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1. Introduction 

Amyotrophic lateral sclerosis (ALS) is a devastating, fast progressing and fatal disease for 

which there is little treatment.  It is marked by loss of spinal and cortical motoneuron 

function. Many parameters are altered in the time leading up to this loss, including electrical 

properties, endoplasmic reticulum (ER) stress, glial functioning, glutamate signaling, 

protein degradation, mitochondrial functioning, axonal transport, and immune response. 

This chapter concentrates on the interplay between altered electrophysiological properties 

and molecular events. Emphasis is placed on the changes that precede overt symptom onset 

and results are mainly drawn from studies using the rodent models of ALS. 

2. ALS animal models 

Most cases of ALS are spontaneous (sALS), while the heritable form, familial ALS (fALS), 

represents about 5% of total ALS cases (Byrne et al., 2011). Of fALS patients, 20% have a 

mutation in the gene that encodes for the superoxide dismutase 1 (SOD1) copper/zinc 

enzyme (Rosen et al., 1993), 5% have a mutation in the TARDBP gene which encodes DNA-

binding protein 43 (TDP-43), another 5% have a mutation in the FUS gene which encodes for 

the fused in sarcoma FUS/TLS protein (Mackenzie et al., 2010), some possess a mutation in 

the gene encoding vesicle-associated membrane protein (VAPB) (Nishimura et al., 2004), 

and a new study shows that some of those remaining have a mutation in the gene coding for 

the ubiquitin-like protein ubiquilin-2 (Deng et al., 2011). Transgenic mice expressing one of 

the various mutations of human SOD1, hereafter referred to as SOD1 mice; (Gurney et al., 

1994, Bruijn et al., 1997, Zhang et al., 1997) are very common animal models of ALS; 

numerous other models of fALS are reviewed by Van Den Bosch (2011). It is not known how 

the SOD1 mutation leads to the degeneration of motoneurons, though it is probably not due 

to loss of its normal function converting superoxide into hydrogen peroxide. The mutant, 

misfolded protein likely possesses a toxic gain-of-function, as some mouse lines retain 

nearly normal levels of SOD1 enzymatic activity and still develop the disease, while SOD1 
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knockout mice, which do not possess any SOD1 enzymatic activity, do not develop the 

disease (Gurney et al., 1994, Reaume et al., 1996, Wong et al., 1995). Whatever the 

mechanism(s) leading to neurodegeneration, it is not immediate. The SOD1 enzyme is 

present throughout the nervous system (Pardo et al., 1995) starting embryonically, but does 

not lead to onset of overt symptoms until well into adulthood, even in mice that express 

high levels of the protein (Gurney et al., 1994). And within the nervous system, only certain 

neurons show susceptibility to the disease. This chapter will explore the earliest signs of 

malfunction in the neurons that are most vulnerable to the disease.  

