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1. Introduction 

1.1 ALS and the SOD1 rodent models 
Amyotrophic lateral sclerosis (ALS) is a progressive disorder that leads to degeneration of 

upper and lower motor neurons, muscular atrophy, and (ultimately) death.  A clinical 
diagnosis of ALS requires signs of progressive degeneration in both upper and lower motor 

neurons, with no evidence that suggest that the signs can be explained by other disease 
processes (Brooks et al., 1994, 2000).  The incidence rate of the disease is around 2 in 100,000 

people (Hirtz et al., 2007).   The onset age of sporadic and most familial form of ALS is 
between 50-60 years, and is generally fatal within 1-5 years of onset (Cleveland & Rothstein,  

2001).  Riluzile is the only drug that demonstrates a beneficial effect on ALS patients, but 
only increases survival by a matter of months (Zoccolella et al., 2009). 

Motor neuron cell death in ALS probably involves multiple pathways.  Most ALS cases are 
sporadic in nature, while ~10% arise from a dominantly inherited trait (familial ALS or 

FALS) (Brown, 1995).  The cause for sporadic ALS remains unclear, while 20% of FALS 
patients have a point mutation in the cytosolic Cu2+/Zn2+ superoxide dismutase 1 (SOD1) 

gene (Rosen et al., 1993).  Recent reports suggested that other causes of FALS also include 

mutations in TDP-43 (the 43-KDa TAR DNA binding protein) and FUS (Fused in 
sarcoma/translocated in liposarcoma) genes (Ticozzi et al, 2011).  From various lines of 

transgenic mice, we can observe that motor neuron disease is developed in mutants with 
elevated SOD1 levels (ex. hSOD1-G93A line), while no symptoms are observed in SOD1 

knockout mice. The combined effect shows that SOD1 acts through a toxic gain of function 
rather than loss of dismutase activity (Julien et al., 2001).  Both mouse and rat models over-

expressing SOD1 genes show similar disease phenotypes and disease progression to those 
observed in human ALS patients (Gurney, 1994; Nagai et al., 2001; Howland et al., 2002). 

The mechanism underlying motor neuron death in ALS is still unknown.  However, SOD1 
mutant induces non-cell-autonomous motor neuron killing by an unknown gain of toxicity, 
which means the gain of toxicity arises from damage to cells other than motor neurons 
(Boillée et al., 2006a).  Multiple mechanisms account for the selective vulnerability of motor 
neurons including protein misfolding, mitochondrial dysfunction, oxidative damage, 
defective axonal transport, excitoxicity, insufficient growth factor signaling, and 
inflammation (Boillée et al., 2006a).  Of course there are a lot of shortcomings for using 
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G93A and other SOD1 transgenic rodent models as SOD1 mutation is only found in a small 
proportion of human ALS patients.  However, it is still an excellent tool for ALS researchers 
as transgenic mice have proven to be one of the most useful tools to understand the 
complexity of neurodegenerative diseases because of their usefulness to unveil underlying 
mechanisms of the disease and evaluating potential treatments (Rothstein, 2004).  In this 
review we will overview the extensive use of SOD1 transgenic rodent models in ALS 
research and how those findings can be transferred to treat human ALS patients. 

1.2 Chapter overview  
Topics covered in this chapter include growth factor therapy and stem cell therapy for ALS.  

For growth factor therapy, we will introduce different delivery methods and injection sites.  

As for stem cell transplantation therapy, we will look into strategies that aim to replace or 

protect motor neurons.  After that, we will summarize studies that utilize stem cells as a tool 

to deliver growth factors. We will conclude the chapter by looking forward to future 

development in the field.  

2. Growth factors and gene therapy in ALS 

2.1 Growth factors and the nervous system 
Growth factors are a class of naturally occurring proteins that are capable of stimulating cell 

growth, proliferation, and differentiation. In development of the nervous system, they are 

crucial because they are essential for neuronal survival and differentiation.  For adults, they 

are also required in some cases to maintain normal function of the nervous system, but only at 

very low levels. However, the presence of low levels of growth factors in adult tissues is 

critical because motor neurons rely on them for survival and repair upon stress and injury. 

