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1. Introduction 

Disability leads to immobilisation associated with profound changes in body composition. 
The potential risks involved with these changes i.e. loss of lean tissue mass (LM) and bone 
mineral density (BMD) vs. gain in fat mass (FM) in body composition have implications for 
the health of the disabled individuals (Jones et al., 1998). Body fat has been identified as a 
significant predictor of mortality in humans making body composition measurement to 
quantify nutritional and health status an important issue for human health. (Seidell et al., 
1996; Bender et al., 1998; Van Der Ploeg et al., 2003). Moreover, some disorders such as 
carbohydrate intolerance, insulin resistance, lipid abnormalities, and heart disease occur 
prematurely and at a higher prevalence in disabled populations may be related to adverse 
changes in body composition that result from immobilization and skeletal muscle 
denervation (Spungen et al., 2003). 

In traumatic and pathological lesions of the central nervous system (CNS) there are 
differences according to the evolution or not of the lesion (i.e. progressive multiple sclerosis 
vs. complete paraplegia), the type of injury (i.e. lesion with a level of injury vs. upper motor 
neuron pyramidal lesion), life expectancy, the residual mobility and functionality, the ability 
to walk and stand (i.e. incomplete paraplegia vs. quadriplegia vs. high-low paraplegia) and 
drug treatment (i.e. frequent corticosteroid therapy in multiple sclerosis vs. long-term 
therapy with anticoagulants in paraplegia). In addition there are differences in the degree of 
spasticity which is likely to play a regulatory role in maintaining bone density (Dionyssiotis 
et al., 2011a). We need to take into account the element of fatigue and muscle weakness in 
disabilities, especially in diseases like multiple sclerosis, which significantly reduces the 
mobility of these patients (Krupp et al., 2010). 

The relative difference in energy expenditure between individuals with multiple sclerosis 
(MS) and able-bodied subjects is probably lower than the relative difference in physical 
activity, because individuals with MS have a higher energy expenditure of physical activity 
(Olgiati et al., 1988). Reduced physical activity (and probably reduced energy expenditure) 
in MS need to be accompanied by a reduction in energy intake otherwise body fat will 
increase (Lambert et al., 2002). Subjects with those motor disorders often face problems of 
depression and limit mobility (Dionyssiotis, 2011b). Moreover, in children with cerebral 
palsy (CP) studies suggest that increased stretch reflexes and muscle tone, weakness of 
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involved musculature, and severe limitation of movement reduce the capacity to perform 
normal movements creating ambulation barriers limiting physical activity. The dependency 
on mobility devices, common in all disabilities, and the frequent periods of immobilization 
after multiple operative procedures contribute to the hypoactivity status of such children. It 
could be assumed that, under these conditions, body composition may be significantly 
compromised (Chad et al., 2000).  

Studies found that lean mass of the contralateral limb was lower compared to the ipsilateral 
limb in upper motor neuron injury, as occurs in stroke (Ryan et al., 2000; 2002). Similar 
findings of reduced muscle mass and increased intramuscular fat have been also published 
in individuals with incomplete spinal cord injury (SCI) (Gorgey et al., 2007) suggesting that 
reduced muscle mass is fundamentally related to poor fitness and physical performance 
capacity after stroke (Hafer-Macko et al., 2008). 

On the other side the clinical equivalence of diseases with different physiopathology, 
location, evolution, etc. could be similar; i.e. a severe form of MS can result in a wheelchair 
bound patient a clinical figure equivalent to paraplegia or a MS patient may have a more 
appropriate walking gait pattern vs. a patient with incomplete paraplegia but may also be 
unable to walk at all, is bedridden and vice versa (Dionyssiotis, 2011b; 2011c; 2011d). In 
addition to these differences and according to osteoporosis the role of factors which do not 
change, such as race or gender of patients has not been yet clarified, although there are few 
studies in women debating that bone mass in women with disabilities is more affected than 
men (Smeltzer et al., 2005; Coupaud et al., 2009).  

Therefore, the purpose of this chapter was to present the bone-mineral density, bone-

mineral content, and bone-mineral-free lean and fat tissue mass alterations of ambulatory 

and non-ambulatory subjects with disabilities of the central nervous system. 