3. Timeline of deficits  

In ALS, it is difficult to assess which of all the processes that have been found to be altered 
are causal to neurodegeneration and which are homeostatic, adaptive mechanisms that are 
actually allowing the maintenance function. Despite this, it is useful to map out the timing 
of the various altered properties collected from the mouse models, as presented in Figure 1. 
Depending on the particular SOD1 mouse model studied, the magnitude and timing of 
alterations observed does vary (reviewed in Elbasiouny et al, previous chapter). However, 
for this chapter, the deficits in these mice will be considered in their entirety and not 
separated based on the particular model from which the results were obtained.  
Long before the onset of overt symptoms, within the first week after birth, electrical 
properties are altered. These properties include an increase in excitability (as measured 
by both the Na+- and Ca2+– mediated persistent inward current; PIC) and an increased 
neuronal size (including increased dendritic branching and increased specific input 
conductance). Significantly larger PICs first appear in cultured embryonic spinal and 
cortical motoneurons (Kuo et al., 2005, Pieri et al., 2009), persist at an age of about one 
week in spinal and hypoglossal motoneurons (van Zundert et al., 2008, Quinlan et al., 
2011) and are likely still present in the spinal and cortical motoneurons of adults 
(Carunchio et al., 2010, Meehan et al., 2010). Interestingly, although the PIC is 
upregulated very early, what might otherwise be the beginning of motoneuron 
hyperexcitability is instead moderated by changes in size and specific input conductance 
(Amendola and Durand, 2008, Elbasiouny et al., 2010, Quinlan et al., 2011). In adulthood, 
but still well before the onset of symptoms, there are signs of defective protein 
degradation, endoplasmic reticulum (ER) stress, impaired axon transport, and 
deficiencies in mitochondrial function. Signs of aberrant protein clearance include 
increased expression of genes related to ubiquitination, UPR, and ER stress (Saxena et al., 
2009). As these changes might suggest, there is a buildup of insoluble SOD1 proteins at 
this time (Johnston et al., 2000, Turner et al., 2003a), followed shortly by fragmentation of 
the Golgi (Mourelatos et al., 1996). The next signs of impairment appear in the 
mitochondria and in the cellular transport system (Zhang et al., 1997, Warita et al., 1999, 
Williamson and Cleveland, 1999, Mattiazzi et al., 2002, Kieran et al., 2005, Damiano et al., 
2006, De Vos et al., 2007, Bilsland et al., 2008, Jaiswal et al., 2009, Nguyen et al., 2009, 
Bilsland et al., 2010, Li et al., 2010). The immune response is initiated next (Alexianu et 
al., 2001, Chiu et al., 2008, Gowing et al., 2008, Chiu et al., 2009). After this, denervation 
of the motor units and loss of maximal force begins (Kennel et al., 1996, Frey et al., 2000, 
Fischer et al., 2004, Hegedus et al., 2007, Hegedus et al., 2008), but the impairment of 
normal function in the mouse is subtle and onset of overt symptoms is several weeks off, 
even in the most severe models. Just before the impending functional loss, several of the 
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last changes before overt onset of symptoms involve the glia: activation of astrocytes, 
expression of different splice variants of EAAT2, decreased expression of the GluR2 
subunit, and decreased number of glial K+ channels (Bruijn et al., 1997, Bendotti et al., 
2001, Sasaki et al., 2001, Munch et al., 2002, Warita et al., 2002, Fischer et al., 2004, Ignacio 
et al., 2005, Kaiser et al., 2006). 
It is tempting to assume that the order of appearance of the altered parameters represents a 
chain reaction of events, but this is not necessarily the case. There is considerable interplay 
between these components within the neurons, such that one pathway cannot be altered 
without affecting any other aspect of cellular or synaptic function. These interactions will be 
considered next.  