Experiments have been performed to investigate the effect of growth factors on alleviating the 

symptoms of ALS.  Those growth factors includes glial cell line-derived neurotrophic factor 

(GDNF), insulin growth factor 1 (IGF-1), vascular endothelial growth factor (VEGF), and brain 

derived neurotrophic factor (BDNF).  For each of the growth factors listed above, there are 

studies on hSOD1-G93A transgenic rodent models that show some degree of improvement, 

which includes some or all of the following: delay onset, slow disease progression, decrease 

motor neuron loss, preserve neuromuscular junction and prolong survival.  

2.2 Strategies of growth factor delivery 
2.2.1 Methods of delivery 
Currently, three different methods of have been used to deliver the growth factor into the 
motor nervous system to ALS patients or rodent models.  The first is subcutaneous injection 
of the growth factor protein. The obvious advantage of this method is the ease and 
simplicity to administrate. Some growth factors are pharmaceutically available to treat other 
neurodevelopmental diseases, such as IGF-1 to treat IGF deficiency in children.  This is the 
reason why it is the only method of delivery that has been tested on human ALS patients.  
However, a statistically significant result has not been observed in this method of delivery.  
The only successful case is the North American study on IGF-1 in 1997 (Lai et al., 1997), but 
was immediately challenged by an almost identical study in Europe in 1998 (Borasio et al., 
1998) and other later studies. The failure of this classical method of delivery to alleviate ALS 
symptoms includes (i) inability of some of the chemical of interest to pass the blood-brain 
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barrier; (ii) unwanted side effects in non-targeted sites, and (iii) a relative short half-life of 
the protein. The significance of these issues is amplified in the human nervous system 
because of greater cross-sectional area when compared to rodents. Further penetration is 
needed for the injected growth factor to reach the deep structure in the brain or spinal cord 
to give its desired effect. Similar issues are found in clinical trials for patients with 
Parkinson’s disease using the same strategy to deliver growth factors.  
The second method is to deliver the chemical of interest by implanting a catheter directly 
into the site of the brain that needs the growth factor, as seen in a couple Parkinson’s disease 
studies (Gill et al., 2003; Slevin et al., 2005).  It is better than the previous method as it 
overcomes the distance problem seen in large animals. However, there are a couple of 
drawbacks if this is applied to ALS patients to deliver the growth factor into the spinal cord 
instead of the brain for Parkinson’s disease.  The implanted catheter might interrupt the 
ascending and/or descending white matter track, and the natural movement of the spinal 
cord in patients increase the shearing forces may cause further damage.  Therefore catheter 
delivery would not be a desirable method of ALS growth factor delivery.  
The last approach uses viral vectors to circumvent all those issues. Those viruses include 
lentivirus (Cisterni et al., 2000; Hottinger et al., 2000; Azzouz et al., 2004), adenovirus (Acsadi et 
al., 2002; Hasse et al., 2007), and adeno-associated virus (AAV) (Kasper et al., 2003; Wang et al., 
2002).  They are used because of the ability to deliver genes to non-dividing cells, which 
includes mature neurons.  Thus they are ready to be engineered to encode the therapeutic 
protein. Extensive studies of AAV delivery of potential drugs to specific brain regions have 
been published, suggesting viral vector delivery is a practical method. 

2.2.2 Sites of delivery 
Studies have been done to inject vectors encoding the growth factor of interest into two 

distinctive types of tissues: (i) limb/respiratory muscles and (ii) the connecting motor 

neurons. In most ALS studies the vectors are injected in the muscle. Although positive 

results are shown in studies with GDNF and IGF-1, researchers believes that motor neurons 

may detach from the muscle at early stages of the disease (Fischer et al., 2004), or the cellular 

transport mechanism is heavily impaired (Williamson & Cleveland, 1999; De Vos et al., 

2007).  Again due to their large cross-sectional area, retrograde transport is more severely 

affected in larger mammals when compared to mice, and thus requires a longer distance of 

transport.  This factor may slow the translation of this successful strategy to clinical trials. 

