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1. Introduction 

Cervical cancer is the best known example of a common human malignancy with a proven 

infectious etiology. Clinical, epidemiological and molecular analyses have long indicated 

that persistent infection with high-risk human papillomaviruses (HPVs) is causally 

associated with cervical cancer. Although new prophylactic vaccines and highly sensitive 

HPV typing methods are currently available, cervical cancer continues as the most common 

tumor in developing countries, where most of the annual half a million new cases occur 

(Arbyn et al., 2011). Besides socio-cultural issues restraining professional gynecological care, 

the relatively high cost of these technologies has limited their availability where they are 

most needed. Thus, there is a pressing need for affordable and readily available detection 

and therapeutic tools for HPV infection and cervical cancer. In the last two decades, novel 

diagnostic and therapeutic approaches based on synthetic oligonucleotides and genomic 

information have developed into promising tools to fight human disease. 

2. HPV and cervical cancer 

Genital dysplasia and cervical cancer are associated with persistent infection of a subset of 

HPVs referred as high-risk, including HPV types 16, 18, 31, 33, 45, 52 and 58 (Clifford et al., 

2003). High-risk HPVs normally replicate in keratinocytes from stratified squamous 

epithelia of their hosts where the 8-kb double-stranded circular DNA genome is usually 

retained in an episomal form. The highly conserved high-risk HPV genomes consist of six 

common early genes (E1, E2, E4, E5, E6 and E7) and two late genes (L1 and L2) coding for 

the capsid proteins (Figure 1). The early genes contribute to cellular transformation, viral 

regulation and DNA replication (Moody & Laimins, 2010). In addition, the HPV genome 

also comprises a highly variable non-coding regulatory region, the long control region 

(LCR), which contains the viral origin of replication and regulatory elements targeted by 

several cellular transcription factors and the viral E2 gene (Hebner & Laimins, 2006).  
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Fig. 1. Map of the HPV genome. Early (E) and ate (L) genes are indicated. The arrow 
indicates the early promoter. 

2.1. HPV targets for diagnostic and therapeutic oligonucleotides 

The relationship between cervical cancer and high-risk HPVs is related to the integration of 
viral DNA to the host genome with the disruption of the viral regulator E2 (Pett & Coleman, 
2007; Vernon et al., 1997), and to the production of viral proteins E6 and E7 which are 
sufficient and necessary to acquire and maintain a transformed phenotype (Pirisi et al., 1988; 
Xue et al., 2010). Because E2 is usually absent in cervical tumor cells and E6/E7 genes are 
retained and expressed in most tumors, these features are often referred to as the hallmarks 
of cervical cancer (Alvarez-Salas & DiPaolo, 2007). In the absence of E2 protein, high-risk 
HPV E6 and E7 genes are continuously transcribed from a single promoter resulting in 
polycistronic mRNA containing both transcripts (Wang et al., 2011). The E6 and E7 protein 
products interact and functionally neutralize key cellular regulatory proteins, so that cell 
proliferation continues. 

High-risk HPV E6 protein targets numerous cellular pathways to insure viral DNA 

replication and is a key oncogene in HPV associated neoplasias. E6 was first shown to 

interact with the p53 tumor suppressor protein (Werness et al., 1990) and the E6-AP complex 

to act as a ubiquitin protein ligase (Huibregtse et al., 1991) inducing the specific 

ubiquitination and degradation of p53 (Scheffner et al., 1993). Thus, high-risk HPV E6 

results in blockage of p53-mediated apoptosis. Interestingly, E6 has been found interacting 

with the extrinsic apoptotic factors TNFR-1, FADD and caspase-8 (Filippova et al., 2002; 

Tungteakkhun et al., 2010) suggesting alternative apoptosis inhibitory functions. Although 

E6-mediated degradation of p53 is considered a key event for the onset of cellular 

transformation, it is clear that E6 possess other p53-independent transforming and anti-

apoptotic activities, such as telomerase activation (Gewin et al., 2004; Klingelhutz et al., 

1996; Oh et al., 2001). Many other cellular targets of high-risk E6 proteins have now been 

www.intechopen.com



 
Oligonucleotide Applications for the Therapy and Diagnosis of Human Papillomavirus Infection 97 

described, including PDZ domain-containing targets such as the human homologue of the 

tumor suppressor DLG (discs large protein) (Gardiol et al., 1999), MUPP1 (Lee et al., 2000) 

and MAGUK (membrane-associated guanylate kinase) proteins  (Glaunsinger et al., 2000), 

and a number of transcription regulators (Etscheid et al., 1994; Zimmermann et al., 1999), 

disrupting cell adhesion, polarity, epithelial differentiation and  reducing  immune  

recognition  of  HPV infected cells (Howie et al., 2009).  

The E7 protein plays a vital role in the viral life cycle by disrupting the tight link between 
differentiation and proliferation, thus allowing viral replication in normal keratinocytes that 
would be otherwise withdrawn from the cell cycle (McLaughlin-Drubin & Munger, 2009). 
E7 protein from high-risk HPVs targets pRB and disrupts the E2F-mediated transcriptional 
regulation resulting in the up-regulation of genes required for G1/S transition and DNA 
synthesis (Duensing et al., 2001; Munger & Phelps, 1993).  HPV-16 E7 can directly bind the 
G1/S transition antagonists E2F1  (Hwang et al., 2002) and E2F6 (McLaughlin-Drubin et al., 
2008) thus ensuring that the infected cells remain in an S-phase-competent  state  allowing 
HPVs to bypass negative growth signals. The steady-state level and metabolic half-life of 
pRB are decreased in HPV-16 E7-expressing cells, because E7 can induce the degradation of 
pRB through the ubiquitin-proteasome system (Berezutskaya et al., 1997; Boyer et al., 1996). 
High-risk HPV E7 proteins also contribute to cell cycle dysregulation through the 
abrogation of the growth inhibitory activities of p21CIP1 and p26KIP1 (Funk et al., 1997; Jones 
et al., 1997; Zerfass-Thome et al., 1996). Other functions associated to high-risk HPV 
expression include epigenetic reprogramming through induction of KDM6A and KDM6B 
histone demethylases (McLaughlin-Drubin et al., 2011), trophic sentinel signaling 
abrogation and autophagy induction (Zhou & Munger, 2009), induction of genomic 
instability (Duensing et al., 2000), and disruption of Anoikis signaling through interaction 
with p600 (Huh et al., 2005). 