4. Calcium: No buffer for increased currents 

Entry of Ca2+ occurs through voltage-gated Ca2+ channels and through ligand-gated 
channels activated by glutamate, particularly the NMDA-type glutamate receptors and 
those AMPA-type glutamate receptors which lack the Ca2+-impermeable GluR2 subunit. 
Most voltage-gated Ca2+ channels open only when the cell depolarizes; however, the L-type 
Cav1.3 channels, which contribute to the PIC, open near the resting membrane potential (-
40mV) and allow some Ca2+ influx even when the neuron is at rest (Xu and Lipscombe, 
2001). There is very little expression of Cav1.3 channels in spinal motoneurons at birth, but 
Cav1.3 channels are increasingly present as the motoneurons mature, reaching adult levels 
by postnatal day 18 (P18) in mice, (Jiang et al., 1999, Quinlan et al., 2011). The PIC sets the 
level of excitability in neurons: PICs allow neurons to repetitively fire action potentials, and 
with large PICs, neurons can sustain firing long after the depolarizing stimulus is removed 
(Heckman et al., 2008). In addition, motoneurons from SOD1G93A-high-expressor mice 
show a significantly larger PIC during postnatal development, including significantly larger 
amplitudes of both Ca2+  and Na+ currents (Quinlan et al., 2011). Larger PICs can increase the 
overall excitability of a neuron (though other factors, like size, can mitigate this), and the 
influx of Ca2+ could have many other consequences in cell-signaling. An increased PIC is 
found in cultured, embryonic, SOD1G93A-high motoneurons (both spinal and cortical), 
though at this point the PIC is completely Na+-based (Kuo et al., 2005, Pieri et al., 2009). 
Postnatally, both spinal and brainstem SOD1 motoneurons show an increased PIC (van 
Zundert et al., 2008, Quinlan et al., 2011), and indirect evidence suggests larger PICs persist 
into adulthood in SOD1 cortical and spinal motoneurons (Carunchio et al., 2010, Meehan et 
al., 2010). In addition to the maturation of the PIC, there is an increase in AMPA-type 
glutamate receptors on motoneurons (Vinay et al., 2000). These receptors normally would 
not contribute to Ca2+ influx since, due to a single amino acid in the pore-forming GluR2 
subunit they are impermeable to Ca2+.  However, in presymptomatic SOD1 motoneurons, 
there are fewer Ca2+-impermeable GluR2 subunits; and more Ca2+-permeable GluR3 
subunits (Tortarolo et al., 2006). In sALS patients, AMPA receptors also are more Ca2+-
permeable, but through a different mechanism. Spinal motoneurons of symptomatic sALS 
patients, but not SOD1 rats, showed inefficient editing of the mRNA, resulting in mutant, 
GluR2Q subunits that are Ca2+-permeable (Kawahara et al., 2004, Kwak and Kawahara, 
2005, Kawahara et al., 2006). As motoneurons mature they must cope with an ever-
increasing burden of Ca2+ influx through voltage-gated Ca2+ channels (as the Ca2+ PIC 
increases with age) and SOD1 motoneurons have a heavier burden due to potentiation of 
the Ca2+PIC and altered AMPA receptors which are more Ca2+-permeable.  
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 1(Quinlan et al., 2011),2(Kuo et al., 2005), 3(van Zundert et al., 2008), 4(Meehan et al., 2010), 5(Carunchio 
et al., 2010), 6(Pieri et al., 2009), 7(Bories et al., 2007), 8(Amendola and Durand, 2008), 9(Saxena et al., 
2009), 10(Johnston et al., 2000), 11(Turner et al., 2003b), 12(Mourelatos et al., 1996), 13(Li et al., 2010), 
14(Jaiswal and Keller, 2009),15(Mattiazzi et al., 2002), 16(Nguyen et al., 2009), 17(Jaiswal et al., 2009), 
18(Bilsland et al., 2008), 19(Damiano et al., 2006), 20(Bilsland et al., 2010), 21(De Vos et al., 2007), 
22(Williamson and Cleveland, 1999), 23(Zhang et al., 1997), 24(Kieran et al., 2005), 25(Warita et al., 1999), 
26(Alexianu et al., 2001), 27(Gowing et al., 2008), 28(Chiu et al., 2008), 29(Chiu et al., 2009), 30(Fischer et al., 
2004), 31(Frey et al., 2000), 32(Pun et al., 2006), 33(Hegedus et al., 2007), 34(Hegedus et al., 2008), 35(Kennel 
et al., 1996), 36(Bruijn et al., 1997), 37(Munch et al., 2002), 38(Tortarolo et al., 2006), 39(Bendotti et al., 2001), 
40(Dal Canto and Gurney, 1995), 41(Dal Canto and Gurney, 1994), 42(Kaiser et al., 2006).  

Fig. 1. Timeline of deficits in mutant SOD1 mice. Earliest reported deficits in the above 
properties are used. Different SOD1 mutants were normalized to dates of overt symptom 
onset. When differences in timing between mouse lines were large (as it was for protein 
ubiquitination, stress of the ER, and activation of astrocytes), the range is indicated in the 
timeline with (///). † Also found in embryonic cultured motoneurons. * Different aspects 
of mitochondrial function were impaired at different time points. The first alteration in 
function is decreased Ca2+ storage capacity19.  Another property, mitochondrial 
membrane potential, is not altered until just before symptom onset17, while the function or 
regulation of the electron transport chain is impaired slightly before membrane 
potential16. 
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While Ca2+ currents are increased in SOD1 motoneurons, large spinal and hypoglossal 
motoneurons do not have Ca2+-binding proteins calbindin and parvalbumin and thus 
cannot quickly neutralize large influxes of Ca2+. Instead, they depend heavily on 
mitochondrial uptake of Ca2+ (Ren and Ruda, 1994, Lips and Keller, 1998, Palecek et al., 
1999, Bergmann and Keller, 2004). Small ocular motoneurons which have calbindin, 
parvalbumin and high Ca2+-buffering capacities are unaffected by ALS (Vanselow and 
Keller, 2000, von Lewinski and Keller, 2005). Ca2+-binding ratio, Ks, depends on Ca2+-
binding proteins, the intracellular [Ca2+]i, and the size and geometry of the cell (Neher, 
1995). Although Ca2+ buffering at the soma of neonatal SOD1 and WT motoneurons was 
similar (von Lewinski et al., 2008), buffering has not been measured in adult 
motoneurons or in the processes, where Ca2+ channels are located (Sukiasyan et al., 
2009). Ca2+ buffering could also change postnatally in motoneurons, as in rat Purkinje 
cells in which the Ca2+-binding ratio more than doubles between P6 and P15 (Fierro and 
Llano, 1996). The increasing Ca2+ entry with postnatal maturation combined with the 
lack of Ca2+-buffering proteins seems likely to contribute to motoneuronal vulnerability 
in adulthood.  