2. Body composition measurements 

2.1 Anthropometric and various techniques of body composition measurements 

In a study which investigated a chronic spinal cord injury (SCI) population with paraplegia 

(Dionyssiotis, 2008a, Dionyssiotis et al., 2008b) values of body mass index (BMI, kg/m2) did 

not present statistical significance in relation to the controls, which is a finding in line with 

the literature (Maggioni et al., 2003; Mamoun et al., 2004).. Nevertheless, there are studies 

which demonstrate the usefulness of BMI as an indicator of obesity, in body composition in 

people with spinal cord injury (Gupta et al., 2006). These studies, however, included both 

tetraplegics and middle-aged people unlike the Greek one which included relatively young 

individuals (Dionyssiotis et al., 2008a). Whether the criteria of BMI may assess obesity in 

people with spinal cord injury the latest studies show the opposite (McDonald et al., 2007). 

BMI of a male paraplegic group was slightly greater compared to a tetraplegic one and 

distribution of BMI by level of injury was similar with 37.5% and 40.5% of the male 

tetraplegic and male paraplegic groups, respectively, falling into the recommended BMI 

range. Approximately 50% in each male group were overweight by BMI, and 12.5% and 

10.8%, respectively, were classified as obese. Overall, when compared with the general 

population-observed distribution by BMI, a greater proportion of men with SCI fell into the 

desirable BMI range and fewer fell into the obese category (Groah et al., 2009). 
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No differences were found in BMI between paraplegics in the acute phase of injury and 
controls, which is a finding in accordance with other studies in which, despite the same 
BMI, the body composition and the distribution of fat and fat free mass were altered in 
patients with spinal cord injury, with the fat free mass being statistically significantly lower 
in paraplegic patients in total body composition and in the lower, but not the upper limbs. 
As far as the fat mass is concerned, it was statistically significantly higher (kilograms and %) 
in the total body composition in the upper and lower limbs (Maimoun et al., 2006). 

These findings show that using the BMI does not contribute substantially in determining the 
body composition of paraplegics and lowers the percentage of fat in this population, finding 
that agrees with other studies and shows that the anthropometric measurement with BMI in 
paraplegics, underestimates fat in body composition when measurements are compared 
with healthy subjects (Jones et al., 1998). 

Body mass index is a very simple measurement of fat; however it does not distinguish the 

individual components of weight. The applicability of conventional BMI cut off values is 

into question (Buchholz, 2005; McDonald et al., 2007). BMI is an insensitive marker of 

obesity in subjects with SCI and measuring fat with BMI in chronic paraplegic patients is not 

enough to determine subject’s percentage of fat in the body (Olle et al., 1993). 

To standardize or index physiological variables, such as resting metabolic rate and power 

fat free mass (FFM) is usually used (Van Der Ploeg et al., 2003). Skeletal muscle represents 

50% of the non fat component in the total body (Clarys et al., 1984; Modlesky et al., 2004) 

and exact quantification of the amount of skeletal muscle is important to assess nutritional 

status, disease risk, danger of illnesses, physical function, atrophic effects of aging, and 

muscle-wasting diseases (Forbes, 1987; Mojtahedi et al., 2008).  

Because muscle wasting is a common sign of cerebral palsy (CP), even in well nourished 

children, the validity of using muscle wasting as evidence or measurement of malnutrition 

in CP is in doubt. Studies found that the triceps, midthigh, and calf skinfold thicknesses of 

the affected side were greater than those of the no affected side among children with 

hemiplegic CP (Stevenson et al., 1995). Useful information regarding fat provide triceps, 

subscapular skinfolds and arm-fat area (Patrick & Gisel, 1990). Other studies support the 

concept that the validity of skinfold thickness as an assessment of limb fat storage is 

dependent on the preservation of limb muscles (Ingemann-Hansen T et al., 1977) and 

suggested good sensitivity and specificity of triceps skinfold thickness for predicting mid-

upper arm fat area probably were attributable to good preservation of mid-upper arm 

muscles among children with CP (Samson-Fang et al., 2000).  

In disabled children techniques for measuring skinfolds are well established and 
standardised (Lohman et al., 1988) and equations are available for calculation of body fat 
from skin fold thickness (Slaughter et al., 1988) although unvalidated in this population, as 
are normative values for skinfold thickness (Frisancho, 1981; Kuperminc & Stevenson, 2008). 
Consequently, use of skinfold thickness as a measurement, especially for the affected limb, 
should be used with discretion in the assessment of children with CP, who tend to have 
muscle wasting. 

In cerebral palsy neither bioelectrical impedance analysis nor predictive equations for 

skinfold thickness generated from normal, able-bodied adults accurately determined 
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percentage body fat (Hildreth et al., 1997). Body mass index (BMI), triceps skinfold 

thickness, subscapular skinfold thickness, suprailiac skinfold thickness, and circumferences 

of the biceps, waist, forearm, and knee were all significantly correlated with percentage 

body fat (Bandini et al., 1991).  

