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1. Introduction 

Amyotrophic lateral sclerosis (ALS), which was described since 1869 by Jean Martin 

Charcot, is a devastating neurodegenerative disease characterized by the selective and 

progressive loss of upper and lower motor neurons of the cerebral cortex, brainstem and the 

spinal cord. Progressive motor neuron loss causes muscle weakness, spasticity and 

fasciculation, eventually paralysis and finally death by respiratory failure 3 to 5 years after 

diagnosis. ALS worldwide prevalence is about 2 to 8 people per 100,000, and presents two 

important differences with respect to other neurogenerative diseases: the cognitive process 

is not affected and is not merely the result of aging because may occur at young ages 

(Chancellor & Warlow, 1992; Huisman et al., 2011). Two forms of ALS are known, the 

familial type (FALS), associated with genetic mutations, mainly in the gene encoding 

superoxide dismutase 1 (SOD1, enzyme responsible for superoxide dismutation to oxygen 

and hydrogen peroxide), and the sporadic form (SALS), of unknown origin. FALS 

represents only about 5-10% of cases (Rosen et al., 1993; Rowland & Shneider, 2001), and 

SALS comprises the remaining 90%. Despite having different origins, both ALS types 

develop similar histopathological and clinical characteristics.  

2. Mechanisms of motor neuron death in ALS 

After one hundred fifty years since the first ALS description of the disease, the cause of 

motor neuron degeneration remains unknown, but progress in neuroscience and clinical 

research has identified several mechanisms that seem to be involved in the cell death 

process, such as glutamate-mediated excitotoxicity, inflammatory events, axonal transport 

deficits, oxidative stress, mitochondrial dysfunction and energy failure. 

2.1 Excitotoxicity 
Based on the reduction of glutamate transporter-1 (GLT1 in rodents and excitatory amino 
acid transporter 2 or EAAT2 in human) content detected post-mortem in motor cortex and 
spinal cord of ALS patients (Rothstein et al., 1992; Rothstein et al., 1995) and on the increase 
of glutamate concentration in the cerebrospinal fluid (CSF) of about 40% of ALS patients 
(Shaw et al., 1995b; Spreux-Varoquaux et al., 2002), one proposed mechanism to explain 
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motor neuron death in ALS is glutamate-mediated excitotoxicity. This hypothesis has been 
generally accepted, although some data from our laboratory do not support it because a 
chronic increase in extracellular glutamate due to glutamate transport inhibition in the 
spinal cord in vivo was innocuous for motor neurons (Tovar-y-Romo et al., 2009b). 
However, overactivation of glutamate ionotropic receptors by agonists leads to neuronal 
death by augmenting the influx of Ca2+ into motor neurons. Experimental models in vivo 
have shown that of three major glutamate ionotropic receptor types, NMDA (N-methyl-D-
aspartate), kainate and AMPA (┙-amino-3-hydroxy-5-isoxazolepropionate), the Ca2+-
permeable AMPA receptor seems to be particularly involved in motor neuron death, 
because the selective blockade of Ca2+-permeable AMPA receptors or the chelation of 
intracellular Ca2+ prevents the motor neuron loss and the consequent paralysis induced by 
the infusion of AMPA into the rat lumbar spinal cord (Corona & Tapia, 2004, 2007; Tovar-y-
Romo et al., 2009a). The Ca2+ permeability of this receptor is governed by the presence of the 
GluR2 subunit and its edition in the Q/R (glutamine/arginine) site of the second 
transmembrane domain (Burnashev et al., 1992; Corona & Tapia, 2007; Hollmann et al., 
1991; Hume et al., 1991).  
Increases in cytoplasmic Ca2+ concentration can be buffered by mitochondria, but when 

maintained for prolonged periods can cause mitochondrial swelling and dysfunction. These 

alterations are associated with deficits in mitochondrial ATP synthesis and energetic failure 

(this topic will be discussed later). The energetic deficits have been mainly associated with 

cell death process similar to necrosis (Kroemer et al., 2009; Martin, 2010). On the other hand, 

mitochondrial damage has also been linked to the release of proapoptotic factors such as 

cytochrome c and apoptosis-inducing factor (Martin et al., 2009). Cytochrome c involvement 

has been stressed because of its role in triggering the caspases pathway, which leads to 

apoptotic cellular death. In the cytoplasm cytochrome c promotes the formation of the 

apoptosome complex and activates caspase-3. The necrosis and apoptosis pathways are 

illustrated in Fig. 1. 