5. Impaired transport, more places to go 

The lack of Ca2+-buffering proteins in vulnerable motoneurons make the mitochondria even 
more critical to their function. Mitochondria are normally highly mobile both in axons and 
dendrites (MacAskill et al., 2010). Mitochondrial movement can be halted by increased 
concentrations of ADP, so they tend to remain in compartments which are highly 
metabolically-active (Mironov, 2007). Mitochondrial movements are also regulated through 
Ca2+ signaling and synaptic activity (Rintoul et al., 2003, Yi et al., 2004, Macaskill et al., 2009). 
When glutamate binds NMDA- or certain AMPA-type receptor-channels, it allows the 
influx of Na+ and Ca2+ into the cell. The Ca2+-sensitive domain of Miro, the mitochondrial 
trafficking protein, then interacts with Ca2+ and the transport factors TRAK and KIF5, and 
pauses in its movement at active synapses (Rintoul et al., 2003, MacAskill et al., 2009). 
Postsynaptic NMDA receptors are also associated with PSD95 and with nitric oxide 
synthase (NOS) which, through nitric oxide (NO), also pauses mitochondrial movement 
(Rintoul et al., 2006). Once at a synapse, the mitochondria are probably tethered by 
neurofilaments, a process that depends both on the state of phosphorylation of the 
neurofilaments and a high mitochondrial membrane potential which indicates a high level 
of activity (Wagner et al., 2003).  
In axons, but not in the soma of cultured SOD1 motoneurons, mitochondria are more 
sparsely distributed (De Vos et al., 2007), and in vivo mitochondria show more frequent 
pauses in their movements in pre-symptomatic SOD1 mice (Bilsland et al., 2010). 
Unfortunately, movement of mitochondria and other membrane-bound organelles has not 
yet been well studied in the dendrites of SOD1 motoneurons. If the mitochondria are 
similarly sparse in the dendrites, where most Ca2+ channels are located, this could have 
serious consequences for Ca2+ buffering. Spinal motoneurons of SOD1 mice show a 
significant proliferation in dendritic branches (Amendola and Durand, 2008) and an 
increased Ca2+ PIC (Quinlan et al., 2011), which could make mitochondrial motility in the 
dendrites more challenging. Without mitochondria to take up Ca2+ at the synapses, this 
would further exacerbate the low Ca2+ buffering in vulnerable motoneurons and any 
increased Ca2+ entry with synaptic inputs (Tortarolo et al., 2006). It is also worth noting that 
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the motoneurons that are vulnerable are the largest: the fast, fatiguable alpha motoneurons 
(Pun et al., 2006, Hegedus et al., 2007, Hegedus et al., 2008). Evidence for further increases 
size in SOD1 motoneurons is reviewed in the previous chapter by Elbasiouny et al. Perhaps 
the size of the motoneuron and deficits in transport go hand in hand to produce 
vulnerability.   
Axon transport has been extensively studied and is likely to contribute to ALS and to 
several neurodegenerative diseases, reviewed by (De Vos et al., 2008). In ALS, both slow and 
fast axon transport appear to be altered (Zhang et al., 1997, Warita et al., 1999, Williamson 
and Cleveland, 1999, Kieran et al., 2005, De Vos et al., 2007, Bilsland et al., 2010). Excessive 
glutamate could cause these deficiencies: high levels of glutamate activate a family of 
mitogen-activated protein kinases that phosphorylate neurofilaments, thereby decreasing 
transport (Ackerley et al., 2000, Hiruma et al., 2003, Stevenson et al., 2009). This process can 
be induced by NMDA or AMPA, blocked by removal of extracellular Ca2+, or reduced by 
application of riluzole (Hiruma et al., 2003, Stevenson et al., 2009). The protein kinases JNKs, 
cdk/p35 and p38, which phosphorylate heavy and light chains of kinesin and medium and 
heavy neurofilament sidearms, may link glutamate neurotransmission and axon transport 
deficits (Kawasaki et al., 1997, Schwarzschild et al., 1997, Ackerley et al., 2000, Brownlees et 
al., 2000, Lee et al., 2000). Further suggesting this, p38 has been found to be activated in 
SOD1 mice and ALS patients (Raoul et al., 2002, Tortarolo et al., 2003, Ackerley et al., 2004). 
Axon transport deficiencies occur early, with reports of impaired axonal integrity and die-
back from the neuromuscular junction occurring weeks in advance of onset of symptoms in 
SOD1 mice, and appearing in cultured embryonic neurons (Kennel et al., 1996, Zhang et al., 
1997, Williamson and Cleveland, 1999, Frey et al., 2000, Fischer et al., 2004, Pun et al., 2006, 
De Vos et al., 2007, Hegedus et al., 2007, Hegedus et al., 2008, Bilsland et al., 2010). 
Strengthening these results, transgenic TDP-43 mice show significantly lower levels of 
expression of heavy and light neurofilaments, though axon transport itself has not yet been 
assessed (Swarup et al., 2011).  