BMI in patients with MS was statistically less compared to age comparable controls 
(Formica et al., 1997). In a recent study both total body fat and mass percent showed 
consistent significant dependence from BMI, as among normal subjects. Multiple linear 
regression analysis of bone mineral percent at all studied sites showed consistent 
dependence from BMI (increased with higher BMI) for both patient and control groups 
(Sioka et al., 2011). 

Changes in body composition in spinal cord injured subjects can be assessed with various 
techniques including isotope-labelled water (Jones et al., 1998) total body potassium 
counting (Lussier et al., 1983; Spungen et al., 1992) anthropometric measures (Bulbulian et 
al., 1987) hydrodensitometry (Lussier et al., 1983; Sedlock, 1990) dual photon absorptiometry 
(DPA) (Spungen et al., 1992; Changlai, 1996) and dual energy X-ray absorptiometry (DXA) 
(Jones et al., 1998). However, some of these methods are not particularly suitable for use in 
the SCI population. 

The hydrodensitometric model was regarded as the “gold standard” for body composition 
assessment. This model partitions the body into two compartments of constant densities [fat 
mass: 0.9007 g/cm3 and FFM: 1.100 g/cm3] and assumes that the relative amounts of the 
FFM components [water, protein, protein, bone mineral (BM), and non-BM] are fixed 
(Brozek et al., 1963; Van Der Ploeg et al., 2003). Hydrodensitometry is clearly inappropriate 
for individuals who deviate from these fixed and/or assumed values (e.g., children, elderly, 
blacks, obese), and its application is, therefore, somewhat limited (Womersley et al., 1976; 
Schutte, 1984; Lohman, 1986; Fuller et al., 1996). 

Bioelectrical impedance analysis (BIA) has been used to measure cerebral palsy subjects. 
However, the inclusion of weight in the BIA predictive equation may reduce its accuracy in 
determining change in lean body mass (Forbes et al., 1992). The inability of BIA to accurately 
predict percentage body fat in the sample may be related to several factors. In the BIA 
method where the impedance of a geometrical system (i.e., the human body) is dependent 
on the length of the conductor (height) and its configuration, it is almost impossible to 
measure accurately height in subjects with CP because of their muscle contractures. An 
over- or underestimation of height by 2.5 cm can result in a l.0-L error in the estimation of 
TBW, producing a small error in the estimation of percentage body fat (< 5%). The second 
major problem is body asymmetry which renders the assumption of a symmetrical 
configuration of the human body invalid in this case. (National Institutes of Health 
Technology Assessment Conference Statement, 1994; Hildreth et al., 1997). 

Isotope dilution measures the water compartment of the whole body rather than a single 
area assumed to mimic the composition of the whole body. Thus, the use of a stable isotope 
to measure body composition is ideal for people with CP because it is non-invasive, does 
not require the subject to remain still for the measurement, and is independent of height and 
body symmetry. However, the prohibitive cost of the isotopes and the need for a mass 
spectrometry facility and highly trained technicians make this method impractical for 
routine clinical use (Hildreth et al., 1997). 
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To determine whether bioelectrical impedance analysis and anthropometry can be used to 
determine body composition for clinical and research purposes in children with cerebral 
palsy 8 individuals (two female, mean age=10 years, mean gross motor function 
classification=4.6 [severe motor impairment]) recruited from an outpatient tertiary care 
setting underwent measurement of fat mass, fat-free mass, and percentage body fat using 
BIA, anthropometry (two and four skinfold equations), and dual-energy x-ray 
absorptiometry. Correlation were excellent for determination of fat-free mass for all 
methods (i.e., all were above 0.9) and moderate for determination of fat mass and percent 
body fat (range=0.4 to 0.8). Moreover, skinfolds were better predictors of percent body fat, 
while bioelectrical impedance was a better predictor for fat mass (Liu et al., 2005). On the 
contrary another study investigated the pattern of body composition in 136 subjects with 
spastic quadriplegic cerebral palsy, 2 to 12 years of age, by anthropometric measures, or by 
anthropometric and total body water (TBW) measures (n = 28), compared with 39 control 
subjects. Body composition and nutritional status indicators were significantly reduced. 
Calculation of body fat from two skinfolds correlated best with measures of fat mass from 
TBW (Stallings et al., 1995; Kuperminc & Stevenson, 2008). 