2.2 Axonal transport deficits 
Because of the structural and functional characteristics of motor neuron axons, the role of 

axonal transport is essential for the communication between the neuronal soma and the 

periphery, as well as for the anterograde and retrograde dispersive distribution of cargo 

intracellular structures such as vesicles or organelles. Changes in the speed of 

anterograde and retrograde transport (Breuer & Atkinson, 1988; Breuer et al., 1987; 

Sasaki & Iwata, 1996), as well as neurofilament disorganization and accumulation of 

mitochondria, vesicles and smooth endoplasmic reticulum have been described in 

peripheral nerves of ALS patients (Hirano et al., 1984a, b; Sasaki & Iwata, 1996). These 

alterations in axonal transport have been observed also in transgenic models of FALS, 

which have allowed the study of their progression and the molecular machinery 

involved (Bilsland et al., 2010; Brunet et al., 2009; Collard et al., 1995; De Vos et al., 2007; 

Ligon et al., 2005; Perlson et al., 2009; Pun et al., 2006; Tateno et al., 2009; Warita et al., 

1999; Williamson & Cleveland, 1999). In mutant SOD1 (mSOD1) rodents, some motor 

proteins such as: dynein, dynactin, kinesin, myosin, actin, and microtubules and 

neurofilaments are affected by mSOD1 aggregates (Breuer & Atkinson, 1988; Breuer et 

al., 1987; Collard et al., 1995; Ligon et al., 2005; Sasaki & Iwata, 1996; Williamson & 

Cleveland, 1999; Zhang et al., 2007). 
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Fig. 1. Scheme of the main proposed mechanisms involved in motor neuron death. 
Description in the text. 
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These deficits may affect the renewal of organelles in the axon terminals of motor neurons, 
leading to accumulation of damaged mitochondria or autophagosomes, increased ROS 
production, disruption of microtubule formation and stability (Julien & Mushynski, 1998), 
as well as damage of presynaptic structure such as swelling of axon terminals (Komatsu et 
al., 2007). Accumulation of damaged mitochondria may result in energetic failure (Liu et al., 
2004; Martin et al., 2009; Menzies et al., 2002a, b; Pasinelli et al., 2004; Wong et al., 1995; Zhu 
et al., 2002) and in the release of proapoptotic factors (Pasinelli et al., 2004) (Fig. 1, bottom 
left). These alterations may be involved in the distal neurophaty and impairment of 
muscular reinnervation observed in ALS. 

2.3 Oxidative stress 
Another mechanism implicated in motor neuron degeneration in ALS that involves both 

motor neurons and non-neuronal cells is oxidative stress. Reactive oxygen species (ROS) 
arise in cells as aerobic metabolism by-products, mostly due to the leakage of electrons from 

the mitochondrial respiratory chain, resulting in an incomplete reduction of molecular 
oxygen during the  oxidative phosphorylation, generating  the superoxide radical anion 

(O2�-). The O2�- anion reacts quickly with the nitric oxide radical (NO�, produced by nitric 
oxide synthase, NOS) to form peroxynitrite (ONOO-). Meanwhile, the product of O2�- 

dismutation, H2O2, slowly decomposes to form the highly reactive hydroxyl radical (�OH). 
Both ONOO- and �OH are highly reactive and can damage proteins, membranes and DNA 

by oxidation. Cellular mechanisms to combat the constant production of free radicals are: 1) 
enzymes such as SOD, catalase and peroxidase, which catalytically remove reactive species; 

2) reducing agents synthesized in vivo, such as glutathione, -keto acids, lipoic acid and 

coenzyme Q, and compounds obtained from the diet, such as ascorbate (vitamin C) and -
tocopherol (vitamin E); and 3) chaperone heat shock proteins which remove or facilitate 

repair of damaged proteins. Oxidative stress arises from an imbalance between ROS 
production and its control mechanisms.  

The involvement of oxidative stress in ALS pathogenesis is supported by abundant evidence 
that has been reported in both SALS and FALS patients, where several indicators of 

increased oxidative damage have been found: 1) In postmortem central nervous system 
(CNS) tissue samples (mainly spinal cord) these markers include oxidized DNA (Ferrante et 

al., 1997b; Fitzmaurice et al., 1996), lipid peroxidation (Siciliano et al., 2002), protein 
glycoxidation (Shibata et al., 2001), elevated protein carbonylation (Ferrante et al., 1997b; 

Shaw et al., 1995a), and increased protein tyrosine nitration; remarkably, nitrotyrosine 
immunoreactivity was more densely detected in motor neurons (Abe et al., 1995; Abe et al., 

1997; Beal et al., 1997; Ferrante et al., 1997a). 2) Oxidation markers in CSF, plasma and blood 
from living ALS patients during the course of the disease have also been described. The 

most relevant are oxidized DNA (Bogdanov et al., 2000; Ihara et al., 2005), hydroxyl and 
ascorbate free radicals (Ihara et al., 2005), lipid peroxidation (Baillet et al., 2010; Bogdanov et 

al., 2000; Bonnefont-Rousselot et al., 2000; Ihara et al., 2005; Oteiza et al., 1997; Simpson et 
al., 2004; Smith et al., 1998), and a remarkable elevation of 3-nitrotyrosine levels in CSF 