6. Mitochondrial deficiency and energy balance 

In motoneurons under normal conditions, the mitochondrial membrane potential powers 
both the Ca2+ uniporter and ATP synthase, so in periods of heavy Ca2+ influx, ATP 
production could be impaired (Mattson et al., 2008, Nguyen et al., 2009). The increased 
Ca2+ influx in SOD1 motoneurons is likely to further impair the function of mitochondria 
under these conditions.  In addition, SOD1 mitochondria appear to be impaired in 
function under basal conditions (Mattiazzi et al., 2002, Nguyen et al., 2009, Li et al., 2010). 
Before the onset of symptoms, SOD1 mitochondria show decreased protein import, 
altered Ca2+ sequestering, and an exaggerated response of the electrical gradient of the 
inner membrane to stimulation-induced Ca2+ influx (Damiano et al., 2006, Bilsland et al., 
2008, Jaiswal et al., 2009, Nguyen et al., 2009, Li et al., 2010). By the time symptoms appear 
there is severe damage to mitochondrial membrane potentials, respiration, the electron 
transport chain and ATP synthesis (Mattiazzi et al., 2002, Jaiswal and Keller, 2009). 
Another impairment is misfolded SOD1 binding to VDAC1, the general diffusion pore for 
anions and cations, including Ca2+. Both mitochondrial conductance and the uptake of 
ADP are thereby reduced, however, this is not observed until after the onset of symptoms 
(Israelson et al., 2010). Early alterations in SOD1 mitochondria must take place though 
another mechanism.  
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In summary, not only are there fewer mitochondria present in the processes of SOD1 
neurons (De Vos et al., 2007, Bilsland et al., 2010), but those that are present are impaired in 
functioning. This is likely to have dire consequences for both Ca2+ buffering and ATP 
production in the large and metabolically-active SOD1 motoneurons. 