3. Oligonucleotide applications to cervical cancer and HPV infection 

Although the independent E6 and E7 functions may cause genomic instability, cell 
immortalization and transformation by themselves, the unregulated expression of both 
proteins is considered the major contribution of HPVs to cervical cancer development. The 
demonstration of the existence of stable molecular targets in high-risk HPVs has justified the 
development of small oligonucleotides for cervical cancer detection and treatment. High-
risk HPV-16 and 18 express E6 and E7 proteins from a single polycistronic mRNA 
(Schneider-Gadicke & Schwarz, 1986; Smotkin et al., 1989), suggesting that  targeting of 
either E6 or E7 mRNA would likely impede both E6/E7 translation resulting in similar 
growth arrest phenotypes. Several groups have identified that inhibition of these genes 
translation resulted in tumor growth suppression confirming E6/E7 as attractive targets for 
cervical cancer therapy (Alvarez-Salas et al., 1998; Shillitoe, 2006; Venturini et al., 1999). 

In the last decades, novel therapeutic approaches based on genomic information developed 
into promising tools to fight human disease. Therapeutic oligonucleotides are short DNA or 
RNA molecules designed to disrupt expression or function of disease-related genes. 
Approaches to therapeutic oligonucleotide technology include: 1) Blocking of gene 
transcription by triplex-forming oligodeoxyribonucleotides (TFOs); 2) Translation inhibition 
by AS-ODNs, small interfering RNAs (siRNAs) and ribozymes; 3) Inhibition of protein 
function by nucleic acid aptamers and 4) Immunostimulatory oligonucleotides (IM-ONS) 
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(Alvarez-Salas, 2008). Diagnostic oligonucleotides refer to the application of DNA or RNA 
oligonucleotides for diagnostic purposes. Diagnostic oligonucleotide technologies comprise 
oligonucleotides designed for 1) Priming polymerase chain reaction (PCR or RT-PCR) 
detection, 2) Hybridization-based technologies (hybrid capture or microarrays) and 3) 
Binding with target proteins (aptamers). Here, we will only discuss diagnostic 
oligonucleotides used as aptamers for HPV detection because PCR and hybridization 
technologies have been extensively used for HPV diagnostics for decades and the subject 
has been comprehensively analyzed elsewhere (Stanley, 2010).   

3.1 Antigene technology 

TFOs can hybridize with particular sequences in double-stranded DNA (dsDNA) through 
the formation of Hoogsteen or reverse-Hoogsteen hydrogen bonds between the TFOs and 
homopurine stretches found in the major groove of the target DNA (Letai et al., 1988; Moser 
& Dervan, 1987). TFOs have potential for manipulating gene structure and function in living 
cells, inhibiting transcription by interfering with regulatory protein binding or blocking 
mRNA elongation (Carbone et al., 2003) (Figure 2A). Although finding appropriate targets 
for TFO action in genomic DNA may be an issue, TFO technology has a potential advantage 
over oligonucleotide-based control of translation (antisense and siRNA technologies) 
because there are generally one to two targets per cell as compared with the hundreds to 
thousands copies of mRNA targets (Vasquez & Glazer, 2002).  

 

       A                     B 

Fig. 2. A) Antigene technology. Triplex-forming oligonucleotides (TFOs) hybridize with 
DNA to block transcription. B) Antisense oligonucleotides (AS-ODNs) gene silencing. As-
ODNs hybridize with the 5’-UTR (1) or within the coding region (2) of the target mRNA. 
Formation of DNA-RNA heteroduplexes induces RNaseH (3) activity over the RNA target 
(3a) producing degradation and thus inhibiting translation. Stable hybridization with the 
target 5’-UTR mRNA can inhibit ribosome anchorage (4).  

3.1.1 Antigene technology on cervical cancer 

Several natural triplex-forming sites have been identified within the HPV-16 genome 
(Malkov et al., 1993). However, only a few attempts have been reported on the use of TFOs 
against HPV. An initial report for the low-risk HPV-11 established an intramolecular triplex 
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DNA formation using a TFO directed to a 22nt-long homopurine stretch within the LCR (nt 
21-42) overlapping a Sp-1 and a E2 binding site plus the origin of replication. Although the 
stability of the triplex DNA formation was comprehensively demonstrated, no functional 
effect on HPV-11 transcription/replication was reported (Hartman et al., 1992). Other report 
also established formation of pyrimidine-purine-pyrimidine or pyrimidine-purine-purine 
triplex DNA with the HPV-16 fragment nt 554-685 under favorable conditions using 
complementary pyrimidine or purine TFOs. The observed DNA triplexes exhibited 
remarkable sequence specificity (Cherny et al., 1993). 

Optical DNA melting experiments and co-migration assay were used to establish stable 

triplex DNA formation at homopurine-homopyrimidine-rich target sites present in the 

HPV-16 E7 gene (nt 656-673). The target sequence was specifically recognized by several 17-

mer purine TFOs designed to form antiparallel or parallel triplex DNA helices (Popa et al., 

1996). Despite the reported success on triplex DNA formation using TFOs and different 

HPV targets, there are no reports on the application of TFOs to inhibit HPV transcription 

suggesting that intracellular conditions may not allow effective antigene-based therapies. 

3.2 The antisense approach 

Antisense inhibition uses DNA sequence information to synthesize an oligonucleotide 

complementary to a target mRNA and specifically inhibit or modify translation by three 

main mechanisms: A) Translational arrest by inhibiting ribosome binding at the 5’-UTR 

(Crooke, 1999); B) Induced degradation of the target mRNA by RNaseH (Agrawal et al., 

1990) (Figure 2B), and C) Translational modulation by exon-skipping (Du & Gatti, 2009). The 

aim of all antisense approaches is to reduce the quantity of the target protein in order to 

revert or prevent progression of a disease process.  

Two main classes of antisense oligonucleotides have been used to silence or modulate gene 

expression providing that the target sequences are exposed (in a single stranded form 

lacking secondary structure or protein binding). One class makes use of AS-ODNs 

complementary to the target mRNA. AS-ODN hybridization to its complementary target 

mRNA by Watson–Crick base pairing should provide enough specificity and affinity to 

produce translational arrest (physical blockage of ribosome binding) of the target mRNA. 

Additionally, the formation of DNA-RNA heteroduplexes leads to the activation of RNaseH 

thus inducing cleavage of the target mRNA (Bonham et al., 1995). The second antisense 

oligonucleotide technology class consists of small, catalytic RNA or DNA molecules. The 

catalytic core of these molecules produces cleavage of a target RNA once the catalytic 

moiety has hybridized with a Watson-Crick complementary sequence (Benitez-Hess & 

Alvarez-Salas, 2006). This mechanism may be contrasted with AS-ODNs that require 

cellular RNaseH activity following hybridization in order to cleave the target mRNA. 

3.2.1 AS-ODNs applications as therapeutic moieties 

Early use of unmodified AS-ODNs showed that they were highly unstable in biological 

fluids due to the presence of exonucleases thus limiting their use as therapeutic moieties. 

Later, several nucleotide analogues were introduced to increase ODN stability. To avoid 

changes in hybridization specificity, modifications were limited to the phosphate and ribose 
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backbone of DNA/RNA oligonucleotides. First generation modified AS-ODNs consisted of 

sulfur-substituted DNA on the free oxygen molecules constituting a phosphodiester bond. 