(Tohgi et al., 1999). However, in other study, 3-nitroyrosine was not different between the 
CSF of ALS patients and control subjects (Ryberg et al., 2004). Increased oxidative damage to 

proteins, lipids and DNA has also been demonstrated in CNS tissue of transgenic mouse 
model of FALS expressing mSOD1 (Andrus et al., 1998; Casoni et al., 2005; Liu et al., 1999; 

Liu et al., 1998; Poon et al., 2005). 
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Mitochondria, ROS and glutamate-induced excitotoxicity are closely related and this is 
relevant in ALS, because the mitochondrion is the main oxygen consumer and it is also the 
main producer of ROS. These species can be produced in neurons and in non-neuronal cells 
and can cause failure in the glutamate uptake system of both motor neurons and astroglia 
(Rao et al., 2003; Trotti et al., 1996, 1998; Volterra et al., 1994; Zagami et al., 2009). This may 
contribute to an excitotoxic condition due to increased concentration of extracellular 
glutamate. ROS production and its effects on motor neurons and non-neuronal cells are 
illustrated in Fig. 1. 

2.4 Inflammation 
A mechanism of non-cell-autonomous death associated with motor neuron degeneration in 

both FALS and SALS is the participation of non-neuronal cells in inflammatory events 

(Boillee et al., 2006a; Boillee et al., 2006b; Hall et al., 1998; Yamanaka et al., 2008; Yang et al., 

2011). The main histopathological feature of inflammation is the proliferation of reactive 

astrogliosis and of activated microglial cells, associated with alterations in their cellular 

functions, such as glutamate reuptake failure and release of proapoptotic and 

proinflammatory factors (Sanagi et al., 2010; Sargsyan et al., 2005; Sofroniew, 2005). 

Molecules associated with inflammatory process, such as interleukins 6, 12, 15, 17A, 23, C4d 

and C3d complement proteins, as well as tumor necrosis factor-alpha, have been found in 

blood and CSF from ALS patients (Almer et al., 2002; Fiala et al., 2010; Henkel et al., 2004; 

Kawamata et al., 1992; McGeer et al., 1991; Moreau et al., 2005; Rentzos et al., 2010a, b). The 

finding of increased levels of granzymes A, B in serum (Ilzecka, 2011) and decrease in 

cytochrome c levels in the CSF (Ilzecka, 2007), suggests an apoptotic process in human 

disease. The proliferation of activated non-neuronal cells has been associated with the 

disease severity (Clement et al., 2003). Nevertheless, alteration in their functions may be 

more important than their proliferation (Lepore et al., 2008). In experimental models of 

FALS (mSOD1) it has been attempted to prevent the motor neuron loss through the use of 

drugs with anti-inflammatory properties, such as minocycline (Keller et al., 2010; Kriz et al., 

2002; Neymotin et al., 2009; Van Den Bosch et al., 2002; Zhu et al., 2002). This drug was 

effective in delaying the motor neurons loss when given prior to the symptoms onset, but 

when given at late stages it exaggerated the neuroinflammatory response and accelerated 

the progression of the symptoms (Keller et al., 2010). In this transgenic ALS model, 

apoptosis processes can be triggered by non-neuronal cells through the extrinsic apoptotic 

pathway, via the release from activated glial cells of several death ligands (for example 

FasL) that bind to their respective death receptor (Fas) and trigger the cleavage of caspase-8 

(Locatelli et al., 2007; Petri et al., 2006; Raoul et al., 2006) (Fig. 1). 

3. Mitochondrial dysfunction in ALS and in experimental motor neuron 
degeneration 

A convergent point of the deleterious mechanisms discussed above is the mitochondrion. 
This organelle is the main energy producer in eukaryotic cells and plays a fundamental role 
in normal cell physiology. Among the functions mitochondria carry out, besides ATP 
synthesis, intracellular Ca2+buffering has been recognized as another relevant factor for the 
protection against deleterious processes such as oxidative stress, excitotoxicity and necrotic 
and apoptotic death, thus playing a central role in neuronal survival.  
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Mitochondria are closely related to necrotic and apoptotic processes, which are the main 
cellular death mechanisms. During necrosis, mitochondria undergo rapid swelling and lysis. 
Although apoptosis is an energy-dependent active process, sometimes mitochondrial 
morphological alterations are associated with the intrinsic-apoptosis pathway. Furthermore, 
it is now recognized that apoptosis and necrosis are not two mutually exclusive processes, 
but they can occur simultaneously or one preceding the other (Kroemer et al., 2009; Martin, 
2010; Martin et al., 2009; Shrivastava & Vivekanandhan, 2011). 
As the organelle responsible for energy production in the cell, mitochondria possess the 

enzymatic machinery to catalyze the oxidation of various substrates generated inside and 

outside mitochondria, including pyruvate trough pyruvate dehydrogenase, fatty acids 

through ┚-oxidation, and carbon chains from amino acids. Energy is obtained by oxidation 

of all these biomolecules to finally CO2 and H2O through the tricarboxylic acid cycle and the 

respiratory chain. The tricarboxylic acid cycle is the converging point because the carbon 

skeletons of carbohydrates and fatty acids are metabolized to yield the acetyl group of 

acetyl-Coenzyme A, and many of the carbons of the amino acid skeleton also enter the cycle 

via its conversion to some cycle intermediates. The reducing equivalents generated in the 

tricarboxylic acid cycle reactions reduce pyridine and flavin nucleotides to NADH and 

FADH2. These electron transporters enter the respiratory chain, where electron flux through 

various redox carriers and centers in the enzyme complexes located in the inner 

mitochondrial membrane finally reduces O2 to H2O; this flux is coupled to ATP synthesis 

through oxidative phosphorylation.  

