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1. Introduction 

Dual energy X-ray absorptiometry (DXA) has been used to study dry bones such as spine, 

femur, jaw... to detect the first onsets of the ossification centers; In clinical practice, DXA is 

widely used for diagnosis and evaluation of osteoporosis, and a new generation of DXA 

scanners offers software for performing vertebral morphometry analysis (Blake & Fogelman, 

1997). Also, many bone analyses have been performed on experimental animals using DXA 

(Tsujio et al., 2009). 

Studies on the spatial distribution of bone mineral density (BMD) in the whole bone, 

reflecting its morphological pattern are scarce (Gómez-Pellico et al., 1993 & Fernández-

Camacho et al., 1996). In addition, there are just few studies regarding the anthropometric 

characteristics of the human ulna (Weber et al., 2009). 

In order to improve the treatment of the elbow’s injury, knowledge related to the resistance 

of the bone is important to understand the origin of the fractures as well as to improve 

elbow fracture recovery (Heep, 2007). Most studies investigate the humeral component, 

while the ulna component is not being studied as much (Goto, 2009). 

In order to develop an implant that carries out the mechanical characteristics of a native 

bone, we must study the trabecular architecture of the human ulna proximal extremity.  

1.1 Brief anatomy of the human ulna 

The ulna is a long bone, placed at the medial side of the forearm, parallel to the radius. It is 

divisible into a body and two extremities. Its upper extremity, of great thickness and 

strength, forms a large part of the elbow-joint; the bone diminishes in size from above 

downward, its lower extremity being very small, and excluded from the wrist-joint by the 

interposition of an articular disk (the ulna articulates with the humerus and radius). 

The upper extremity presents two curved processes, the olecranon and the coronoid 
process; and two concave, articular cavities, the trochlear and radial notches. The 
olecranon is a large, thick, curved eminence, situated at the upper and back part of the 
ulna. The coronoid process is a triangular eminence projecting forward from the upper 
and front part of the ulna. Its base is continuous with the body of the bone, and of 
considerable strength. 
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Its antero-inferior surface is concave, and marked by a rough impression for the insertion of 
the brachialis muscle. The trochlear notch is a large depression, formed by the olecranon 
and the coronoid process, and serving for articulation with the trochlea of the humerus. The 
notch is concave from above downward, and divided into a medial and a lateral portion by 
a smooth ridge running from the summit of the olecranon to the tip of the coronoid process. 
The radial notch is a narrow, oblong, articular depression on the lateral side of the coronoid 
process; it receives the circumferential articular surface of the head of the radius. The lower 
extremity of the ulna is small, and presents two eminences; the lateral and larger is a 
rounded, articular eminence, termed the head of the ulna; the medial, narrower and more 
projecting is a non-articular eminence named the styloid process. 

The ulna is ossified from three centers: one for the body, the inferior extremity, and the top 

of the olecranon. Ossification begins about the eighth week of fetal life. About the fourth 

year, a center appears in the middle of the ulnar head, and soon extends into the styloid 

process. About the tenth year, a center appears in the olecranon near its extremity. The 

upper epiphysis joins the body about the sixteenth year and the lower about the twentieth. 

2. Objective 

In this chapter, we set out to show, by means of densitometric analysis with dual energy X-

ray absorptiometry (DXA) the internal design of the human ulna, to verify that the bone 

tissue distribution is not homogeneous and that this corresponds to the trabecular 

architecture of the bone. 

3. Material and method 

A random sample of 41 dry right ulnas from the skeletal collection of the Anatomy and 

Embriology Department of the University of Alcala was studied excluding those bones 

which presented any alterations or damage. A Norland XR-26 densitometer, software 2.5 

(Norland Co., Fort Atkinson, WI, USA; Emsor SA, Madrid) was used for all studies. Each 

scan session was preceded by a calibration routine using a standard calibration block 

supplied by the manufacturer.  

The bone is placed well centred on the examining board. It is important to check for stability 

so as not to vary its position during the study. Cotton gauze may be needed for an optimal 

stabilization. The bones are exposed directly, without any water or other materials that may 

resemble soft tissue. 

For the densitometric analysis of the human ulna structure two projections were performed: 

lateral and antero-posterior.  

For the study in two positions, the reference will be the ridge of the trochlear notch of the 

epiphyseal ulna (incisura trochlearis) which corresponds to the throat of the trochlea –

humerus- (Gómez-Oliveros, 1962). 