Phosphorothioated ODNs (PS-ODNs) display a high degree of stability in biofluids while 

retaining the ability to form RNaseH substrates leading to efficient, highly specific 

degradation of the target mRNA (Agrawal & Zhang, 1997). RNaseH activity is mostly 

nuclear and thus would likely produce cleavage of the pre-mRNA within the nucleus before 

splicing (Wagner et al., 1993). However, the strongly polyanionic nature of PS-ODNs cause 

in vivo issues regarding affinity, specificity, cellular uptake, biodistribution and toxicity thus 

limiting their therapeutical use (Akhtar & Agrawal, 1997). Nevertheless, PS-ODNs have 

been the most extensively studied AS-ODNs in various animal models and humans leading 

to oligonucleotide-based drugs such as Fomivirsen (Vitravene™) or Affinitak (Patil et al., 

2005).  

The use of other modifications such as methylphosphonates, ethylphosphonates or 2'-O-

methyl, confer high affinity for target sequences and extraordinary stability in biofluids, but 

they do not activate RNaseH (Mercatante & Kole, 2000). Thus, these modifications are better 

suited for modulating gene expression or exon-skipping approaches rather than gene 

silencing (Sierakowska et al., 2000). Second-generation AS-ODNs provide molecules with 

RNaseH activity but minimal off-target effects. Mixed-backbone oligodeoxynucleotides 

(MBOs) contain strategically placed segments of phosphorothioated backbones (able to 

induce RNaseH activity on the target mRNA) mixed with segments of either modified 

oligodeoxyribonucleotides or oligoribonucleotides (reducing off-target effects). The 

advantages of MBOs over PS-ODNs are increased biological activity, reduced polyanionic- 

and CG-dinucleotide-related side effects and increased in vivo stability (Agrawal & Zhao, 

1998). A third-generation AS-ODNs contains DNA/RNA oligonucleotides with 2'-O-methyl 

modification in addition to a phosphorothioate core and methylphosphonate ends further 

reducing toxicity. Improved stability, high specificity and low toxicity characterize these 

molecules, allowing for efficient destruction of target mRNA at nanomolar concentrations 

(Sternberger et al., 2002).  

3.2.2 Antisense technology on cervical cancer therapy  

Earlier reports on high-risk HPV E6 and E7 functions used plasmid-borne full-length antisense 

RNA to show that inhibition of HPV-18 E6/E7 expression results in growth arrest in C4-1 cells 

(von Knebel Doeberitz & Gissmann, 1987; von Knebel et al., 1988). Later, plasmid-borne 

antisense RNA delivery was shown to induce apoptosis in CaSki cells via up-regulation of p53 

and apoptosis induction (Cho et al., 2002). Delivery of antisense RNA using adenoviral vectors 

and retroviral vectors on SiHa and CaSki cells resulted in the reduction of HPV16 E7 protein 

expression and cell proliferation. These changes were accompanied by cell cycle arrest, up-

regulation of RB, down-regulation of E2F-1 and BCL-2 and dose-dependent and retarded 

tumor growth of CaSki cells, a cervical cancer line with multiple copies of HPV-16 (Choo et al., 

2000; Hayashi et al., 1997). More recently, non-neuroinvasive HSV-1 vectors, lacking the γ134.5 

gene, were used to express antisense RNA complementary to the first 100nt of the HPV-16 E7 

gene. These recombinant viruses down-regulated E7 protein expression in CaSki cells in a 

dose-dependent manner (Kari et al., 2007). Overall, these results confirmed the validity of 

targeting high-risk HPV E6/E7 for cervical cancer therapy. Nevertheless, due to the difficulties 
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of administrating plasmids, large antisense RNA molecules or even infectious viruses to 

patients, the use of small antisense moieties such as AS-ODNs, catalytic oligonucleotides or 

siRNAs might be a better alternative.  

Pioneering attempts on E6/E7 targeting by AS-ODNs directed antisense PS-ODNs to the 
translational start site of E6/E7 mRNA (Steele et al., 1993; Tan & Ting, 1995). In vivo testing 
on CaSki, SiHa and HeLa cells (all cervical cancer cell lines containing high-risk HPV) 
showed that these PS-ODNs produced cell growth inhibition. Nevertheless, no data was 
provided to show growth inhibition due to a true antisense mechanism. Later, a rational 
approach to antisense exposed regions was applied to HPV-16 E6/E7 using fast-hybridizing 
RNA segments obtained from partially digested E6/E7 mRNA (Kronenwett & Sczakiel, 
1997). A selection of AS-ODNs directed against such exposed sequences resulted in growth 
inhibition of cultured SiHa cells (Venturini et al., 1999).  

Our group developed AS-ODNs covering a so-called "antisense window" within a stable 
HPV-16 E6 (nt 410-445) region (Alvarez-Salas et al., 1995). Two short antisense PS-ODNs 
complementary to nt 410-445 produced efficient growth inhibition of monolayer and agar-
growth HPV-16-containing tumor cell lines in a dose-dependent manner. One of such PS-
ODNs also inhibited tumor growth in nude mice (Alvarez-Salas et al., 1999; Marquez-
Gutierrez et al., 2007). Interestingly, the combined use of both AS-ODNs resulted in the 
additive but not synergistic growth inhibition suggesting that they can be applied together 
to overcome issues related to genital HPV genomic variability (Marquez-Gutierrez et al., 
2007). Nevertheless, the high doses used in these studies (within the micromolar range) 
suggest that further modifications are required to improve therapeutical efficiency avoiding 
off-target effects. Overall, current AS-ODN applications to high-risk HPV E6/E7 gene 
silencing as a therapy for cervical cancer appears promising and relatively safe, providing 
that the tested PS-ODNs are administered locally to control off-target issues commonly 
observed with phosphorothioated moieties. Nevertheless, second and third-generation AS-
ODNs remain to be clinically tested as the advancement of other gene silencing technologies 
(i.e. siRNA and shRNAs) overcame an otherwise very effective molecular therapy.  