To overcome the potential problems of retrograde transport that may be encountered in 

muscle injections in humans, studies that inject vectors directly to motor neurons within spinal 

cord has been performed.  Surprisingly, only a few studies have been published on this 

approach and the effect is less significant than the muscle injection studies.  In a GDNF study 

on ALS mice, neuroprotection is only seen on facial but not lumbar motor neurons (Guillot, 

2004).  Another study supports the above idea by showing that GDNF is neuroprotective 

when it is overexpressed in skeletal muscles, but has no effect when the growth factor is 

overexpressed in motor neurons (Li et al., 2007).  Disease progression is only slowed when 

GDNF is expressed in skeletal muscles, but not when it is expressed in the motor neurons.  

2.3 Insights from growth factor studies to understand ALS disease progression 
Although the ultimate goal of growth factor therapy for ALS is to alleviate symptoms, 
prolong survival, delay onset, and slow disease progression, during the course of 
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investigation several interesting findings have been observed and may provide insights to 
better understand the underlying mechanism of the disease.  For example, finding growth 
factors’ targets may help us find how the disease is initiated.  Currently, the growth factors’ 
targets are not fully known.  It could be the degenerating motor neuron itself, the 
neighboring neuron, or surrounding glial cells.  But a recent report about wild type non-
neuronal cells extending survival of SOD1 mutant motor neurons in chimeric ALS mice 
(Clement et al., 2003) may provide adequate evidence showing that the growth factor’s 
target is the supporting glia instead of neurons.  
Another point of interest is the similarity of the growth factors that have been used.  All 
GDNF, IGF-1, VEGF, and BDNF interact with receptor tyrosine kinases to produce 
downstream effects.  Experiments have shown that those growth factors indeed work in a 
similar pathway and mechanism as there is no additional improvement observed when they 
work in combination (IGF-1 and VEGF) as compared to working individually (Dodge et al. 
2010). Another article reports that VEGF promotes motor neuron survival by blocking 
Caspase through Phosphoinositide 3-kinase/ protein kinase B (PI3K/Akt) pathway (Lunn et 
al., 2009).  Further investigation on the PI3K/Akt pathway may provide clues on how motor 
neuron death is triggered in ALS.  