The energy released by the electron flux through respiratory chain complexes is used to 

pump protons through the inner mitochondrial membrane, producing an alkaline and 

negatively charged mitochondrial matrix, as compared to the intermembrane space, thus 

creating a proton gradient. This proton gradient generates an electrochemical potential 

called proton-motive force (p), which supplies the energy to ATP synthase for ATP 

synthesis from ADP and inorganic phosphate. The p depends mainly on the mitochondrial 

transmembrane potential (m), which is the electric potential (negative inside), but it also 

depends on the transmembrane pH gradient (pH), which is the chemical potential (alkaline 

inside). Energy stored in the proton gradient can also transport solutes against concentration 

gradient across the membrane. The m is a central parameter that controls three 

fundamental and highly relevant cellular processes for neuronal survival: ATP synthesis, 

mitochondrial Ca2+ sequestration, and mitochondrial ROS generation. On the other hand, 

m is controlled by substrate availability, ATP demand, respiratory chain capacity, 

mitochondrial proton conductance, and mitochondrial Ca2+ sequestration (Nicholls & Budd, 

2000). Therefore, mitochondrial bioenergetic status is crucial for controlling the 

susceptibility of neurons to chronic or acute stress and also in determining cellular fate 

(survival, apoptosis or necrosis). 

Owing to the great relevance of mitochondria, their morphological, ultrastructural and 
functional characteristics have been studied in ALS patients. Deficits in respiratory chain 
complexes I and IV activities have been detected in the spinal cord and skeletal muscle 
(Borthwick et al., 1999; Crugnola et al., 2010; Vielhaber et al., 2000; Wiedemann et al., 2002; 
Wiedemann et al., 1998), and a temporal study of mitochondrial respiratory function in 
skeletal muscle in SALS demonstrated that respiratory complex IV activity is progressively 
altered as the disease develops (Echaniz-Laguna et al., 2006). Some cases of ALS have been 
described as a mitochondriopathy (Finsterer, 2002, 2003) including a mitochondrial DNA 
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mutation in the gene encoding subunit I of the mitochondrial respiratory chain complex IV 
(Comi et al., 1998). The electron transport chain proteins FAD synthetase, riboflavin kinase, 
cytochrome C1, and succinate dehydrogenase complex subunit B expression were 
significantly decreased in some ALS patients (Lin et al., 2009). 
In the mSOD1 mice or cell culture familial ALS model, complexes I, II and IV of the electron 

transport chain exhibit decreased enzyme activities, even at early stages of the disease (Jung 

et al., 2002; Mattiazzi et al., 2002; Menzies et al., 2002a,b). In G93A-SOD1 mice the 

association of cytochrome c with the inner mitochondrial membrane was reduced and there 

was a significant decrease in respiratory chain complex IV (Kirkinezos et al., 2005). SOD-

containing aggregates (Higgins et al., 2002; Jaarsma et al., 2001; Pasinelli et al., 2004) and 

decreased oxygen consumption, lack of ADP-dependent respiratory control, and decreased 

membrane potential (Cassina et al., 2008), were observed in  mitochondria from spinal cord 

of transgenic mSOD1 rodents.  

In neuronal cultures, glutamate-mediated excitotoxicity caused significant changes in 

mitochondrial function, such as decline in ATP levels, mitochondrial transmembrane 

potential collapse, decreased mitochondrial and cellular oxygen consumption, and oxidative 

phosphorylation uncoupling, all these events preceding cell death (Ankarcrona et al., 1995; 

Atlante et al., 1996; Maus et al., 1999; Monje et al., 2001). There is a link between 

excitotoxicity-induced intracellular Ca2+ overload and the collapse of m, since intracellular 

Ca2+ increase and its accumulation in mitochondria are sufficient to induce prominent and 

persistent depolarization, leading to mitochondrial dysfunction and to neuronal death in 

vitro (Schinder et al., 1996; White & Reynolds, 1996).  