 Anteroposterior Position: The axis of the ridge of the trochlear notch is perpendicular to 
the axis of the examining board. 

 Lateral Position: The axis of the ridge of the trochlear notch is parallel to the axis of the 
examining board. 
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To begin the scan, (figure 1) the starting point was placed 0, 5 cm directly above the upper 
extremity. A baseline point was marked under the lower extremity. A third point (goal line) 
was marked 1 cm from the more lateral part of the bone. 

 

Fig. 1. Definition of the exploration area  

This technique has high accuracy and precision, approaching 1%. The speed of scanning was 
60 mms, with an interlinear space of 1 mm and point by point resolution of 1 mm horizontal x 
1 mm vertical. The defined exploration was completed as outlined in an average time of 10-15 
min. Scan acquisition and scan analyses were performed by one investigator (figure 2). 

 

Fig. 2. Densitometric image of the ulna. 

Dry ulna calculations were performed for the following magnitudes: 

BMD: Bone mineral density, in grams / cm2. 
BMC: Bone mineral content, in grams. BMC is defined as the mass of 

mineral  contained in an entire bone or as the mass of mineral per 
unit bone length. Bone mineral content is obviously a size-
dependent parameter (Schoenau, 2004). 
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AREA: Measured area, in square centimetres (cm2). 
LENGTH: Total length of the bone, in centimetres (cm).  
WIDTH: Total width of the bone, in centimetres (cm). 

For the purpose of this survey, in both projections five equal regions of interest (ROI) were 
selected: proximal (ROI-1), proximal-intermediate (ROI-2), intermediate (ROI-3), distal-
intermediate (ROI-4) and distal (ROI-5). The total region corresponded to the area of the full 
length and height of the bone (figure 3). 

All statistical calculations were performed using Statgraphics Plus (version 5.1) and SPSS 
(Statistical Package for Social Sciences), version 15.0. The means and standard deviation 
(SD) for bone mineral density (BMD) and bone mineral content (BMC) were calculated. The 
bone densities and the bone contents of the various regions of the ulna in the 2 projections 
were compared by Student’s t test for paired samples. 

 

Fig. 3. Regions of interest. 

4. Results 

DXA indicates that the higher BMD is in the proximal-intermediate region (R2), which is the 
part of the ulna that bears the higher force of traction. The higher BMC is found in the 
proximal region (R1) which corresponds to the coronoid process. Lower BMD and BMC are 
found in the distal region (R5). The total BMD shows significant statistical differences (p ≤ 
0.001), which indicates the heterogeneous nature of the distribution of bone mass in the 
studied bone. 

In tables 1 - 4 we present the statistic descriptions of the densitometry variables studied in 
both. 
 

Projection A-P Mínimum Máximum Mean SD 

Total BMD 0,40 0,97 0,69 0,14

Total BMC  13,10 46,40 28,75 8,63

Total Area 30,73 51,54 41,05 5,70

Total Lenght 20,40 27,90 24,51 1,66

Total Width 2,55 4,35 3,35 0,40

Table 1. Descriptive statistics of the total ulna in projection antero-posterior (n=41). SD: 
Standard deviation. 
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Projection LAT Mínimum Máximum Mean SD 

Total BMD 0,38 0,94 0,67 0,14 
Total BMC  13,15 46,74 28,72 8,50 
Total Area 32,81 52,51 41,84 5,25 
Total Lenght 20,40 28,05 24,50 1,66 
Total Width 3,15 6,60 4,08 0,59 

Table 2. Descriptive statistics of the total ulna in projection lateral (n=41). SD: Standard 
deviation. 

 

 ROI 1 ROI 2 ROI 3 ROI 4 ROI 5 

 Media SD Media SD Media SD Media SD Media SD 

AP-Area 10,58 1,57 9,08 1,33 8,12 1,42 7,02 1,01 6,22 0,94 
AP-Lenght 4,88 0,33 4,88 0,33 5,03 0,41 4,88 0,33 4,88 0,33 
LAT-Area 11,68 1,52 8,94 1,24 8,09 1,07 6,98 0,82 6,24 1,00 
LAT-Lenght 4,88 0,33 4,88 0,33 5,03 0,43 4,88 0,33 4,88 0,33 

Table 3. Descriptive statistics of the regions of interest in projections antero-posterior (AP) 
and lateral (LAT). n=41. SD: Standard deviation. 