3.3 Therapeutic catalytic oligonucleotides 

Small ribozymes and DNAzymes are oligonucleotides possessing, at the very least, 
enzymatic RNA cleavage and ligation activities (Haseloff & Gerlach, 1988; Santoro & Joyce, 
1998). Ribozymes were initially described as catalytic RNA moieties found in the self-
splicing group I introns from the unicellular algae Tetrahymena (Kruger et al., 1982), and 
within the RNA active site of Escherichia coli RNaseP (Guerrier-Takada et al., 1983). 
However, the relatively large size of these two ribozymes precluded gene 
modulating/silencing applications. Later, small catalytic RNA cores from naturally 
occurring ribozymes were isolated from the circular genomes of certain pathogenic plant 
RNA viroids (Haseloff & Gerlach, 1989). In particular, two catalytic moieties have been 
intensely used as therapeutic agents; the hammerhead and hairpin ribozymes. By simply 
altering the native substrate recognition sequences, natural cis-cleaving ribozymes can be 
engineered to recognize and cleave any target RNA in trans by Watson-Crick hybridization 
(Michienzi & Rossi, 2001) (Figure 3A). Consequently, ribozymes received considerable 
attention as potentially valuable tools for the inhibition of virus replication, modulation of 
tumor progression, and analysis of cellular gene function (Morrissey et al., 2002). 
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        A               B 

Fig. 3. A) Catalytic oligonucleotides mode of action. Ribozymes or DNAzymes hybridize 
and cleave the target mRNA. B) RNA interference (RNAi) mechanism. Double-stranded 
RNA (dsRNA) found in a given mRNA are recognized and cleaved by DICER to yield small 
interfering RNAs (siRNAs) that in turn are incorporated into the RISC complex to cleave the 
mRNA from which they were derived. By administrating synthetic siRNAs the RISC 
complex may be manipulated to target a particular mRNA. 

3.3.1 The hammerhead ribozyme 

Hammerhead ribozymes are small (30-40nt) catalytic RNA moieties composed of three basic 
components including a highly conserved catalytic domain flanked by two base-pairing 
sequences and a complementary sequence within the target RNA containing the sessile 
phosphodiester bond. Natural catalytic centers can be formed within contiguous RNA 
sequences or by sequences several nucleotides apart (Epstein & Gall, 1987; Hutchins et al., 
1986). Providing that the target RNA is single-stranded, hammerhead ribozymes can cleave 
any substrate RNA containing the triplet 5´-NUX-3´, where U is conserved, N is any 
nucleotide and X can be C, U or A (Vaish et al., 1998). Cleavage occurs 3’ to the 5’-NUX-3’ 
triplet (Uhlenbeck, 1987), generating 5’ hydroxyl termini and a 2’,3’-cyclic phosphate at the 
cleavage site (Hutchins et al., 1986; Prody et al., 1986).  

3.3.2 The hairpin ribozyme 

Hairpin ribozymes are about 60nt long and efficiently catalyze a reversible, site-specific 
cleavage reaction. Structurally, hairpin ribozymes are composed by the substrate recognition 
domain A located aside the catalytic domain B and the target RNA containing the target site. 
The established cleavage requirements for heterologous substrates indicate that the substrate 
sequence must contain a 5’-BN*GUC-3’ motif (where * is the site of cleavage) (Anderson et al., 
1994; Hampel et al., 1990). Cleavage occurs at the 5’ side of guanosine and yields two products: 
the 3’-product containing the 5’-hydroxyl terminus newly formed within a terminal G, and the 
5’-product containing the 2’,3’-cyclic phosphate (Yu & Burke, 1997).  

3.3.3 Catalytic DNA 

DNAzymes are small (~30nt) catalytic DNA oligonucleotides capable of cleaving target 
RNA molecules in a sequence specific manner (Baum & Silverman, 2008). These molecules 
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represent a new generation of catalytic oligonucleotides artificially obtained through in vitro 
selection procedures by their capacity to catalyze the cis-cleavage of a target RNA sequence. 
Similar to ribozymes, DNAzymes hybridize substrate RNAs by Watson-Crick pairing and 
cleavage results in RNA fragments containing 2’,3’-cyclic phosphate and 5’-hydroxyl ends, 
suggesting a common mechanism (Santoro & Joyce, 1998). Therefore, the same widely tested 
design rules for AS-ODNs and ribozymes can be readily applied for therapeutic 
DNAzymes. However, unlike ribozymes, usage of DNAzymes as therapeutic moieties has 
the advantage of simpler and cost-effective synthesis, easier administration and higher 
stability in biofluids (Dass et al., 2008). So far, the 10-23 DNAzyme is the most commonly 
used in therapeutic applications. The 10-23 moiety structure resembles that of a 
hammerhead ribozyme consisting of a 15nt catalytic core flanked by two target recognition 
arms complementary to the target RNA (Santoro & Joyce, 1997). Cleavage is strictly 
dependent on Mg++ and is specifically produced at a RY (R, purine; Y, pyrimidine) junction 
within the target RNA  (Cairns et al., 2003; Faulhammer & Famulok, 1997). Although the 10-
23 DNAzyme is active at 37°C it may require nucleotide modifications to keep high activity 
under physiological conditions (Takamori et al., 2005). Other DNAzymes with different 
structural and catalytic features have been successfully used as sensors for ions, molecules 
and even proteins (Ali et al., 2011; Zhang et al., 2011). Thus, DNAzymes offer a wide array 
of possible therapeutical and diagnostic applications. 

3.3.4 Hammerhead ribozymes and HPV 

Early reports on ribozyme use against HPV assumed that translational start regions within 
mRNA are poorly structured thus allowing accessibility to antisense moieties. These reports 
were limited to cell-free experimentation and characterization of ribozyme cleavage on HPV 
target transcripts. Hammerhead ribozymes directed to HPV-16 nt 110 and 558 and 
expressed from plasmids showed efficient cleavage of HPV-16 E6/E7 transcripts in cell-free 
tests in different conditions of ionic strength, Mg++ concentration and temperature. 
Evaluation of the simultaneous activity of both ribozymes suggested a cooperative effect to 
disrupt HPV-16 E6/E7 gene expression (Lu et al., 1994). Similarly,  targeting HPV-16 E6/E7 
genes by hammerhead ribozymes specific to nt 240 and 597 showed that target size is 
important for catalytic activity (He et al., 1993). Chen et al., developed hammerhead 
ribozymes targeting HPV-18 E6/E7 genes (nt 120, 309 and 671) that were initially tested by 
incubation of total RNA from HeLa and Vero cells with in vitro transcribed ribozymes 
resulting in the efficient and specific degradation of HPV-18 transcripts from HeLa cells. In a 
more unorthodox approach E. coli was used to co-expresses both the ribozymes and a 1266nt 
fragment from HPV-18 (including E6 and E7 genes). Ribozymes were induced by infection 
with a helper phage (T7/M13) resulting in the progressive down-regulation of the HPV-18 
target. Finally, ribozyme anti-tumor activity was tested on HeLa cells resulting in a cell 
growth reduction, increased serum dependency, and reduced foci formation in soft agar 
(Chen et al., 1996; Chen et al., 1995) .  