Few studies on excitotoxicity have been carried out in vivo. In our laboratory we have 

developed two experimental models of spinal motor neurons degeneration by 

overactivation of AMPA receptors, both by infusing AMPA directly in the lumbar spinal 

cord of rats. In the first one AMPA is administered through microdialysis cannulas during 

short time periods (Corona & Tapia, 2004) and in the other AMPA is infused chronically 

during several days, using osmotic minipumps (Tovar-y-Romo et al., 2007). These models 

reproduce the main histopathological features of ALS: loss of lumbar motor neurons, 

astroglial activation and motor deficits that progresses to complete paralysis of the rear 

limbs. The main difference between the two models is the time required for the occurrence 

of motor neuron degeneration and the development of the paralysis. AMPA perfusion by 

microdialysis causes a rapid loss of motor neuron and paralysis, occurring within the initial 

12 hours, while chronic AMPA infusion with osmotic minipumps triggers a progressive 

motor neuron loss and motor deficits throughout three to four days. For these reasons, the 

microdialysis model is defined as an acute model and the minipumps model as a chronic 

model of spinal motor neuron degeneration by excitotoxicity (Tovar-y-Romo et al., 2009a). 

The most important feature of both models is that motor neuron loss occurs without the 

influence of a genetic factor and thus presumably can be used to study the mechanisms that 

may be involved in motor neuron loss occurring in SALS, which accounts for over 90% of 

ALS cases. 

We have recently assessed mitochondrial function in our acute model of spinal excitotoxic 
motor neuron degeneration, by studying mitochondrial oxygen consumption and 
transmembrane potential in mitochondria isolated from the lumbar spinal cord of rats 
perfused with AMPA. The AMPA-treated group showed decreased oxygen consumption, 
ADP-dependent respiratory control and transmembrane potential, as compared to control 
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rats perfused only with Krebs-Ringer medium (Santa-Cruz and Tapia, in preparation). 
These results suggest that mitochondrial dysfunction plays a crucial role in spinal 
motoneuron degeneration induced by overactivation of AMPA receptors in vivo. These 
mechanisms could be involved in ALS motoneuron degeneration. 

3.1 Ca2+, mitochondria and motor neuron degeneration 
Under physiological conditions, Ca2+ participates as intracellular messenger in many normal 

cellular functions, such as cell growth, differentiation, signal transduction, membrane 

excitability regulation, exocytosis and synaptic activity. Cytoplasmic Ca2+ concentration in 

resting neurons is maintained at low concentrations (~100 nM), 10,000 times lower than 

extracellular space concentration. To achieve this, neurons possess specialized homeostatic 

mechanisms, such as regulation of Ca2+ input and output, Ca2+ binding proteins, 

mitochondrial and endoplasmic reticulum storage, and Ca2+-ATPases. Moreover, neurons 

not only control intracellular Ca2+ levels, but also its location in the cell by means of complex 

interactions among Ca2+ input, output, buffering and internal storage. Under physiological 

conditions, these processes maintain spatial and temporal location of Ca2+, so that multiple 

Ca2+-regulated signaling pathways can take place independently within the same cell. 

Excessive intracellular Ca2+ concentration damages neurons through several mechanisms, 

including mitochondrial damage, energy metabolism deficit, toxic ROS generation, 

membrane depolarization, and activation of lytic enzymes such as proteases, lipases, 

phosphatases and endonucleases. Intracellular Ca2+ accumulation also stimulates ROS 

production through NOS activation and the conversion of xanthine dehydrogenase to 

xanthine oxidase through proteases activation. All these events eventually produce 

membrane destruction and neuronal death (Arundine & Tymianski, 2003; Shaw, 1999).  

Intracellular Ca2+ regulation is an expensive process from the energy point of view. Ca2+ is 
extruded from the cell and sequestered into the endoplasmic reticulum through active 
transport using Ca2+-ATPases, and it is also removed by secondary active transport using 
the Na+/Ca2+ exchanger, which activates Na+/K+-ATPases to take out Na+. Mitochondria 
also play a critical role in the regulation of cytosolic Ca2+ concentration, since they sequester 
this cation through a Ca2+ uniporter located in the inner mitochondrial membrane and 
driven by the electric potential (Nicholls, 1985). To prevent a potentially lethal Ca2+ 
accumulation in mitochondrial matrix, there is an output system that exchanges Na+/Ca2+, 
besides a mitochondrial Na+/H+ transporter that extrudes Na+, so that ion flux under a 
constant Ca2+ entrance to mitochondria involves a sequential transfer of Ca2+, Na+ and H+, 
the latter driven by the respiratory chain (Crompton & Heid, 1978; Nicholls & Budd, 2000). 
When Ca2+ concentration surpasses a certain critical point, under physiological phosphate 
concentration an osmotically inactive and rapidly dissociable Ca2+-phosphate complex is 
formed in the mitochondrial matrix, so that mitochondria work as efficient buffers of 
extramitochondrial Ca2+ by accumulating this cation (Becker et al., 1980; Nicholls, 1978). 
Apparently, this organelle acts as a temporary Ca2+ store during high cytoplasmic 
concentrations peaks, as suggested by the kinetics of mitochondrial Ca2+ transport; because 
the Ca2+-phosphate complex is rapidly dissociable, mitochondria can release Ca2+ back to 
the cytoplasm when its concentration decreases below the critical point. As long as 
mitochondria are polarized, cytosolic Ca2+ accumulates within the mitochondrial matrix 