7. Protein degradation and endoplasmic reticulum stress 

Misfolded proteins are degraded through autophagy (Yang and Klionsky, 2010). When the 
capacity of the cellular machinery in the ER to properly fold proteins is exceeded, cells react 
with the unfolded protein response (UPR) and signs of ER stress (reviewed by Ron and 
Walter, 2007). The UPR decreases most protein synthesis in the cell while upregulating 
synthesis of some ER proteins that assist in proper folding and processing of proteins. 
Another pathway, known as ER-associated protein degradation (ERAD), helps to clear the 
ER of misfolded proteins by exporting them to proteasomes where they are broken down 
(Bernasconi and Molinari, 2011). Proteins to be exported and degraded are marked by 
ubiquitination, a process in which ubiquitin molecules bind to the protein, tagging it for 
destruction (Bingol and Sheng, 2011). Normal ER function can be disrupted by blocking the 
ER-resident proteins from folding properly, inadequate functioning of the ubiquitin-
proteosome system, or failure to maintain a high level of Ca2+ inside the lumen of the ER 
(Paschen, 2003). 
It is known that mice with the highest expression levels of mutant SOD1 protein have the 
earliest disease onset (Wong et al., 1995), and that markers for ER stress have been found in 
the spinal cords of sALS patients (Ilieva et al., 2007, Atkin et al., 2008, Ito et al., 2009). 
However, recent studies have shed more light on the role of protein degradation and ER 
stress in the pathology of ALS. In the first study, gene expression patterns from 3 different 
SOD1 mouse lines all showed an early increase in protein ubiquitination only in those 
motoneurons that are vulnerable to the disease. This is followed shortly by the UPR and 
signs of ER stress by P30 in SOD1G93A-high expressor mice (see Fig 1) (Saxena et al., 2009). 
In another study, cortical motoneurons from SOD1 mutant mice were compared to those 
from wild type mice that were fed a diet high in branched-chain amino acids (Carunchio et 
al., 2010). These branched chain amino acids are part of protein supplements that some 
athletes consume. Like mutant SOD1 neurons, cortical neurons from mice fed the high-
protein diet were hyperexcitable compared with neurons from wild type mice on a normal 
diet. A return to normal levels of excitability after treatment with rapamycin was achieved 
for both the SOD1 and the amino- acid-supplement-treated cortical neurons  (Carunchio et 
al., 2010). The protein kinase known as the mammalian target of rapamycin (mTOR) serves 
as an integration point for several cell signaling pathways. As its name suggests, mTOR is 
inhibited by rapamycin; it also inhibits protein degradation, and promotes increased cell 
size in some neurons (Lee et al., 2007). These results indicate that promoting autophagy with 
rapamycin can reduce abnormal excitability and could be beneficial for treatment of the 
disease (Carunchio et al., 2010). The third, most recent study described a mutation found in 
5 different families, located in the gene encoding ubiquilin-2 as a novel genetic cause of 
fALS (Deng et al., 2011). The function of ubiquilin is to clear certain misfolded proteins 
during ERAD by shuttling ubiquitinated proteins from the ER to the proteasome, such that 
loss of ubiquilin leads to ER stress (Kim et al., 2008, Lim et al., 2009). The mutations in 
ubiquilin-2 found in ALS patients were also found to impair proteosome- mediated protein 
degradation in vitro, suggesting these mutations could be causing similar impairments in the 
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families from whom they were isolated (Deng et al., 2011). Even in sALS patients, ubiquilin-
2 was found in abnormal protein aggregates in degenerating neurons, indicating it could 
play a broad role in both fALS and sALS pathology (Deng et al., 2011). These studies suggest 
a key role for protein degradation and ER stress in ALS pathology.  
In healthy neurons, the resting [Ca2+] in the ER remains high. When ER [Ca2+] drops, the 
Ca2+-sensing STIM proteins promote Ca2+-channel formation (Luik et al., 2008). Blocking this 
ER-mediated Ca2+-entry affects neuronal activity and under conditions of chronic 
hyperexcitability, STIM proteins are upregulated (Steinbeck et al., 2011). Contributions to 
electrophysiological excitation-mediated Ca2+ transients from ER Ca2+ release have been 
documented in motoneurons (Scamps et al., 2004, Jahn et al., 2006). Supporting the 
possibility that neuronal excitability and neuronal protein processing and ER function could 
share common pathways, blocking L-type Ca2+ channels has been reported to increase 
autophagy (Williams et al., 2008). To summarize, due to the large role Ca2+ plays in cell 
signaling, (McCue et al., 2010, Pivovarova and Andrews, 2010), even small changes in 
electrophysiological properties could have broad consequences in cellular function.  