Magnetic resonance imaging (MRI) provides remarkably accurate estimates of skeletal 
muscle in vivo (Modlesky et al., 2004). MRI and also quantitative computed tomography 
(QCT) have been validated in studies of humancadavers in the assessment of regional 
skeletal muscle (Mitsiopoulos et al., 1998). Although, these devices have disadvantages of 
high radiation exposure and are expensive.  

2.2 Dual-energy X-ray absorptiometry (DXA) 

Recently, dual-energy X-ray absorptiometry (DXA) has gained acceptance as a reference 
method for body composition analysis (Mahon et al., 2007; LaForgia et al., 2009). Originally 
designed to determine bone density, DXA technology has subsequently been adopted for 
the assessment of whole body composition and offers estimation rapidly, non-invasively 
and with minimal radiation exposure (Van Der Ploeg et al., 2003; Dionyssiotis et al., 2008a). 
Moreover, is well tolerated in subjects who would be unable to tolerate other body 
composition techniques, such as underwater weighing (hydro-densitometry) (Laskey, 1996). 
DXA software determines the bone mineral and soft tissue composition in different regions 
of the body being a three-compartment model that quantifies: (i) bone mineral density and 
content (BMD, BMC), (ii) fat mass (FM); and (iii) lean mass (LM), half of which is closely 
correlated with muscle mass and also yields regional as well as total body values (Rittweger 
et al., 2000) for example in the arms, legs, and trunk (figure 1). 

DXA analyzes differently the dense pixels in body composition. Soft tissue pixels are 
analyzed for two materials: fat and fat-free tissue mass. Variations in the fat mass/fat free 
tissue mass composition of the soft tissue produce differences in the respective 
attenuation coefficients at both energy levels. The ratio at the two main energy peaks is 
automatically calculated of the X-ray attenuation providing separation of the soft tissue 
compartment into fat mass and fat-free tissue mass (lean mass) (Peppler & Mazess, 1981; 
Pietrobelli et al., 1996). A bone-containing pixel is analyzed for "bone mass" (bone mineral 
content, BMC) and soft tissue as the two materials. Thus, the fat mass/fat free tissue mass 
of the soft tissue component of the bone pixels cannot be measured, but only estimated 
(Ferretti et al., 2001). 
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Fig. 1. Whole body and regional distribution of fat mass, lean mass, bone mineral content 

(BMC) and bone mineral density (BMD) from paraplegic subject thoracic 6 using whole 

body DXA (Norland X-36, Fort Atkinson, Wisconsin, USA) and values of measured 

parameters. Modified and translated with permission from Dionyssiotis, 2008a. 

The important issue on this is the investigation of distribution of bone mineral, fat and mass 

throughout the body. These changes induce the risk for diseases such as diabetes, coronary 

heart disease, dyslipidaimias and osteoporosis (Bauman et al., 1992; Bauman & Spungen, 

1994; Kocina, 1997; Garland et al., 1992). There is a need to quantify the alterations in body 

composition to prevent these diseases and their complications. Studies also reported that 

bone density measurements at one site cannot usefully predict the bone density elsewhere 

(Heymsfield et al., 1989) because different skeletal regions, even with similar quantities of 

trabecular or cortical bone, may respond variably in different physiopathological conditions 

(Laskey, 1996). 

In disabled conditions the accuracy of skeletal muscle measured by DXA may be 

compromised when muscle atrophy is present. A lower ratio of muscle to adipose-tissue-

free mass indicates a lower proportion of muscle in the fat-free soft tissue mass. Cross-

sectional area of skeletal muscle in the thighs after SCI is extensively reduced (Castro et al., 

1999). If this is the case muscle mass would be overestimated by prediction models that 

assume that muscle represents all or a certain proportion of the fat-free soft tissue mass, i.e. 
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in spinal cord injured subjects (Modlesky et al., 2004). DXA technique has been used in 

assessment of SCI and appears to be tolerated well by this population (Szollar et al., 1997; 

Uebelhart et al., 1995; Chow et al., 1996). 

 

Fig. 2. Whole body and regional distribution of fat mass, lean mass, bone mineral content 
(BMC) and bone mineral density (BMD) from control male subject using whole body DEXA 
Norland X-36 and values of measured parameters. Modified and translated with permission 
from Dionyssiotis, 2008a.  

3. Physiopathological context  

3.1 Spinal cord injury 

Spinal cord injury (SCI) always results in substantial and rapid bone loss predominately in 

areas below the neurological level of injury. The predominant finding of SCI on bone is a 

large loss of bone during the first year of injury (Spungen et al., 2003) and an ongoing 

demineralisation 3 years after trauma in tibia (Biering-Sörensen et al., 1988) with a 

progressive bone loss over 12 to 16 months prior to stabilizing (Lazo et al., 2001) was 

demonstrated. 