through the Ca2+ uniporter. Mitochondrial Ca2+ uptake is driven by m, so it will compete 
with ATP synthase for proton gradient, in such a way that Ca2+ uptake could dominate due 
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to the fact that ATP synthesis requires a thermodynamic threshold for m, while Ca2+ 

transport can proceed at much lower m and excessive Ca2+ concentrations reduce m 
dramatically. When Ca2+ concentration does not recover below the critical point, excessive 
Ca2+ overload in the mitochondrial matrix can lead to mitochondrial swelling, loss of 

respiratory control, increased mitochondrial ROS generation, m collapse (depolarization) 
diminished ATP synthesis, and Ca2+ release from the mitochondrial matrix caused by inner 
mitochondrial membrane permeabilization through the mitochondrial permeability 
transition pore (MPTP, a large protein complex forming a non-selective pore through the 
inner mitochondrial membrane) (Al-Nasser & Crompton, 1986; Nicholls & Budd, 2000; Peng 
& Jou, 2010). When mitochondrion depolarizes, accumulated Ca2+ goes back into the 
cytoplasm, either through the Ca2+ uniporter, the Na+/Ca2+ exchanger, or through the 

MPTP. Since p depends mainly on m, its collapse causes p collapse, which results not 
only in halting ATP synthesis but also in a rapid cytoplasmic ATP hydrolysis because ATP 

synthase catalytic function reverses in an attempt to restore p.  
In  motor neurons, the damage produced by these alterations may be enhanced because they 
do not have sufficient mitochondrial Ca2+-buffering capacity, due in part to a lower 
mitochondrial density per volume compared to non-motor neurons (Grosskreutz et al., 
2007). In addition, other buffering mechanisms are deficient in spinal and cortical motor 
neurons because they lack the Ca2+-binding proteins calbindin D-28K and parvalbumin. This 
may explain why other motor neurons that express these proteins, such as those located in 
oculomotor and Onuf’s nuclei, are not usually affected in ALS (Alexianu et al., 1994; Celio, 
1990; Ince et al., 1993; Palecek et al., 1999). For all these reasons, mitochondrial Ca2+ overload 
plays a key role in glutamatergic excitotoxicity (Nicholls et al., 2003), given that 
overactivation of Ca2+-permeable AMPA receptors, which are abundant in spinal motor 
neurons, confers to these cells a special vulnerability to AMPA receptor-mediated 
excitotoxicity (Corona & Tapia, 2007; Grosskreutz et al., 2010). AMPA exposure to spinal 
motor neuron cultures results in an intracellular Ca2+ concentration increase that triggers 
mitochondrial Ca2+ overload, depolarization and ROS generation (Carriedo et al., 2000). So, 
there is abundant evidence that suggest that mitochondrial damage, probably related to 
Ca2+ homeostasis disturbances, is involved in SALS and FALS (Manfredi & Xu, 2005; 
Menzies et al., 2002a; Swerdlow et al., 1998; von Lewinski & Keller, 2005). 

3.2 Energy deficits  
Due to the large size of motor neurons and their long processes reaching muscles, they have 
an expensive energy cost and this renders them very vulnerable to energy deficits. Much of 
the ATP demand in neurons is used in the ion pumping through plasma membrane to 
maintain membrane potential. Thus, Na+/K+-ATPase is the most demanding ATP process in 
neurons (Scott & Nicholls, 1980) in order to expel Na+ excess resulting from excitation. 
Intracellular Ca2+ regulation by Ca-ATPases is also highly energy consuming, as previously 
discussed. 
There is abundant evidence both in vitro and in vivo that any restriction in the ability of the 
cell to generate ATP can exacerbate or even induce glutamatergic excitotoxicity. The energy-
linked excitotoxic hypothesis (Beal et al., 1993; Greene & Greenamyre, 1996; Novelli et al., 
1988) proposes that the correlation between excitotoxic damage and energy restriction is due 
to plasma membrane depolarization. Diminished ATP levels cause a decrease in Na+/K+-
ATPase and Ca2+-ATPase functions, lessening Na+ and Ca2+ removal. This triggers plasma 
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membrane depolarization and as a consequence Ca2+ enters the cell through voltage-
dependent Ca2+channels and glutamate is released to the extracellular space by exocytosis. 
This in turn activates Ca2+ influx through the NMDA receptor, which is also voltage-
dependent. Further, under energetic failure conditions, glutamate transporters operate in 
reverse because Na+/K+ electrochemical gradient collapse due to ATP decrease, resulting in 
diminished glutamate uptake and non-vesicular glutamate release into extracellular space 
(Jabaudon et al., 2000; Longuemare & Swanson, 1995). 
The observation that inhibition of mitochondrial respiratory chain complexes activity can 

induce pathological changes similar to those observed in some neurodegenerative 

diseases in specific CNS regions has generated great interest. Association among 

glutamatergic excitotoxicity and bioenergetic limitation has been proposed for Alzheimer, 

Parkinson, Huntington’s disease and ALS (Beal, 1998), and in many cases specific 

respiratory chain complexes are involved. In organotypic spinal cord cultures, motor 

neurons are selectively vulnerable to chronic mitochondrial blockade by inhibitors of 

mitochondrial respiratory chain complex II and complex IV and this motor neuron 

degeneration displays structural changes similar to those seen following excitotoxicity 

(Brunet et al., 2009; Kaal et al., 2000).  