3.3.5 Hairpin ribozymes and HPV 

Hairpin ribozymes are usually more efficient at 37°C than hammerhead ribozymes and co-

factors are not a strict requirement for activity because the catalytic mechanism appears to 

rely on structural components (Walter et al., 1998). However, efficient cleavage by hairpin 
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ribozymes requires a specific sequence within the target RNA (5’-GUC-3’ motif). We 

performed a comprehensive search for hairpin ribozyme target sites within HPV-16 E6/E7 

genes showed six potential target sites. A hairpin ribozyme directed to site 434 (R434) was in 

vivo tested for cis-cleavage using a plasmid-borne HPV-16 E6/E7 transcripts containing 

ribozymes at the 3’-UTR. Only R434-containig transcripts caused significant delay in the 

growth rate of transfected cells and inhibited E6/E7 immortalization (Alvarez-Salas et al., 

1998). Although this report demonstrated the feasibility of hairpin ribozyme use as a 

therapeutic antisense moiety for cervical cancer, the larger size of hairpin ribozymes limited 

their application as plasmid-borne moieties. Thus, we developed multiplex expression 

systems (triplex) based on hairpin ribozymes for R434. Such systems resulted in the 

complete release of multiple independent catalytic units from a single transcript by a self-

processing mechanism, allowing individual R434 activity and increasing efficiency of 

degradation of E6 RNA (Aquino-Jarquin et al., 2008; Aquino-Jarquin et al., 2010). The 

measured activity of a single R434 unit resulted in 30% inhibition of HPV-16 E6/E7 mRNA 

in SiHa cells, suggesting that multiple ribozymes directed against the same or other target 

sites might result in complete inhibition (Aquino-Jarquin et al., 2008). 

It is worth mentioning that notwithstanding the relative success on inhibiting HPV E6/E7 
by ribozymes, the catalytic features from both hammerhead and hairpin ribozymes 
dramatically drop within the cellular environment. Intracellular variables affecting activity 
include Mg++ availability, co-localization with the target, nuclease action and protein 
binding (Benitez-Hess & Alvarez-Salas, 2006). Plasmid-borne ribozymes usually contain 
stem-loop or tRNA structures to extend intracellular life that may get targeted by several 
RNA-processing mechanisms thus impeding activity (Alvarez-Salas L.M., unpublished data). 
Alternatively, because of their small size (~30nt) hammerhead ribozymes may be 
synthesized including modified nucleotides to escape nuclease and RNA processing 
mechanisms but this alternative usually brings deleterious off-target effects that may 
mislead data interpretation and limit clinical application. The therapeutical use of ribozyme 
in cervical cancer has never approached to the simple, efficient and relatively safe use of AS-
ODNs. Therefore, because the proven high ribozyme specificity and catalytic features for 
HPV transcripts it is likely that ribozymes may be better suited for diagnostic usage in 
cervical cancer. 

3.3.6 DNAzymes on cervical cancer therapy 

DNAzymes have become one of the most versatile oligonucleotide technologies available. In 
the last few years, DNAzymes have been used as therapeutical agents, computing DNA, 
biochemical analysis tools and sensors (Baum & Silverman, 2008; Stojanovic et al., 2005). 
However, there are only a few reports on DNAzyme application in the fields of cervical 
cancer and HPV. Our first report on a modified 10-23 DNAzyme directed to HPV-16 E6/E7 
mRNA “antisense window” showed efficient down-regulation of E6/E7 transcripts both in 
vitro and in vivo resulting in specific inhibition of proliferation and cell death in a dose-
dependent manner (Reyes-Gutierrez & Alvarez-Salas, 2009). To improve efficiency and 
intracellular stability the DNAzyme was modified with locked nucleic acids (LNAs) 
producing more thermostable DNAzyme-RNA complexes resulting in better cleavage 
efficiency (Benitez-Hess et al., 2011). In our hands, DNAzyme technology merged the 
relative simplicity and affordability of DNA synthesis and modification with the expected 
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benefits of enzymatic catalysis yielding a therapeutical moiety superior in performance and 
specificity when compared to AS-ODNs and even siRNAs at the nanomolar range. 

3.4 The small RNA revolution: siRNAs, shRNAs and miRNAs 

The mechanism of RNA interference (RNAi) is a natural and wide-spread gene knockdown 
phenomenon induced by the formation of double-stranded RNA (dsRNA) segments in most 
mRNAs (Elbashir et al., 2001; Fire et al., 1998; Sharp, 1999). The RNAi process occurs in the 
cytoplasm where dsRNA regions within mRNAs are digested into double-stranded 21–23nt 
fragments, with a 2nt 3’-overhand, by the RNaseIII-like enzyme DICER (Bernstein et al., 
2001). Subsequently, these small fragments, now called small interfering RNAs or siRNAs, 
are denatured by a helicase and one strand (leader or guide strand) is then incorporated into 
an RNA-induced silencing complex (RISC) that includes DICER, AGO2, TRBP and other 
members of the Argonaute family (Cullen, 2006; Hammond et al., 2001; Meister et al., 2004; 
Nykanen et al., 2001). The activated RISC complexes containing the guide strand hybridize 
and cleave the homologous mRNA from which they were derived. Therefore, there are no 
genes coding for particular siRNAs (Bartel, 2004). Recent reports suggest that siRNA activity 
exhibit serious dependence on the target site, as is the case for other antisense-based 
technologies, which might significantly limit the convenient use of siRNA (Miyagishi et al., 
2003). Target recognition by activated RISC complexes appear to rely on the perfect 
matching between the target sequence and a 2-8nt region within the guide strand known as 
“seed” region (Lin et al., 2005).  

By using synthetic siRNAs administrated exogenously, the RNAi machinery can be 
manipulated to silence a given mRNA (Figure 3B). These siRNAs can bypass the earlier 
steps in the RNAi pathway and can be loaded directly onto the RISC complex. Both 
synthetic siRNAs and vector-borne delivery of the equivalent short hairpin RNAs (shRNAs) 
have been used as potential therapeutic moieties for cervical cancer. Because shRNAs rely 
on the vector used, we will only focus in the developments of siRNAs as true therapeutic 
oligonucleotides. Although powerful, the widely reported gene silencing effects of siRNAs 
do not appear specific in many instances as down-regulation of unintended targets with 
partial sequence complementarities and stimulation of innate immune by type I interferon 
(IFN-I) and/or inflammatory cytokine responses have been often reported (Jackson et al., 
2003; Judge et al., 2005; Kalali et al., 2008).  