3. Stem cell therapy for ALS  

3.1 The motor neuron replacement strategy 
As motor neuron loss is the key diagnostic feature of ALS, the most straightforward strategy 
is to derive motor neurons from various types of stem cells and try to use them to replace 
the dead motor neurons in patients.  For adult stem cells, cells expressing neuron and glial 
lineage markers were successfully derived from trans-differentiation of human umbilical 
cord blood cells (McGuckin et al., 2004) and mouse bone marrow stem cells (Croft et al. 
2006).  However, those cells’ electrophysiological properties, survival, differentiation, and 
efficacy of integration to functional neurons and glial cells either in vitro or in vivo were not 
tested.  Neural stem cells are the only type of adult stem cells which have successfully 
derived motor neurons that are functional in vivo (Gao et al., 2005).  Human neural stem 
cells, which are scarce in the human body, are usually derived from embryonic stem cells or 
fetal brain tissues (Tai & Svendsen, 2004). 
More promising results were shown in experiments using pluripotent stem cells.  From 
mouse embryonic stem (ES) cells, motor neurons were successfully generated by induction 
of developmentally relevant signaling factors.  The derived cells survive when transplanted 
into chick embryonic spinal cord, extend axons, and exhibit signs of presynaptic 
specialization when reaching targeted muscles (Wichterle et al., 2002).  Another study shows 
that those cells possess immunohistochemical and electrophysiological features of normal 
motor neurons (Miles et al., 2004).  Similar to mouse ES cells, human ES cells have been 
reported to form functional neurons (Li et al., 2005; Lee et al., 2007).  
Functional motor neurons can also be derived from human induced pluripotent stem (iPS) cells, 
a possible alternative that may avoid the ethical concerns for the use of human ES cells 
(Karumbayaram et al., 2009).  iPS cells are somatic cells that are reprogrammed into pluripotent 
stem cells (Yu et al., 2007; Takahashi, 2007), with great similarity to embryonic stem cells. They 
are capable of deriving patient-specific differentiated cells like neurons and glia, which allows 
them to potentially be used for autologous cell replacement in ALS patients.  iPS cells have been 
generated from ALS patients and the cells are capable of differentiating into motor neurons 
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(Dimos, 2008).   However, introduction of new genes during the production of iPS cells may 
give rise to additional technical concerns when translating to clinical studies.  
Mouse ES-derived motor neurons reportedly grow around the ventral horn when 
transplanted into the spinal cord of rats with impaired motor neurons (Harper et al., 2004).   
In combination with chemicals that overcome myelin-mediated repulsion and GDNF that 
stimulates axon guidance towards skeletal muscles, further improvement in survival and 
engraftment of the transplanted cells was observed.   Improvement in motor function of the 
paralyzed rats was also observed (Despande et al., 2006). 
Despite the excitement that these transplantation studies brings to the field, the fact that 
these studies were performed on static models of motor neuron loss does not guarantee 
success in progressive motor neuron diseases like ALS.  In addition, in order for the motor 
neuron replacement strategy to be successful, the transplanted motor neuron will first need 
to receive synaptic input from the presynaptic neurons and extend it’s axon all the way to 
the targeted muscle at a rate of 1-3 mm/day, which takes months to years in humans, before 
innervation to the targeted muscle can be possible (Papadeas & Maragakis, 2009).  Therefore 
motor neuron replacement may not be a legitimate treatment at this moment.  

3.2 The neuroprotection strategy 
3.2.1 Non-cell autonomous nature of motor neuron death in ALS 
Previously, little attention has been paid to the function of glial cells in the nervous system.  

However, we now know that glial cells modulate neuronal functions such as glutamate uptake, 

synaptic plasticity, trophic factor support, and even neuronal transmission (Kirchhoff et al., 

2001).  Studies also show that motor neuron death in ALS is non-cell autonomous, or mediated 

by astrocytes and microglia (Hall et al., 1998; Barbeito et al., 2004).  Researchers also hypothesize 

that astrocytes and/or microglia form a positive feedback loop with motor neurons that leads to 

further propagation of the disease (Rao & Weiss, 2004).  Moreover, chimeric mice with 

increased proportion of healthy, wild type glial cells increase survival of nearby human SOD1 

mutant neurons in vivo (Clement et al., 2003).   Using a CRE-lox system, selective reduction of 

the mutant gene in microglia and astrocytes in SOD1 transgenic mice slows disease progression, 

but has no effect on disease onset (Boillée et al., 2006b; Yamanaka et al., 2008). 

Additional evidence is provided by stem cell–derived motor neurons/astrocytes co-culture. A 

study in 2007 shows that primary and ES cell-derived motor neurons are complementary in an 

in vitro motor neuron/astrocytes study for ALS (Nagai et al., 2007).  From then on, studies 

using the following combinations have been performed: hES cell derived motor neurons with 

primary hSOD1-G93A or wild type mouse primary astrocytes (Di Giorgio et al. 2008); hSOD1-

G93A mouse ES derived motor neuron with hSOD1-G93A derived mouse primary astrocytes 

(Di Giorgio 2007); and hES cells derived motor neuron with primary human astrocytes 

transfected with hSOD1-G47R genes (Marchetto, 2008). The Marchetto paper also uses that 

approach to verify a potential drug that has been beneficial in ALS rodent models.  The success 

in this approach provides an easily accessible in vitro testing platform for cell-cell interactions 

in ALS and underlying disease mechanisms.  Drug discovery will also accelerate as high 

throughput drug screening can be performed on the cultures. 