Cancellous bone is more affected than cortical bone after SCI. In a prospective study, six 
acute tetraplegics were followed up for 12 months, and the trabecular and cortical BMD’s of 
the tibia were found to be decreased by 15 and 7% (Frey-Rindova et al., 2000), while in 
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paraplegics trabecular metaphysical-epiphyseal areas of the distal femur and the proximal 
tibia are the most affected sites (Jiang et al., 2006). A cross-sectional study (Dauty et al., 2000) 
in SCI subjects demonstrated a significant demineralization at the distal femur (-52%) and 
the proximal tibia (-70%), respectively.  

There is no demineralization of the upper limbs in paraplegics. Studies reported a minor 

increase of BMD while at the lumbar spine trabecular bone demineralization remains 

relatively low compared to long bones cortical bone demineralization of (Dauty et al., 2000). 

Normal (Chantraine et al., 1986; Biering-Sorensen et al., 1988; Kunkel et al., 1993) or even 

higher than normal values were found (Ogilvie et al., 1993), a phenomenon known as 

“dissociated hip and spine demineralization” (Leslie, 1993) One reason for preservation of 

bone mass in the vertebral column is because of its continued weight-bearing function in 

paraplegics but also lumbar spine arthrosis, bone callus, vertebral fracture, aortic 

calcification, osteosynthesis material, etc. Degenerative changes in the spine may be the 

most possible reason to give falsely higher values of BMD (Dauty et al., 2000). 

 

Fig. 3. The picture depicts the analysis of bone mineral density (BMD) in high and low level 
paraplegics and controls. A statistically significant reduction in total BMD (p<0.001) and 
lower limbs BMD in body composition compared to able-bodied males was observed. On 
the contrary, upper limbs BMD was higher in low paraplegics and controls, an unexpected 
finding explained in the paper of Dionyssiotis et al., 2008b. Diagram modified and 
translated from Dionyssiotis, 2008a. 
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The neurological level of the lesion i.e. the extent of impairment of motor and sensory 
function is important, because tetraplegics are more likely to lose more bone mass 
throughout the skeleton than paraplegics (Tsuzuku et al., 1999). In paraplegics legs’ BMC 
was reduced vs. controls, independently of the neurological level of injury and negatively 
correlated with the duration of paralysis in total paraplegic group, but after investigation 
according to the neurological level of injury this correlation was due to the strong 
correlation of high paraplegics’ legs BMC with the duration of paralysis, meaning that the 
neurological level of injury determines the extent of bone loss (Dionyssiotis et al., 2009). The 
similar severity of demineralization in the sublesional area was shown between paraplegics 
and tetraplegics, and the extent of the bone loss may be variable (Demirel et al., 1998; 
Tsuzuku et al., 1999; Dauty et al., 2000). 

The duration of paralysis has an inverse relationship with leg percentage-matched BMD and 
trunk percentage-matched BMD (Clasey et al., 2004). In addition in complete paraplegics, 
with high (thoracic 4-7) and low (thoracic 8-12) neurological level of injury, upper limbs FM 
and lower limbs BMD were correlated with the duration of paralysis in total paraplegic 
group but after investigation according the neurological level of injury this correlation was 
due to the strong correlation of high paraplegics’ lower limbs BMD with the duration of 
paralysis. The explanation of this strong correlation could possibly lie on higher incidence of 
standing in the group of low paraplegics and direct effect of loading lower limbs while 
standing and walking with orthotic equipment. Moreover, the association of the duration of 
paralysis with parameters below and above the neurological level of injury (upper limbs 
FM) raises the question of the existence of a hormonal mechanism as an influential regulator 
in paraplegics’ body composition (Dionyssiotis, 2008a; Dionyssiotis et al., 2008b; 2009). 

Actually, little is known regarding the nature and time frame of the influence of complete 
SCI on human skeletal muscle because published data are coming from cross-sectional 
studies, where different groups with few subjects have been examined at different times, 
usually in the chronic phase of paralysis. Disuse was thought to be the mechanism 
responsible for the skeletal muscle atrophy in paraplegics, but muscle fibres following SCI 
begin to change their functional properties early post injury. Muscle fiber cross-sectional 
area (CSA) has been suggested to decline from 1 to 17 months after injury and thereafter to 
reach its nadir. Conversion to type II fibers has been suggested to occur between 4 months 
and 2 years after injury, resulting in even slow-twitch muscle becoming predominantly fast 
twitch thereafter (Castro et al., 1999). Metabolic enzymes levels in skeletal muscle might be 
expected to be reduced after SCI because of inactivation. In support of this contention, 
succinic dehydrogenase (SDH) activity, a marker of aerobic-oxidative capacity, has been 
reported to be 47–68% below control values in fibers of tibialis anterior muscle years after 
injury in support of this contention (Scelsi, 2001).  