On the other hand, miRNAs are also small 20–25nt long non-coding dsRNAs with very 
specific functions modulating gene expression by hybridizing to complementary sequences 
present in the 3′ UTR of many protein-coding mRNAs (Bartel, 2004). Unlike siRNAs, the 
miRNAs are coded in the genome of most metazoans (including humans) by independent 
loci or within intronic regions of other genes (Cullen, 2004; Kim & Kim, 2007). They are 
initially transcribed by the RNA polymerase II as primary miRNAs (pri-miRNAa) (Lee et al., 
2004), which are cleaved into pre-miRNA hairpins by the RNaseIII-like nuclease DROSHA 
and PASHA/DGCR8 (Gregory & Shiekhattar, 2005). Pre-miRNAs are exported from the 
nucleus by the EXPORTIN-5  (Yi et al., 2003). Intronic pre-miRNAs are generated as a 
product of splicing of the host gene (Berezikov et al., 2007). Once in the cytoplasm, the pre-
miRNA hairpins merge to the RNAi pathway and are cleaved by DICER to produce mature 
miRNAs that are incorporated into RISC and interact with their targets (Valencia-Sanchez et 
al., 2006).  
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3.4.1 RNAi therapeutics on HPV 

Early attempts to silence high-risk HPV gene expression using siRNAs indicated selective 
E6/E7 mRNA. E6 silencing by a siRNA directed to HPV-16 nt 224-242 induced 
accumulation of cellular p53 protein, transactivation of the cell cycle control p21 gene and 
reduced cell growth but no apoptosis. Surprisingly, E7 silencing produced by a siRNA to nt 
662-680 induced apoptotic cell death. HPV-negative cells appeared unaffected by the anti-
viral siRNAs (Jiang & Milner, 2002). Because the polycistronic expression of HPV-16 E6 and 
E7 both siRNAs would have similar effect on E6/E7 expression and thus similar phenotypes 
(Butz et al., 2000). Although no explanation has been provided for this puzzling result, it is 
likely that the reported observations may be related to off-target effects. 

Later it was reported that vector-borne and synthetic siRNAs directed against the HPV-18 
E6 gene (nt 385-403) restored dormant tumor suppressor pathways in HPV-positive cancer 
cells that are otherwise inactive in the presence of E6. This ultimately resulted in massive 
apoptotic cell death, selectively in HPV-positive tumor cells (Butz et al., 2003). More recently 
a siRNA molecule targeting the E7 region of the bicistronic HPV-18 E6 and E7 mRNA (nt 
142-160) reduced expression of E6 and E7 in HeLa cells. Application of siRNAs against E6 
and E7 also inhibited cellular DNA synthesis and induced morphological and biochemical 
changes characteristic of cellular senescence. These results demonstrate that reducing E6 
and E7 expression is sufficient to cause HeLa cells to become senescent thus establishing 
that targeting of E6/E7 mRNA affects synthesis and functions of both E6 and E7  (Hall & 
Alexander, 2003). The simultaneous targeting of HPV-18 E6/E7 has also been reported to 
induce apoptosis and reduce proliferation of HeLa cells (Qi et al., 2010). Interestingly, it has 
been shown that cellular apoptosis induced by siRNA directed to HPV-18 E6 in HeLa cells 
relies on the p53 and ubiquitin proteolysis pathway thus inhibiting cell proliferation and 
promoting cell apoptosis. Anti-oncogene and upper regulation of immunization-related 
genes produced regression of the malignant phenotype after E6 inhibition (Min et al., 2009). 

Other synthetic siRNA decreased the levels of HPV-16 E6/E7 mRNA and induced nuclear 
accumulation of p53 in SiHa cells. The siRNA also suppressed monolayer and anchorage-
independent growth associated with p21CIP1/WAF1 induction and hypophosphorylation 
of retinoblastoma protein. Furthermore, SiHa cells treated with the anti-E6 siRNA prior to 
subcutaneous injection, formed tumors in NOD/SCID mice that were significantly smaller 
than in those treated with a control siRNA (Yoshinouchi et al., 2003). Thus, sequence-
specific targeting of high-risk HPV E6/E7genes, siRNAs may be developed into novel 
therapeutics that can efficiently inhibit growth of cervical cancer cells. Nevertheless, in vivo 
delivery of siRNAs is still a major obstacle to their clinical use.  

As with other oligonucleotide-based therapeutical approaches, in vivo delivery of siRNA is 
mostly affected  by ribonuclease degradation, rapid  renal  excretion  and  nonspecific  
uptake  by  the reticuloendothelial  system (Whitehead et al., 2009). Additionally, siRNAs 
are polyanions that do not readily cross the cell membrane. In turn to avoid these issues, 
siRNAs are often synthesized with phosphorothioated or 2’-O-modified bases and 
encapsulated in delivery systems allowing enhanced stability in biofluids and cell uptake, 
escape immune recognition, and improve pharmacokinetics by avoiding excretion and renal 
filtration (Lorenz et al., 2004; Sorensen et al., 2003). Encapsulated siRNAs still need to  
co-localize with the appropriate target cell/tissue type leading to more complicated 
therapeutic strategies. Thus, several considerations regarding biodistribution, extracellular 

www.intechopen.com



 
Oligonucleotide Applications for the Therapy and Diagnosis of Human Papillomavirus Infection 107 

and intracellular transport must be addressed in addition to potency and biostability before 
clinical use of siRNAs. Nevertheless, the recent success in clinical trials using siRNA to treat 
age-related macular degeneration (Bevasiranib), respiratory syncytial virus infection (ALN-
RSV01) and the targeted in vivo gene silencing via systemic delivery of siRNA using 
transferrin-tagged, cyclodextrin-based nanocapsules for human cancer therapy (CALAA-01) 
have demonstrated the therapeutic feasibility of siRNAs (Shim & Kwon, 2010).  

In the last few years, siRNA use for silencing high-risk HPV E6/E7 has been widely 
reported although emphasis shifted from design and targeting to delivery and specificity, as 
highly active siRNAs are now commercially available. Many reports showed successful 
E6/E7 inhibition, but most of them were limited to cell culture, lacking of toxicity controls 
(Jonson et al., 2008; Lea et al., 2007; Sima et al., 2008; Yamato et al., 2008). A recent report, 
undertook a more comprehensive approach by designing and testing nine different siRNAs 
against either the E6 or E7 genes of HPV-16 or HPV-18 in several combinations. The siRNAs 
were tested on CaSki or HeLa cell lines resulting in significant cell growth and colony 
formation inhibition in both cell lines with a significant increase in apoptosis. The siRNAs 
had no effect in HPV-negative C33-A cells, demonstrating a lack of off-target effects. In 
addition, a xenograft study showed that intratumor injection of the siRNAs reduced tumor 
growth in BALB/c nude mice (Chang et al., 2010). 

The transient nature of antisense technology (including siRNAs) forced research on long 
expression using vector-borne shRNAs. Although many reports have established the 
feasibility of this approach (Bai et al., 2006; Bousarghin et al., 2009; Gu et al., 2011), it is clear 
that prolonged siRNA expression may lead to dysfunction of the RNAi pathway (Tang et 
al., 2006) or other intracellular effects (Koivusalo et al., 2006) due to the sudden rise in p53 
and pRB proteins after siRNA treatment (Sima et al., 2008). Thus, siRNA treatment has been 
used to enhance already established therapies for cervical cancer such as paclitaxel (Liu et 
al., 2009), cisplatin (Wu et al., 2011) and TRAIL (Eaton et al., 2011) with sometimes mixed 
results depending on the condition of p53 expression (Koivusalo et al., 2005). 