3.2.2 Astrocyte replacement 
Based on non-cell autonomous nature of motor neuron death in ALS, astrocyte 
replacement is another feasible strategy for ALS stem cell therapy.  Researchers transplant 
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glial restricted precursor (GRP) cells (lineage-restricted as derived from developing spinal 
cord) focally to cervical spinal cord that controls respiratory function in SOD1 rats 
(Lepore et al., 2008).  The effect of the GRP transplant is significant: GRP cells survive and 
differentiated into mature astrocytes in vivo.  The treatment also reduces microgliosis, 
prolongs survival, ameliorates motor neuron loss, and slows motor function decline.  The 
group also found that the ALS rats with grafted GRP cells maintain normal level of 
glutamate transporter (GLT-1), an astrocyte-specific protein that has reduced expression 
in both ALS model rats and human patients (Howland et al., 2002; Rothstein et al., 1995).  
This may provide further evidence that astrocyte replacement is a sound strategy for ALS 
cell therapy. 

3.2.3 Immunomodulation 
Other than replacement strategies, some stem cell therapies modulate the immunological 

environment around the degenerating motor neurons to prevent them from dying.  Bone 

marrow cells provide a rich source of mesenchymal stem cells (MSCs) and hematopoietic 

stem cells (HSCs).  HSCs can give rise to a great variety of blood cells and cells in the 

immune system, but will particularly differentiate into microglia when introduced to the 

nervous system (Vitry et al., 2003).  MSCs do not have the ability to differentiate into cells in 

the nervous system, but contribute to improved locomotion by differentiating into cells in 

the skeletal muscle lineage (Corti et al., 2004).  Bone marrow transplanted into irradiated 

SOD1G93A/PU1-/- double mutants (born without microglia and peripheral immune cells) 

prolonged survival and slowed disease progression (Beers et al., 2006).   Another similar 

experiment confirms the result (Corti et al., 2004). This led to clinical trials of MSC and HSC 

transplants to sporadic ALS patients (Appel et al., 2008; Mazzini et al., 2008).  Some of these 

studies show promising results (Table 1). 

3.3 Protective effect of neural stem cell and other cells in the neural lineage 
Although most transplantations involving cells in the neural lineage were aimed at 

replacement of motor neurons, researchers now find that neuro-protection was instead the 

main effect.  Various cell transplantations have been performed on hSOD1-G93A rodent 

models. They include: i) human embryonic germ cell delivered to cerebral spinal fluid (Kerr 

et al., 2003); ii) human neural stem cells grafted into the spinal cord (Yan et al., 2006); iii) 

hNT neurons derived from a human teratocarcinoma cell line grafted into spinal cord 

(Garbuzova-Davis et al., 2002); mouse Sertoli cells into parenchyma (Hemendinger et al., 

2005); and human umbilical cord blood cells transfused into the systemic circulation 

(Habisch et al., 2007).  In each of the cases, there was some degree of positive effect on motor 

neuron survival and life span of the animals.  In addition, in most cases the positive effect is 

related to growth factor release (Suzuki & Svendsen, 2008).  However, these studies do not 

specify which cell types are eventually exerting the protective effect or releasing the growth 

factors, though they are expected to be astrocytes (See Section 3.2 of this chapter).  However, 

one human neural stem cell (NSC) transplant study suggests that the neuroprotective effect 

of host motor neurons stems from the ability of NSCs to differentiate into neuronal subtypes 

other than motor neurons such as GABAergic neurons that forms synaptic connection 

between grafted and host motor neurons (Xu et al., 2009).  These neurons may provide 

additional benefits other than that from glial cells. 
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Cell type Subject Injection Site Effect Paper 

Mouse GRP 
hSOD1-
G93A rats 

bilateral cervival 
spinal cord 
injection 

cells survive and 
differentiated into 
mature astrocytes; 
reduces microgliosis; 
prolongs survival, 
ameliorates motor 
neuron loss and slows 
down motor function 
decline; normal GLT-1 
level 