The muscle atrophy in SCI is of central type and depends on the disuse and loss of upper 
connections of the lower motor neuron, sometimes associated to the loss of anterior horn 
cells and transinaptic degeneration. The last alteration may be responsible for the 
denervation changes seen in early stages post SCI. In the later stages (10-17 months post 
SCI) diffuse muscle atrophy with reduction of the muscle fascicle dimension is associated to 
fat infiltration and endomysial fibrosis. In all stages post SCI, almost all patients showed 
myopathic changes, as internal nuclei, fibre degeneration and cytoplasmic vacuolation due 
to lipid accumulation (Scelsi, 2001) 

www.intechopen.com



 
Dual Energy X-Ray Absorptiometry 84

It is evident that other co-factors as spasticity and microvascular damage, contribute to the 
induction of the marked morphological and enzyme histochemical changes seen in the 
paralyzed skeletal muscle (Scelsi, 2001). Small fibers, predominantly fast-twitch muscle, and 
low mitochondrial content have been reported years after injury in cross-sectional studies. 

These data have been interpreted to suggest that human skeletal muscle shows plasticity 
(Castro et al., 1999). 

On the contrary, force loss during repetitive contractions evoked by surface electrical 
stimulation (ES) of skeletal muscle in humans does not appear to be altered within a few 
months of injury (Shields, 1995) but it is greater a year or more after SCI (Hillegass & 
Dudley, unpublished observations). The greater fatigue, when evident, was partially 
attributed to lower metabolic enzyme levels (Scelsi, 2001). 

Muscular loading of the bones has been thought to play a role in the maintenance of bone 
density (de Bruin et al., 1999; Dionyssiotis et al., 2011d). However, the ability to stand or 
ambulate itself does not improve BMD or prevent osteoporosis after SCI. 

Controversial results have also been reported regarding the effect of spasticity on BMD in SCI 

paraplegics. A cross-sectional study of 41 SCI paraplegics reported less reduction of BMD in 

the spastic paraplegics SCI patients compared to the flaccid paraplegic SCI patients (Demirel et 

al., 1998). Others reported that spasticity may be protective against bone loss in SCI patients, 

however, without any preserving effect in the tibia (Dionyssiotis et al., 2011a; Eser et al., 2005). 

A possible explanation for that could lie in the fact paraplegics to be above thoracic (T)12 level 

with various degrees of spasticity according to the Ashworth scale. In addition, muscle spasms 

affecting the lower leg would mainly be extension spasms resulting in plantar flexion thus 

creating little resistance to the contracting muscles. Furthermore, the measuring sites of the 

tibia did not include any muscle insertions of either the knee or the ankle extensor muscles 

(Dionyssiotis et al., 2011a, 2011d). Other investigators also have not been able to establish a 

correlation between BMD and muscle spasticity (Lofvenmark et al., 2009). 

The hormone leptin is secreted by fat cells and helps regulate body weight and energy 
consumption (Fruhbeck et al., 1998). The percentage of fat in people is positively correlated 
with the amount of leptin in the circulation (Maffei et al., 1995). In SCI, when compared with 
healthy subjects, higher levels of leptin have been found, possibly due to greater fat tissue 
storage (Bauman et al., 1996). Leptin activates the sympathetic nervous system (SNS) 
through a central administration. The disruption of the sympathetic nervous system i.e. in 
tetraplegia and high level paraplegia may modify the secretion and activity of the leptin, 
because the sympathetic preganglionic neurons become atrophic in these subgroups (Elias et 
al., 1998; Correia et al., 2001) leading to disturbed irritation from leptin below the 
neurological level of injury. In addition, extensive obesity is known to reduce lipolytic 
sensitivity (Haque et al., 1999; Horowitz et al., 1999, 2000).  