As noted above, nucleotide modifications at specific positions enable oligonucleotides to 
avoid intracellular nuclease degradation and meddling with the endogenous RNAi 
pathway, but they also help to overcome off-targeting issues in siRNAs (Jackson et al., 2006). 
In addition, DNA inclusion in the seed region of the guide strand and its complementary 
sequence within the siRNA, so-called a double-stranded RNA–DNA chimera (dsRNA-
DNA), abolishes off-target effects sacrificing some silencing activity (Ui-Tei et al., 2008). 
Application of dsRNA-DNA chimeras from previously reported and highly active siRNAs 
to nt 497, 573 and 752 within HPV-16 E6/E7 mRNA (Yamato et al., 2008), resulted in 
reduced cytotoxicity in two of three chimeric siRNAs (497 and 752), but not in the other 
(573), correlating with their reported off-target effects. Silencing activity was marginally 
affected in chimeric siRNAs 497 and 573 and moderately in 752. Chimeric siRNA 497 
induced E6/E7-specific growth suppression of cervical cancer cells and E6/E7-immortalized 
human keratinocytes (Yamato et al., 2011). 

The delivery of antisense moieties has also attracted much attention in siRNA research. 
Unlike AS-ODNs, there is a stringent requirement for transfection of siRNAs that has 
limited its applications as powerful cell culture inhibitors. To become truly useful 
therapeutic moieties, in vivo delivery methods have been developed for cervical cancer 
treatment using siRNAs besides the obvious use of vector-borne shRNAs. These approaches 
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vary from the traditional direct intratumor injection (Fujii et al., 2006) to more innovative 
methods such as dendrosomal nanoparticles delivery (Dutta et al., 2010), encapsidation in 
HPV-16 virus-like particles (Bousarghin et al., 2005), encapsulation in lipidic particles (Wu et 
al., 2011) and coating of quantum dots (Zhao et al., 2011). All of these approaches showed 
the feasibility of in vivo siRNA treatment for cervical cancer. No clinical reports have been 
published so far. 

3.4.2 MicroRNAs (miRNAs) in cervical cancer 

The participation of miRNAs as regulatory molecules in differentiation, apoptosis, and 
proliferation strongly suggested a role in cervical cancer. Although miRNAs are not 
therapeutic or diagnostic oligonucleotides in strict sense, they can be used as synthetic 
moieties to block key biological processes leading to malignant transformation. Because the 
HPV life cycle is linked to epithelial differentiation and requires actively proliferating  
keratinocytes, it has been hypothesized that HPV proteins may modulate miRNA 
expression. Interestingly, high-risk HPVs do not encode for any known miRNA (Cai et al., 
2006; Lui et al., 2007), although they may control expression of cellular miRNAs to regulate 
the activities of cellular proteins through expression of viral regulatory proteins (i.e. E5, E7 
and E7) (Greco et al., 2011; Wang et al., 2009; Zheng & Wang, 2011). In the last few years, 
many alterations in cellular miRNA patterns in cervical cancer tissue or cervical cancer cells 
have been reported, suggesting that knowledge of differential miRNA expression may have 
a significant diagnostic and prognostic value (Lui et al., 2007). 

High-risk HPV E6 may exert modulation of miRNA expression through p53 down 
regulation. Cervical cancer cells containing high-risk HPVs show reduced expression of 
miR-34a, a p53 effector with tumor-suppressor abilities. Reduction of miR-34a expression in 
HPV-containing human keratinocytes correlated with expression of viral E6. Furthermore, 
siRNA knockdown of viral E6 expression in high-risk HPV-containing cervical cancer cell 
lines lead to increased expression of p53 and miR-34a and accumulation of miR-34a in 
G0/G1 phase cells. Ectopic expression of miR-34a in HPV-containing and HPV-negative 
cells resulted in substantial cell proliferation inhibition and moderate apoptosis, suggesting 
HPV modulation of cellular miRNA expression (Wang et al., 2009). The HPV-16 E6 was also 
found to decrease expression of miR-23b in SiHa and CaSki cells by repressing the promoter 
and increased expression of its cellular target, the urokinase-type plasminogen activator 
(uPA), a known inductor of cell migration in cervical cancer cells. The link between HPV-16 
E6 and miR-23b transcription was associated to the presence of a p53 binding site within the 
miR-23b promoter, suggesting a cell migration modulatory role for E6 (Au Yeung et al., 
2011). 

High-risk HPV E7 expression in human keratinocytes modulated expression of human miR-
203 and its downstream target, ΔNp63. Although the underlying mechanism is not fully 
understood, E7 is sufficient for blocking miR-203 expression probably by modulation of the 
mitogen-activated protein kinase (MAPK) pathway signaling. The p63 family, is related to 
the p53 tumor suppressor. ΔNp63 isoform is expressed at high levels in proliferating 
undifferentiated basal keratinocytes, and its expression is down-regulated in differentiated 
non-proliferating cells. Down-regulation of ΔNp63 has been associated to regulation of 
epithelial proliferation and differentiation. Thus, inhibition of miR-203 allows HPV 
productive replication in differentiating cells (Melar-New & Laimins, 2010). Interestingly, 
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expression of the high-risk HPV-16 E5 protein (considered an overall enhancer of E6/E7 
activities) resulted in rapid (96 hours) alteration of  miR-146a, miR-203 and miR-324-5p and 
their target genes in transfected keratinocytes, suggesting a miRNA regulatory role for E5 
(Greco et al., 2011). 

Genomic microarray analyses in normal and cervical cancer tissues using the same miRNA 
array platform showed increased expression miR-15b, miR-16, miR-17-5p, miR-20a, miR-
20b, miR-21, miR-93, miR-106a, miR-155, miR-182, miR-185, and miR-224 and decreased 
expression of miR-29a, miR-34a, miR-126, miR-127, miR-145, miR-218, miR-424, miR-450, 
and miR-455) in cervical cancer tissues (Li et al., 2010; Wang et al., 2008). Further 
confirmation of miR-126, miR-143/145, miR-155, and miR-424/450 alterations was 
performed by deep sequencing (Witten et al., 2010). Other studies with customized miRNA 
arrays and different assay platforms showed increased miR-21 expression in cervical cancer, 
a common occurrence in cancer cells (Lui et al., 2007). More interestingly, miR-143 and miR-
145 showed basically null expression in cancer samples, suggesting the potential value of 
these miRNAs as tumor markers (Lui et al., 2007; Pereira et al., 2010). Yet another study 
concluded that infection with high-risk HPV lowered miR-218 expression suggesting a role 
for miR-218 in the pathogenesis of cervical cancer. Nevertheless, the specific role of all these 
miRNAs in cervical carcinogenesis and HPV infection is unknown.  