Lepore et al. 
2008 

Mouse bone 
marrow cell 

hSOD1-
G93A 
/PU1-/- 

double 
mutant mice 

  i.p. injection 

cells effectively 
differentiated into 
microglia cells; 
prolongs survival; 
suppressed 
cytotoxicity; restore 
glial activation 

Beers et al. 2006 

Mouse Bone 
marrow 
transplant 

hSOD1-
G93A mice 

i.p. injection 
delayed onset, increase 
life span 

Corti et al. 2004 

Human 
embryonic 
germ cell 

rats with 
diffused 
motor 
neuron 
injury 

i.c.v injection 
(CSF) 

cells distributed 
extensively over the 
rostrocaudal length of 
the spinal cord and 
migrated into the spinal 
cord parenchymal 
partially recovered 
motor function 12 and 
24 weeks after 
transplantation 

Kerr et al. 2003 

hNT cell 
hSOD1-
G93A mice 

L4-L5 segments of 
the ventral horn 
spinal cord 

delay onset, prolong 
survival,  

Garbuzova-
Davis et al. 2002 

Mouse Sertoli 
cell 

hSOD1-
G93A 

unilateral spinal 
injection into the 
L4-L5 ventral horn 

significant increase in 
motor neuron 
survival; no effect on 
disease onset and 
progression 

Hemendiner et 
al. 2005 

Neuroectoderm
al derivatives of 
hUBS (hUBS-
NSCs) 

hSOD1-
G93A 

direct injection into 
the CSF (the 
cisterna magna). 

No effect 
Habisch et al. 
2007 
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Cell type Subject Injection Site Effect Paper 

hUBC 
hSOD1-
G93A mice 

i.v. injection 

reduce microgliosis; 

increased lifespan; 
delayed disease 

progrssion 

Garbuzova-
Davis et al. 2008 

hNPC-GDNF 
hSOD1-

G93A rats 

Unilateral lumbar 

spinal cord 
injection 

Robust migration of 

the transplanted cells 
into the degenerating 

region; efficient 
delivery of GDNF as 

well as preservation of 
a large proportion of 

motor neurons; no 
continued 

innervations of motor 
neuron to the skeletal 

muscle end plates, no 
effect on ipsilateral 

hind limb function.  

Suzuki et al. 

2007 

hMSC-GDNF 
hSOD1-
G93A rats 

Skeletal muscles 

Transplanted cells 

survive within host 
skeletal muscles and 

release GDNF; 
significant increase in 

neuromuscular 
junctions; improves 

motor neuron survival 

Suzuki et al. 
2008 

CD34+ HSCs, 

HLA-matched 
sibling donors 

ALS 

patients 
i.v. injection No clinical benefits Appel et al. 2008 

Autologous 

bone marrow 
derived MSCs 

ALS 

patients 

multiple thoracic 

spinal cord 
injection 

Decelerated linear 
decline of the forced 

vital capacity and of 
the ALS-FRS score in 

some patients 

Mazzini et al. 

2010 

Autologous 

CD133+ cells 

ALS 

patients 

bilateral injection 

into frontal motor 
cortex 

lives 47 months more 

than the control group 

Martinez et al. 

2009 

Table 1. Stem Cell Trials for ALS GRP. Glial restricted precursor; hUBC: human umbilical 
cord blood cells; NSCs: neural stem cells; hNPC: human neural progenitor cell;  hMSC: 
human mesenchymal stem cell; HSCs: hematopoietic stem cells. 
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4. Working in combination: Genetically engineered stem cells as a tool of 
growth factor delivery for ALS 

We have introduced two successful strategies for slowing ALS disease progression in the 
previous sections of this chapter.  Although both of them in some degree involve the release 
of neuroprotective growth factors, both strategies have their shortcomings. In viral delivery 
of growth factors, the cells still carry the mutant SOD1 gene or has the disease phenotype.  
Therefore the cells that are delivering the treatment are indeed still doing harm on the 
surrounding cells at the same time.  On the other hand, neuroprotective strategy of stem cell 
transplants, though increases the proportion of wild type (normal) cells around the injection 
site(s), the transplanted cells may not naturally produce the desired neuroprotective growth 
factors in a pharmaceutically adequate amount (Gonzalez, 2009).  Therefore, it is reasonable 
for us to combine the two strategies and see if they can complement each other and produce 
a great synergic effect.  