In our acute model of excitotoxic motor neuron degeneration previously described (Corona 

& Tapia, 2004, 2007) we have demonstrated the importance of Ca2+-permeable AMPA 

receptors and of intracellular Ca2+ overload in motor neuron death process. Using this 

model, we aimed to study the importance of energy deficits and oxidative stress in AMPA-

induced degeneration. With this purpose, we assessed the potential neuroprotection of 

various energy substrates and antioxidants at different concentrations, co-perfusing them 

with AMPA in the rat lumbar spinal cord. We observed protection at different degrees 

depending on the concentration of each compound, but in general antioxidants only 

partially protected, while various energy substrates prevented the AMPA-induced motor 

impairment and the spinal motor neuron loss (Santa-Cruz and Tapia, in preparation). These 

findings suggest that intracellular Ca2+ overload in vivo disrupts mitochondrial energy 

metabolism. On the other hand, energy substrates can directly prevent m collapse and 

thus prevent mitochondrial dysfunction. Because one of the factors that control m is 

substrate availability, excess mitochondrial substrates administered exogenously can 

stimulate respiratory chain and increase oxidative phosphorylation, maintaining the 

electrochemical proton gradient and thus preventing the collapse of ATP synthesis.   

3.3 Oxidative stress  
Since mitochondria are the organelles where oxidative phosphorylation is accomplished, 
they consume about 98 % of the cell oxygen requirement and constitute a major site for 
intracellular ROS production. Some steps along mitochondrial oxygen reduction pathway 
have the potential to produce, and indeed generate free radicals, due to the fact that electron 
flux along respiratory chain may have leakage of electrons to oxygen. The intermediate 
radical ubisemiquinone, involved in the transfer of electrons through respiratory complexes 
III and I, can grant an electron to oxygen, forming the superoxide radical O2�-, a powerful 
oxidant and a very reactive intermediate (Turrens et al., 1985) that must be rapidly removed 
by antioxidant enzymes to avoid its lethal effects. About 0.1-4% of the O2 used by actively 
respiring mitochondria is converted to O2�-. Nevertheless, respiratory chain enzymes defects 
or other mitochondrial perturbations could be responsible of an excessive mitochondrial 
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ROS production, triggering or increasing cellular injure. Among them, mitochondrial Ca2+ 
overload resulting from NMDA, AMPA or kainate receptor overactivation (Carriedo et al., 
1998; Carriedo et al., 2000; Dugan et al., 1995) increases ROS production (Dykens, 1994; Peng 
& Jou, 2010); thus, an initial excitotoxic event might also contribute to increased oxidative 
stress. 
In addition, it is important to consider that mitochondria are not only ROS producers but 
also that they are a susceptible target of them. Thereby, in a pathologic situation where an 
increased ROS production occurs initially, oxidative damage to mitochondrial lipids, nucleic 
acids and proteins can reduce mitochondrial respiration, disturb normal function and 
seriously damage this organelle (Lenaz et al., 2002). Furthermore, mitochondrial DNA is 
more susceptible to oxidative damage than nuclear DNA, due to its close location next to an 
important ROS production site, to the lack of protective histones and to less effective repair 
mechanisms, as compared to the nuclear DNA (Richter et al., 1988). Mitochondrial redox 
status also influences the opening of the MPTP, since it is enhanced by oxidative stress in 
isolated mitochondria (Saxena et al., 1995).  