In high level spinal cord injuries there is a disorder of the autonomic nervous system and 
combined to the fact that the hormone leptin activates the sympathetic nervous system 
through central control it could be suggested that “the closure of paths” of the central 
nervous system disrupts the effect of leptin and possibly increases the risk of obesity in SCI 
subjects with high-level injury (Krassioukov et al., 1999; Jeon et al., 2003). However, after 
separation of SCI subjects into those with an injury above or below Thoracic (T) 6, leptin 
levels were significantly higher in the former group. T6 appears to be the lowest level of 
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injury in most patients with SCI to develop autonomic dysreflexia. With SCIs above the 
level of T6, there is reduced SNS outflow and supraspinal control to the splanchnic outflow 
and the lower-extremity blood vessels while serum leptin levels in men with SCI correlated 
not only with BMI but also with the neurologic deficit. This finding supports the notion that 
decentralization of sympathetic nervous activity relieves its inhibitory tone on leptin 
secretion, because subjects with tetraplegia have a more severe deficit of sympathetic 
nervous activity (Wang et al., 2005).  

3.2 Multiple sclerosis 

No significant difference between ambulatory multiple sclerosis (MS) patients and non MS 

controls in body composition was found despite lower physical activity in ambulatory MS 

patients (Lambert et al., 2002). In MS subjects there was no significant relation between any 

of the body composition measures and the level of disability as measured by the Expanded 

Disability Status Scale (EDSS). Others found no difference in body fat percent between 

ambulatory MS patients (Formica et al., 1997) and lower physical activity in ambulatory MS 

patients vs. controls (Ng & Kent-Braun, 1997). A possible explanation for the similar body 

composition may be lower energy intake in MS individuals who are ambulatory and greater 

energy cost of physical activity (walking) in MS than it is with non MS controls (Lambert et 

al., 2002). 

A significant inverse relation between free fat mass (FFM) and EDSS score when ambulatory 

and non ambulatory MS subjects were combined was found (Formica et al., 1997). On the 

contrary others without including non ambulatory subjects did not find a significant inverse 

relation between FFM percent and EDSS score (Lambert et al., 2002). It would seem 

apparent that ambulatory patients with MS and controls would strengthen the inverse 

relation between FFM and EDSS score.  

The finding of no relation between EDSS score and body fat percent (Lambert et al., 2002) 
fits well with studies which found no significant relation between the level of physical 
activity, and the level of disability in individuals with MS (Ng & Kent-Braun, 1997) because 
MS would likely have a much greater effect on physical activity than on energy intake. 
According to these findings it appears that the level of disability of ambulatory individuals 
with MS does not predict body composition. This suggests that a significant level of 
disability does not force these individuals to be physically inactive and does not result in a 
greater body fat content. There are many detrimental manifestations of excess body fat, such 
as hyperlipidemia, insulin resistance, and type II diabetes (Lambert et al., 2002). The largest 
component of FFM is muscle mass (Lohman, 1986). If muscle mass is lower in individuals 
with MS than in controls, it may also contribute to the impaired ability to ambulate and 
perform other activities of daily living. Muscle fiber size from biopsy specimens of the 
tibialis anterior were 26% smaller than specimens from control subjects (Kent-Braun et al., 
1997). Thus, at least for this small muscle, muscle mass was lower in MS. This relationship 
may not hold for other muscle groups or for whole-body muscle mass (Lambert et al., 2002). 

Another reason for skeletal muscle alterations is glucocorticoid usage. The prolonged 
duration of glucocorticoid causes catabolism of skeletal muscle. Decreased amino acid 
transport into muscle and increased glutamine synthesis activity with resultant muscle 
atrophy are some of the concomitant effects of glucocorticoid use on skeletal muscle. 
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Endogenous glucocorticoid excess also produces generalized osteoporosis, most prevalent 
in trabecular-rich skeletal regions (Formica et al., 1997). 

Beside corticosteroids, immunomodulatory, antiepileptic and antidepressant drugs usually 

used in individuals with MS, high incidence of vitamin D deficiency, molecular mechanisms 

and disuse-loss of mechanical stimuli in bone have an effect on bone integrity (most believe 

that immobilization of these patients is a minor factor in the etiology of osteoporosis) 

(Dionyssiotis, 2011).  

3.3 Stroke 

Longitudinal studies of body composition in the elderly have shown that body cell mass 

decreases with age and is lower in women than in men (Steen et al., 1985). A decline in body 

fat in both the dependent and independent groups nine weeks after admission was found, 

indicating consumption of energy stores. In contrast, the change of body cell mass between 

admission and after 9 weeks was significantly greater in the dependent patients compared 

with the independent (Unosson et al., 1994). Immobilized individuals lose muscle mass 

irrespective of nutritional intake because of reduced synthesis of proteins, while the rate of 

breakdown of proteins is unchanged (Schonheyder et al., 1954). During the recovery period 

the stroke patients seemed to break down body fat to compensate for energy needs, 

independent of their functional condition. However, change of body cell mass appeared to 

relate to the patients' functional condition after stroke (Unosson et al., 1994). 