4.1 hNPC-GDNF injection to spinal cord 
Based on the logic above, our group genetically engineered human neural progenitor cells 
(hNPC) that express and secrete GDNF through lentiviral infection (Klein et al., 2005; Suzuki 
et al., 2007).  hNPC are comprised of multiple classes of neural stem cells and lineage-
restricted precursors.  They are isolated from fetal brain cortical tissue (Svendsen et al., 1996; 
Keyoung et al., 2001; Tamaki et al., 2006; Suslov, 2002) and can be maintained for over 50 
weeks in the presence of mitogen while retaining the ability to differentiate into astrocytes 
(Wright et al, 2003).  With their special properties, hNPC can thus serve as “mini-pumps” to 
provide glial replacement and deliver trophic factors through transplantation into specific 
sites in the brain and spinal cord of diseased animals and patients. hNPC-GDNF were 
transplanted to the lumbar region of the spinal cord of hSOD1-G93A rats.  We observed 
robust migration of the transplanted cells into the degenerating region, efficient delivery of 
GDNF, as well as preservation of a large proportion of motor neurons at both early and late 
stages of the disease within chimeric regions (Suzuki et al. 2007).  However, the preservation 
of motor neurons does not accompany with continued innervations of motor neuron to the 
skeletal muscle end plates, thus had no effect on ipsilateral hind limb function.   

4.2 hMSC-GDNF injection to skeletal muscles 
Skeletal muscles clearly play an important role in guiding and attracting the developing 
neurons; and provide trophic support to maintain motor neuron function (Dobrowolny et al., 
2005).  A previous study showed that transplants of genetically engineered myoblasts (a kind 
of skeletal muscle precursor which has the ability to fuse with mature myofibers) secreting 
GDNF ameliorates motor neuron loss in ALS mice (Mohajeri et al., 1999).  Thus we genetically 
engineered human MSCs (hMSCs) that express and secrete GDNF and transplanted them to 
three muscle groups in hSOD1-G93A rats (Suzuki et al., 2008). MSCs can be easily obtained 
from bone marrow from donations and have the ability to differentiate into the skeletal muscle 
lineage (Caplan & Arnold, 2009). The transplanted cells survives in the host skeletal muscle 
and releases GDNF. Moreover, it significantly increases the number of functional 
neuromuscular junctions and improves motor neuron survival in spinal cord at the mid-stage 
of disease.  Furthermore, intramuscular hMSC-GDNF transplantation remarkably prolongs 
disease progression, increasing overall life span up to 28 days, which is one of the greatest 
improvements ever observed in familial ALS model rats.  
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4.3 Future research directions 
From the two sets of experiments described in this section, we can conclude that stem cell 
delivery of growth factors is an effective strategy for ALS treatment.  We also know that 
different sets of delivery tools are needed for the motor neuron cell bodies in the spinal cord 
and their synaptic connections to the skeletal muscles.  Our current knowledge leads us to 
an initial thought for future development of the field of ALS growth factor/stem cell 
therapy.  Motor neuron cell body protection will be provided by stem cell derived wild type 
astrocytes and microglia (from hNPC for example); while synaptic/axonal protection will be 
provided by stem cell derived myoblasts (from hMSC for example).  Those cells will be 
genetically modified to enhance delivery of neurotrophic factors.  Lastly, GDNF is only one 
of the many neurotrophic factors that showed to have beneficial effect on ALS rodent 
models as mentioned in Section 2 of this chapter.  We expect there will soon be tests on the 
other neurotrophic factors. 