4. Mitochondrial structural damage in ALS and experimental motor neuron 
degeneration  

The death process involved in the motor neuron loss characteristic of ALS is not yet fully 
understood. Several functional alterations present in both human disease and experimental 
models have been reviewed in the previous sections, but several studies have shown also 
morphological and ultrastructural changes in motor neurons that may be associated with 
apoptosis and/or necrosis.  
Postmortem examination of ALS patients tissues has revealed morphological and 
ultrastructural abnormalities in mitochondria. Atypical mitochondrial aggregates were 
found in skeletal muscle subsarcolemmal region and in intramuscular axons (Afifi et al., 
1966; Atsumi, 1981), and morphological abnormalities were also detected in proximal axons, 
as well as dense clusters of mitochondria in the ventral horn of spinal cord SALS patients 
(Hirano et al., 1984a; b; Sasaki & Iwata, 1996). Giant mitochondria with intramitochondrial 
inclusions were observed in the liver of some ALS patients and these alterations were 
disease specific (Nakano et al., 1987). Further, mitochondria with increased volume and 
with high Ca2+ concentration were found in motor nerve terminals in muscle biopsies of 
alive ALS patients, which were not observed in patients with other neuropathies or in 
control subjects (Siklos et al., 1996). Ultrastructural damage of mitochondria, characterized 
by swelling and rounding, was recently described in platelets of ALS patients (Shrivastava 
& Vivekanandhan, 2011; Shrivastava et al., 2011a,b). 
The main problem with pathological studies in human ALS is the difficulty in determining 
whether the alterations observed are a cause or a consequence of the disease. This highlights 
the importance of developing experimental models of motor neuron death to study the 
temporal progress of the morphological changes, including the alterations of mitochondrial 
structure. With this objective, we have recently studied the ultrastructural changes of 
mitochondria in both our acute and chronic models of spinal motor neuron death described 
above. In the acute model we observed motor neurons with mitochondrial swelling as soon 
as 2 h after AMPA perfusion, followed in a few hours by the rupture of mitochondrial, 
nuclear and plasma membranes, which led to total neuronal disruption. These 
ultrastructural alterations are characteristic of a necrotic process. In contrast, in the chronic 
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model we observed by day one swelling of the endoplasmic reticulum and only later 
progressive alterations in mitochondrial internal and external membranes that generated 
mitochondrial swelling. So, the initial mitochondrial integrity might indicate an apoptotic 
process, although motor neurons eventually probably die by a slow necrotic process (Fig. 2; 
Ramírez-Jarquín and Tapia, in preparation). The mitochondrial swelling observed in both 
models may be associated with energy failure, which as discussed above causes ATP 
depletion, oxidative stress and inflammatory events, leading to cell death.  
 

 
 

Fig. 2. Role of mitochondrial damage in motor neuron excitotoxicity. The electron-
micrographs show normal mitochondria and endoplasmic reticulum in a spinal motor 
neuron of a control rat (left), and swollen mitochondria with altered cristae observed 2 h 
after perfusion of AMPA by microdialysis (right) (Ramírez-Jarquín and Tapia, unpublished). 
Bottom: proposal of the involvement of mitochondrial damage in the apoptosis and necrosis 
processes leading to motor neuron death. The symbols are the same as in Fig. 1. Description 
in the text. 
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The mitochondrial damage seen in our models is similar to those observed in the human 
disease and also in muscle and spinal cord of mSOD1 rodent models, namely mitochondrial 
fragmentation, enlargement, vacuolization, rearrangement of the cristae and swelling 
(Bendotti et al., 2001; Kong & Xu, 1998; Martin et al., 2009; Menzies et al., 2002b; Wong et al., 
1995). The observed rearrangement of the inner membrane to form small vacuoles has been 
associated with an alteration in the MPTP permeability and also with the trigger of intrinsic-
apoptosis pathway by release of proapoptotic factors, such as cytochrome c (Bendotti et al., 
2001; Martin, 2010; Martin et al., 2009; Ohta et al., 2008) followed by the cleavage of caspases 
(Li et al., 2000; Pasinelli et al., 2000) Fig. 2 illustrates the ultrastructural mitochondrial 
damage and shows a schematic representation of the mechanisms associated with these 
alterations. 

5. Conclusions  

Altogether the foregoing data suggest that mitochondrial respiratory chain damage is a 

relevant event in ALS pathogenesis, although it is still unknown if mitochondrial 

abnormalities are the cause of the disease process or if they are consequence of neuronal 

degeneration, However, it is clear from the evidence reviewed here that mitochondria 

definitely play a central role in determining the fate of motor neurons and in their 

degeneration process. This evidence comes from studies in several tissues of ALS patients, 

both from biopsies or from postmortem observations, and from direct measurements of 

mitochondrial function in experimental models of motor neuron degeneration, both in vitro 

and in vivo. These experiments clearly point to energy deficits and disruption of Ca2+ 

homeostasis and axonal transport. 

Integrity of the mitochondria morphology and structure is pivotal for their function and for 

cellular health. It is interesting that similar structural alterations have been observed in ALS 

tissues and in in vitro and in vivo models of motor neuron degeneration, including 

transgenic mSOD1 rodents and excitotoxicity. Clearly, this damage can be associated with 

the mitochondrial functional deficits, which trigger deleterious process resulting in cellular 

death by apoptosis, necrosis or a combination of these mechanisms. Although there is 

biochemical evidence of an apoptotic process involving the mitochondria, no ultrastructural 

evidence of classic apoptosis, such as apoptotic bodies, has been found. Rather, 

mitochondrial swelling and membrane disruption are frequently observed, suggesting the 

predominance of a necrotic process.  

The evidence for a role of calcium homeostasis disruption in the induction of neuronal death 

is vast, and the involvement of mitochondria in this mechanism seems determinant. The 

advances in the elucidation of this process should help to understand the importance of the 

preservation of mitochondrial structure and function, which hopefully can lead to the 

design of preventive and therapeutic measures for ALS. 
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