  

Table 4. BMD (in grams/cm2) and BMC (in grams) of the regions of interest. 

5. Discussion 

Dual energy X-ray absorptiometry (DXA) allows us to gather quantitative information on 
bone mineral content (BMC) and bone mineral density (BMD) of the bone (Wahner et al., 
1985). As previously reported (Hvid et al., 1985), there is a close relationship between bone 
mass and bone strength. 

In literature, there are various studies on long bones, such as the femur, the tibia, the 
humerus and the radius (Wahner et al., 1985; Kawashima & Uhthoff, 1991; Gómez-Pellico et 
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al., 1993; D’Amelio et al., 2002) but we haven’t found any references that study the 
distribution of the BMD in the ulna that describes it´s construction systematics . 

According to Wolf’s law (Viladot , 2001), the bone adapts its size, shape and structure to 
the mechanical requirements it receives. Furthermore, Pauwels (Pauwels, 1980; Miralles, 
1998) suggests that the mass of the cortical bone is distributed along its axis 
proportionally to the amount of tensions it receives. In our analysis, we find a wider BMD 
in the intermediate-proximal region (ROI-2), which corresponds to the region of the bone 
exposed to the mechanical flexions and to the transmission of weight charges while the 
superior member is in the extended position. Three different soft tissue structures insert in 
or attach to the coronoid process, the articular capsule, the tendon of the brachialis 
muscle, and the anterior band of the ulnar collateral ligament (Fowler & Chung, 2006). 
Furthermore, the transmission of weight charges travels through the coronoid apophysis, 
situated in the proximal region, which present the wider BMC in both projections, 
however, DXA is unable to distinguish between cortical and trabecular bone (Griffith & 
Genant, 2008).  

This and other similar studies will contribute to a better understanding of stress related 

fractures which are quite scarce in the ulna and cannot easily be found in literature (Chen, 

WC et al., 1991). Most fractures occur in the middle third of the diaphysis and surrounding 

areas as a result of mechanical stressing forces of the forearm in a specific position, 

especially in athletes (Rettig, 1983).  

Some authors have agreed on the homogeneous nature of the different diaphysarial regions 

of the long bones that they study (femur, humerus and tibia) (Gómez Pellico et al., 1993; 

Fernández-Camacho et al., 1996). As far as the ulna is concerned, BMD displays a more 

heterogeneous distribution, since we find statistical differences in all studied regions and on 

the entire bone. 

In studies of the dry femur with DXA, epiphysiary regions are those with less BMD which, 

added to the mechanical requirements of the physiology of the articulation, would explain 

how hip ostheoporotic fractures occur (Gómez-Pellico et al., 1993). Furthermore, most 

studies with DXA are based on BMD variations related to loss of bone mass of pathologic 

nature (McCarthy et al., 1991). This also happens with “in vivo” studies of the radius. Due to 

the high rate fractures of the distal radius in children, the use this bone to measure BMD, is 

increasing, essentially as thus to predict the risk of fracture (Kalkwarf et al., 2011). The study 

of the dry radius with DXA would define its construction systematics. 

The results obtained with the DXA technique showed that BMD agrees with the 

arrangement of the trabecular system in the human ulna, previously described by some 

authors (Testut & Latarjet, 1949; Gómez-Oliveros, 1962). 

In addition, fractures of the coronoid process are rarely seen as an isolated injury. They are 

encountered more frecuently in association with radial head fractures (Weber et al., 2009). 

Due to frequent complications associated with reconstructive surgery for the elbow, implant 

loosening, periprosthetic fracture, implant failure… (Kim, 2011), that remains higher than 

arthroplasty of other joints (Sanchez-Sotelo, 2011), the findings that result from this study 

could contribute to the improvement of elbow prosthesis.  
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6. Conclusions 

The human ulna presents a heterogeneous distribution of the BMD. This study confirms that 
the higher mechanical requirements in the ulna are in the proximal extremity. The 
differences found in the ulna BMD allows us a better understanding of the construction 
systematics and their functional activity. We conclude that bone densitometry, measured by 
the DXA technique, is useful for assessing trabecular architecture of the human skeleton. 
This study may provide some useful information on plate application for the treatment of 
the elbow injuries. 
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