5. Clinical translation 

Despite the exciting breakthroughs in stem cell research aiming to treat ALS, there is still a 
long way to go to translate those successes to the clinic and help patients.  Since we are still 
uncertain about the fate of stem cells after transplantation, thorough safety tests are needed.  
Then, optimal cell dose, source of cells, stage of cells, route of delivery, injection sites, and 
immunosuppressive regimen (to ensure grafted cell survival in host) will need to be 
determined as well (Papadeas and Margaskis, 2009).  
Clinical trials that involve stem cells on ALS patients are in the initial stage. In 2010 the 
phrase I clinical trial of hMSC transplantation performed in Italy was reported. (Mazzini 
et. al., 2010) Autologous MSC isolated from bone marrow derived cells were transplanted 
to the thoracic region of 9 ALS patients. Neither adverse effect nor significant 
improvement was found.  However, it provides initial evidence that MSC injection is safe.  
Large volume (1 mL) of cells can be infused to the spinal cord without causing observable 
defects.  
Neuralstem  and Emory ALS center have begun the phase I trial of spinal cord derived stem 

cells for patients with ALS.  The advantages of using neural stem cells derived from human 

fetal spinal cord are no tumor formation and minimal HLA (human leukocyte antigen) 

expression, thus, resulting in a low overall antigenicity of the cells.  The first surgery of the 

trial took place a year ago, and the 9th surgery was performed earlier in 2011, without the 

need for patients to be on ventilators or to be taken to intensive care post-operation.  The 

trial was staged, first enrolling non-ambulatory patients, and the first ambulatory patient 

was enrolled early 2011.  

6. Conclusion  

In this chapter, we introduced the current application of stem cells in ALS (summarized in 
Figure 1).  There are three points we should keep in mind about this topic.  First, stem cell 
therapy design should be aimed at neuroprotection rather than motor neuron replacement. 
Motor neuron replacement is technically difficult to achieve. Also, in theory it will not bring 
much improvement to the patients because the evidence shows that glial cells are the actual 
determinant of ALS disease progression.  Secondly, combining stem cell transplantation and 
growth factor delivery provides the best result in slowing disease progression and 
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prolonging survival, as the two greatly complement each other.  Finally, we are now 
convinced that injections of stem cells in multiple sites are needed in order to alleviate 
symptoms of ALS.  There should be at least one injection that focuses on protecting cell 
bodies of motor neurons and another that aims to maintain neuromuscular connections.  To 
sum up, stem cell applications have made a lot of contributions to ALS research and have 
great potential to bring breakthroughs to the field in the near future.  
 

 

Fig. 1. Schematic illustration of possible stem cell interventions for ALS therapies.  These 
could include: (1) Motor neuron replacement, differentiation of neural progenitor cells to 
motor neurons and projection to the periphery; (2) Differentiation and replacement of 
dysfunctional astrocytes; (3) Modulation of immunological environment around the 
degenerating motor neuron; (4) Trophic/growth factor delivery via stem cells to provide 
neuroprotective support for the endogenous populations; (5) Local delivery of growth 
factors to support neuromuscular junctions and axon integrity. 
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Though considerable amount of research, both pre-clinical and clinical, has been conducted during recent

years, Amyotrophic Lateral Sclerosis (ALS) remains one of the mysterious diseases of the 21st century. Great

efforts have been made to develop pathophysiological models and to clarify the underlying pathology, and with

novel instruments in genetics and transgenic techniques, the aim for finding a durable cure comes into scope.

On the other hand, most pharmacological trials failed to show a benefit for ALS patients. In this book, the

reader will find a compilation of state-of-the-art reviews about the etiology, epidemiology, and pathophysiology

of ALS, the molecular basis of disease progression and clinical manifestations, the genetics familial ALS, as

well as novel diagnostic criteria in the field of electrophysiology. An overview over all relevant pharmacological

trials in ALS patients is also included, while the book concludes with a discussion on current advances and

future trends in ALS research.
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