A study in 35 stroke patients compared the body composition, including lean tissue mass, 

fat tissue mass, and bone mineral content, of the paretic leg with that of the non affected leg 

in patients with stroke and evaluated the effects of time since stroke, spasticity, and motor 

recovery on the body composition specifically within the first year after stroke found lean 

tissue mass and bone mineral content of the paretic side to be significantly lower than those 

of the non affected side; a significant correlation was found between the lean tissue mass 

and bone mineral content of both the paretic and non affected legs after adjusting for age 

and weight. On the contrary bone mineral content and lean tissue mass of both the paretic 

and non affected sides were negatively correlated with time since stroke in patients with 

stroke for less than 1 year and a higher lean tissue mass and bone mineral content were 

found in patients with moderate to high spasticity in comparison with patients with low or 

no spasticity (Celik et al., 2008). 

3.4 Cerebral palsy 

Bone mineralization in children with CP has been found lower (bone-mineral values for the 

total body and total proximal femur) than sex- and age-matched able bodied children. This 

is illustrated by the BMC Z – scores determined at each skeletal site. The factors that 

contribute to low bone mineralization include genetic, hormonal, and nutritional problems 

(especially calcium and vitamin D) and weight-bearing physical activity, oral-motor 

dysfunction and anticonvulsant medication (Henderson et al., 1995).  

Free fat mass (FFM) in cerebral palsy subjects was found significantly lower than that in a 

normal adolescent population. In 60% of the studied population body fat exceeded the 90th 
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percentile for age, even if most of the CP children had a low height and weight for age. In 

female subjects anthropometric measurements were highly correlated with measures of 

body fatness. Measuring fat by 18O dilution a hydration factor of 0.73 was assumed for FFM. 

A possible increase in the hydration factor would diminish measured FFM meaning that 

body fat appears increased. Moreover muscle spasms and spasticity in CP subjects deplete 

body glycogen. If glycogen is reduced the intracellular water would be reduced and the 

ratio extracellular water/total body water would increase. The same could result with a loss 

of body cell mass or an increase in the hydration factor (Bandini et al., 1991). 

4. Conclusions  

Other important issues according alterations of body composition are the completeness of 

lesions (an absence of sensory or motor function below the neurological level, including the 

lowest sacral segment), because body composition seems to be worst than subjects with 

incomplete lesions (partial preservation of motor and/or sensory function below the 

neurological level, including the lowest sacral segment) (Sabo et al., 1991; Demirel et al., 

1998; Garland et al., 1992) and aging which contributes to major alterations of body 

composition. 

In disabled subjects the most important issue according to body composition is how to 

promote optimal body weight to reduce risk of diseases such as coronary heart disease, non-

insulin dependent diabetes mellitus, lipid abnormalities and fractures because of bone loss. 

Dietary changes, individualized physical activity programs and medication should be taken 

in mind in therapy when we deal with this subgroup of subjects. However, self-

management of dietary changes to improve weight control and disease should be the case, 

which means they need to follow diets with lower energy intake and at the same time to eat 

regularly foods rich in nutrients (Groah et al., 2009). 

We need to take in mind that healthy BMI values often underestimate body fat and may 

mask the adiposity and spasticity did not defend skeletal muscle mass and bone, 

supporting the concept that in neurologic disabilities the myopathic muscle could not 

recognize correctly the stimulation because of the neurogenic injury. Moreover, disabled 

subjects mostly transfer much of the weight-bearing demands of daily activities to their 

upper extremities reducing the weight-bearing of the affected paralyzed muscles 

triggering a cycle of added muscle atrophy which interacts with the continuous catabolic 

action caused by the neurogenic factor. Finally, an irreversible (once established) decline 

in bone mineral density, bone mineral content as well as geometric characteristics of bone 

is expected and the duration of lesion-injury is positively correlated with the degree of 

bone loss. 

Further research about body composition is needed in all physical disabilities and more 

longitudinal studies to quantitate and monitor body composition changes and to modify our 

therapeutic interventions. However, prevention rather than treatment may have the greatest 

potential to alleviate these major complications. Therapies should focus on how to perform 

weight bearing, standing or therapeutically walking activities early in the rehabilitation 

program to gain benefits according to muscles and bones. 
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