmS is the signal’s peak intensity. snr is 

defined as the ratio of the signal’s peak intensity to the rms error induced by the 

background noise, Bnm is the average intensity of noise in the (n, m)th pixel, which includes 

the heterogeneous light noise and the readout noise of the CCD. ( , , , )D l fC   is the light spot 

constant which is defined as the ratio of the total signal intensity to the signal’s peak 

intensity in the subaperture, and its value can be measured or calculated exactly 

by ( , , , ) /max( )D l f nm nmC S S  . 
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The intensity distribution of the signal’s light spot at the focal plane of the subaperture can 
be calculated by circular or square aperture diffraction approximations. On the other hand, 
the Gauss distribution can also be used to approximately describe the intensity distribution 

of the light spot. The analytic expressions of ( , , , )D l fC   are described in Eq. (11) with 

different approximation conditions. The detailed derivation process is shown in appendix 

2.1~2.3. The value of ( , , , )D l fC  can be calculated by Eq. (11) . 
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where 1 1 1
/ 2 4 4

sin( ) sin( ) ,
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D D l Dl Dl
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     , n is a positive constant, 

and θ is the diffraction angle.  

When the direct current part of the noise (including the heterogeneous light noise and the 

readout noise of the CCD) is subtracted, it can be considered as white noise, and 0nmB  . 

Then, the standard deviation of the angular position error in the X direction caused by noise 

can be described by Eq. (12): 
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When 1 2 ,L L L   the Eq. (12) can also be expressed by Eq. (13) 
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where SNR has the same definition as in Eq. (1). 2
bL N  is the sum of the rms error of total 

noise among all of the pixels within the detection area, and expresses the total intensity of 

noise fluctuation. Vs1/2 expresses the photon shot noise induced only by the incoming signal. 
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ω is the position error constant , and it is weighted by the intensity of background noise and 

the intensity of the signal’s photon shot noise (defined in Eq. (14)): 

 
2

2 2 1/2
2 1/2

/
[( 1) /(12 )]
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Substituting Eq. (13) and Eq. (9) into Eq. (8), with the assumed condition that there are no 
correlations among the photon shot noise of the signal, the heterogeneous light noise, and 
the readout noise of CCD, then the total rms error of angular position in the X direction 
caused by random noise can be obtained: 
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 (15) 

Eq. (15) is the desired result which can be used to precisely describe the angular position 

error of a Shack-Hartmann wavefront sensor caused by random noise, and therefore, the 

centroid algorithm is used to calculate the spot position of the incoming light. Generally, 

when the ideal detector with very small readout noise is used and there is no background 

light noise ( 0 ), the photon shot noise of the signal becomes the theoretical limits 

imposed on the angular position measurement. Eq. (9) showed this expression. In practice, 

the theoretical limits may not be achieved for the hardware and environment limitations. 

When the photon shot noise is small enough compared with the heterogeneous light noise 

and readout noise, it could be ignored in Eq. (15), and Eq. (13) could be used to describe the 

angular position error caused by the random noise approximately. Commonly, it has 

enough accuracy. The position-error constant ω described in Eq. (14) is concerned with the 

scale of the discrete detector arrays in the detection area, the noise characteristics of the 

detector, and the system parameters. Clearly, the formula based on a quadrant detector 

obtained by Tyler and Fried is only a special case in this article. On the other hand, the 

formula obtained in Eq. (13) is suitable to evaluate the angular position error for both a 

circular and square aperture. 

3. Wavefront measurement error caused by centroid position random error 

In this chapter, Zernike modes are used as the basis for wavefront reconstruction. The 
wavefront measurement error can be written as [13, 19] 
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 (16) 

where   is the wavefront measurement error induced by centroid position random error, 

  is the wavefront to be measured, '  is the wavefront detected, P is the total number of 

Zernike modals, aj is the jth Zernike coefficient, and Z expresses the Zernike polynomial. 
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Then, the mean-square of wavefront measurement error can be written as shown in Eq. (17) 

[20]. The angle brackets denote a collective average. 
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Based on the principles of the Zernike modal wavefront reconstruction algorithm [20], the 
Zernike-coefficients vector of a wavefront can be obtained: 

 A E H   (18) 

where E is the modal reconstruction matrix and H is the wavefront slope vector.  

Therefore, the variance of the modal Zernike coefficients that describe the wavefront 

measurement error can be written as: 
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where Q is the total number of subapertures, ,j ke is the element of E, and kh  is the error of 

the kth slope element. 

In order to simplify analysis, we assume that there are no correlations among the different 

slope vectors in the corresponding subapertures and the intensity of the signals  are uniform 

and isotropic among the different subapertures Subsequently, the following expression can 

be obtained: 
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where 2
c is the variance of centroid position random error induced by random noise, f is 

the focal length of lenslets, ( , )x y is the Kronecker delta function [21], and j and k are the 

subapertures which are connected with the slope hk and hl. Substituting Eq. (20) and Eq. (19) 

into Eq. (17), the mean-square of wavefront measurement error can be written as: 
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where g is the wavefront average slope of the corresponding subaperture in the unit circle, 

2
,2 1 ,2

1

( , ) ( )
Q

j k j k
k

K j Q e e


  . It is concerned with the subaperture segmentation number and 

the distribution of subapertures. 0f  describes the normalized relationship between the real 

wavefront slope vector and the normalized wavefront slope vector in the unit circle, and  is 
defined by the expression: 

 0
2

D
f





 (22) 

where D is the diameter of the aperture and λ is the measuring wavelength. 

Then, the root mean square value of wavefront measurement error caused by centroid 
position random error is obtained: 
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Eq. (23) is the desired expression used to evaluate the wavefront measurement error 

associated with the centroid position random error. c is the standard deviation in pixels of 

centroid position random error caused by random noise. The formula described in Eq. (23) 

can help us to decide what the wavefront measurement error will be when the centroid 

position randomly fluctuates due to random noise, and it may be a factor that must be 

considered during the design of the SHWFS. 

4. Wavefront measurement error analysis based on Zernike modal 
reconstruction 

In a Shack-Hartmann wavefront sensor, the angular position can be calculated from the 

centroid position in each subaperture and is proportional to the centroid position. The 

relationship between centroid and angular position can be described by 

 
c

f

   (24) 

In Eq. (15), the angular position error caused by random noise was obtained. In Eq. (23), the 

wavefront error caused by random centroid error was obtained. Therefore, the total 

wavefront measurement error can be described by Eq. (25): 
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In this formula, we can determine the wavefront measurement error concerned with SNR 
(see the definition in Eq. (1)), aperture of lenslets (see the definition in Eq. (6)), counts of 
effective signal, and the reconstruction matrix parameters (see the definition in Eq. (19)).   

5. Conclusions 

In this chapter, the exact formula (Eq. (25)), which evaluates the Shack-Hartmann wavefront 
sensor’s measurement error associated with the signal to noise ratio of effective signal, was 
derived in detail. This study was performed based on a modal wavefront reconstruction 
with Zernike polynomials, and provided an exact and universal formula to describe the 
wavefront measurement error of a Shack-Hartmann wavefront sensor with discrete detector 
arrays. It is critical to an adaptive optics system when the Shack-Hartmann sensor is used as 
the wavefront sensor, and it provides a reference when designing a Shack-Hartmann 
wavefront sensor and calculating its reconstruction matrix. 
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