The growth inhibitory activity of miR-34c-3p was recently shown by our group in SiHa cells 
but not in other cell types. Although the inhibitory mechanism is not clear, transfection of a 
mi34c-3p mimic resulted in specific fast apoptosis induction (24 hours), inhibition of colony 
formation, cell migration and invasion, suggesting a potential therapeutic use for this 
miRNA (Lopez & Alvarez-Salas, 2011).  

3.5 Aptamers 

Aptamers are single-stranded oligonucleotides that, unlike AS-ODNs and siRNAs, function 
by folding into specific globular structures that dictate high-affinity binding to a variety of 
targets (Cerchia et al., 2002). They are often referred as functional homologues of the 
antibodies and are obtained through the use of the systematic evolution of ligands by 
exponential enrichment (SELEX) procedure. The SELEX method is a PCR-based in vitro 
selection procedure of large oligonucleotide libraries that recapitulates natural evolution 
resulting in the isolation of specific ligands that bind with high affinity to a wide variety of 
proteins and cell surface epitopes (Ellington & Szostak, 1990; Tuerk & Gold, 1990). These 
molecules have been used in flow cytometry, biosensors, affinity probe electrophoresis, 
capillary electrochromatography, and affinity chromatography (Yan et al., 2005).  

Notwithstanding the obvious value of aptamer for diagnostics, the incorporation of 
modified nucleotides into RNA transcripts resulting in stability in biofluids has 
considerably increased the use of aptamers as probes to inhibit protein functions (Pagratis et 
al., 1997). Nuclease-resistant RNA and DNA aptamers to block cell adhesion events gained 
importance in the last years. Wang et al., selected RNA aptamers that bind to infectious 
human cytomegalovirus and inhibit viral infection in vitro, showing the feasibility of the 
SELEX technique for the evolution of novel compounds that protect cells against infection 
by pathogens such HPV (Wang et al., 2000). Furthermore, combinatorial synthesized 
nuclease-resistant RNA and DNA aptamers are promising candidates for use in diagnostic 
and therapeutic onsets.  
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3.5.1 Aptamers on HPV detection and therapy 

Even though oligonucleotide aptamer technologies have been available for a number of 
years, it is only beginning to be established for HPV detection. During its life cycle, HPV 
expresses proteins according the cellular differentiation program that is modified after E2 
disruption and the onset of malignant transformation (Pett & Coleman, 2007; Xue et al., 
2010). Such features offer several protein targets for the detection of HPV infection and 
molecular diagnosis of cervical cancer by using aptamers as diagnostic oligonucleotides. The 
first aptamer directed against high-risk HPV proteins was obtained using a modified SELEX 
in which unspecific sequences were eliminated applying an antidote-like strategy (Toscano-
Garibay et al., 2011). This RNA aptamer effectively recognized the viral protein in a purified 
form with affinity comparable to other aptamers that bind small proteins. In addition, the 
interacting mechanism was common to those observed for little targets; it folds into two 
hairpin structures and wraps E7 making contact with independent sites located on the CR1 
and CR3 protein domains. Even though its behavior with infected cell extracts showed a 
cross-recognition between at least two types of HPV, this aptamer constitutes an important 
step towards the design of reliable and affordable detection methods. 

A second set of aptamers obtained against E7 has established the effect of a single nucleotide 

changes on the function of aptamers over the protein activity. By changing only one 

nucleotide (U>C) anti-E7 aptamers prevented the formation of pRB-E7 complexes, 

meanwhile the replacement of two bases conducted to inactive sequences (Nicol et al., 2011). 

These observations suggest that following a mutation-by-mutation planning process or even 

using error prone PCR, some of the obtained aptamers could improve intracellular stability 

to impede the activity E7 proteins and eventually become a complement for therapies 

against cervical cancer.  

4. Conclusion 

Over the last few years, small oligonucleotides have been proved as feasible alternatives to 

HPV infection and cervical cancer therapy. The most common and successful approaches 

appoint to antisense technology in the form of siRNAs and AS-ODNs against different 

target sequences within high-risk HPV E6/E7 mRNA. Above all, siRNA technology shows a 

higher capacity than AS-ODNs to inhibit HPV expression. However, siRNA-induced 

inhibition of high-risk HPV E6/E7 is still far from practical use, limiting research to cell 

culture applications. Several issues regarding the transient nature of siRNA-mediated 

inhibition and the associated and always difficult to control off-target effects have 

undermined the clinical application of this otherwise powerful technology. The ability to 

efficiently and stably produce and deliver sufficient amounts of siRNA to the proper target 

tissues still requires further refinement although recent advancements in siRNA delivery 

(encapsulation) and the use of modified nucleotides in synthetic siRNAs may finally allow 

clinical testing for cervical cancer. The use of vectors-borne shRNAs appears as a more 

distant solution due to the multiple ethical and biological issues arising from the use of viral 

vectors and the still impractical non-viral approaches (i.e. liposomes, dendrosomes, 

quantum dots, etc.). 

Even though off-targeting and delivery issues might be overcome the intracellular presence 
of any antisense moiety or siRNA must confront the role of innate immune responses. AS-
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ODNs have been shown to induce distinct classes of innate responses that can mislead data 
interpretation by masking true antisense effects in the clinical setup. In particular, the 
presence of CpG dinucleotides along the AS-ODN sequence that activate the immune 
system through Toll-like receptor 9 (TLR9), resulting in cytokine release and antitumor 
cytotoxicity (Kandimalla et al., 2005; Sivori et al., 2004). Transfection of unmodified siRNAs 
and shRNAs trigger a similar response through TLR3 and TLR7 (Judge et al., 2005). In fact, a 
whole new class of oligonucleotides known as IM-ONs that is virtually unexplored in the 
HPV and cervical cancer setup as therapeutical moieties or vaccine adjuvants.  

The involvement of miRNAs in cervical carcinogenesis has opened a new dimension in HPV 
research. Although many reports establish the alteration of a myriad of miRNAs, it is 
becoming clear that most of these are artifacts. A more stringent protocol should be used to 
establish participation of miRNAs in cervical cancer including functional assays in HPV-
positive and HPV-negative cervical cells and in situ detection in normal and tumor cervical 
tissues. Nevertheless, HPV modulation of miRNA expression is firmly established. The use 
of aptamers in cervical cancer diagnosis and HPV detection is promising as the natural 
history of HPV infection offers a plethora of targets previously addressed with antibodies. 
As SELEX-derived oligonucleotides grow in diversity and specificity, new and cost-effective 
aptamer-based technologies will provide fast and reliable prevention and early screening 
strategies that will compete with massive vaccination programs in the future. No use of 
aptamers in cervical cancer therapy has been reported, but the use of AS-ODNs and 
aptamers currently accepted by the FDA and the advent of new RNA therapeutic targets 
(i.e. miRNAs), suggest that the best options for the clinical application of oligonucleotides 
against cervical cancer are yet to come. 
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