8. Non-cell autonomous deficits: Astrocytes and glutamate excitotoxicity 

Recent work has shown that the vulnerability of motoneurons is not cell autonomous, and 
that glia play critical roles in neurodegeneration in SOD1 mice. The involvement of 
astrocytes and microglia in the disease were elegantly demonstrated in a series of studies 
using mice with deletable mutant SOD1, mice with a selective knockdown of SOD1, and 
SOD1/WT chimera mice (Clement et al., 2003, Boillee et al., 2006, Yamanaka et al., 2008, 
Wang et al., 2009). Simply culturing WT motoneurons on mutant SOD1 astrocytes was 
sufficient to confer toxicity to motoneurons (Nagai et al., 2007). Glia have this effect on 
motoneurons through a variety of pathways, including activation of astrocytes, microglia, 
and T cells shortly after the first signs of pathology appear. The glial response is thought to 
influence the progression, but not the onset, of the disease (Beers et al., 2006, Boillee et al., 
2006, Yamanaka et al., 2008, Wang et al., 2009, Philips and Robberecht, 2011). 
Presymptomatic involvement of the glia includes a reduction of glial K+ channel expression 
shortly before the onset of symptoms (Kaiser et al., 2006) and later in the course of the 
disease, a reduced expression of astroglial glutamate transporters, GLT1/EAAT2 which 
mediate glutamate reuptake at synapses and help prevent glutamate excitotoxicity (Bruijn et 
al., 1997, Bendotti et al., 2001, Warita et al., 2002). Earlier alterations in EAAT2 function are 
likely due to expression of different splice variants rather than decreased expressions levels 
(Sasaki et al., 2001, Munch et al., 2002, Ignacio et al., 2005). Some ALS patients also show 
abnormal splice variants of EAAT2, which could lead to decreased glutamate transport 
(Rothstein et al., 1992, Maragakis et al., 2004, Lauriat et al., 2007). Stimulation of the 
expression and transporter activity of EAAT2/GLT1 increases the lifespan of mutant SOD1 
mice (Rothstein et al., 2005). An additional, critical function of the glia is regulation of the 
glutamate receptor’s pore-forming GluR2 subunit (Van Damme et al., 2007). The challenges 
of Ca2+ buffering are exacerbated by alterations in the glutamate signaling across disease 
models of ALS.  In SOD1 motoneurons, expression of subunits in the AMPA-type glutamate 
receptors is shifted from Ca2+-impermeable to Ca2+-permeable (Tortarolo et al., 2006). In 
TDP mice, levels of RNA that encode proteins involved in synaptic activity, including 
glutamate receptors, ion channels and voltage gated Ca2+ channels, are altered, with 
unknown consequences on synaptic transmission (Polymenidou et al., 2011). Lastly, in sALS 
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patients, there is inefficient editing of AMPRA receptor GluR2Q subunit mRNA which also 
causes a shift from Ca2+-impermeability of the receptors to Ca2+-permeability (Kawahara et 
al., 2004, Kwak and Kawahara, 2005, Kawahara et al., 2006). Glutamatergic signaling is 
probably a significant factor in the onset of symptoms since reducing excitatory sensory 
input delayed the onset of disease in SOD1 mice (Ilieva et al., 2008), and intrathecal 
administration of the glutamate agonist kainic acid in normal rats produced slow, selective 
motoneuron death similar to ALS (Sun et al., 2006). If changes in the transmission of 
glutamate are taking place early enough, it could alter the activity of spinal networks during 
normal development (Blankenship and Feller, 2010, Landmesser and O'Donovan, 1984, 
Marder and Rehm, 2005, Gonzalez-Islas and Wenner, 2006). Some evidence for alterations in 
network activity has been shown in SOD1 hypoglossal motoneurons (van Zundert et al., 
2008) and spinal motoneurons (Amendola et al., 2004, Bories et al., 2007) in juvenile mice. 
After symptom onset, increased network activity has also been shown in the spinal cord 
(Jiang et al., 2009). However, considering all the documented changes in glutamate-
mediated neurotransmission, there has been surprisingly little research into the overall 
effects on cortical, brainstem and spinal network activity throughout the lifespan of the 
SOD1 mouse. 

9. Future directions 

There are many possibilities to explore for new treatments of ALS besides the now-
standard drug riluzole (Bellingham, 2011).  The neuroinflammation response is a 
promising approach (Philips and Robberecht, 2011); another could be to manipulate 
neuromodulatory input to the spinal cord. Serotonin (5HT) and norepinephrine (NE) have 
potent effects on motoneurons, including increasing PIC amplitude, decreasing input 
conductance, hyperpolarizing spike threshold, and depolarizing resting potential 
(Hounsgaard and Kiehn, 1989, Lee and Heckman, 1999, Powers and Binder, 2001, 
Alaburda et al., 2002, Hultborn et al., 2004, Perrier and Delgado-Lezama, 2005, Heckman 
et al., 2008). Furthermore, neuromodulators are constantly scaling the level of activation 
of motoneurons as needed (Heckman et al., 2004). Activation of 5HT2 receptors strongly 
depresses high-voltage-activated Ca2+ channels while probably increasing basal [Ca2+]I by 
potentiating the Ca2+ PIC (Hounsgaard et al., 1988, Bayliss et al., 1995, Hsiao et al., 1998, 
Ladewig et al., 2004, Li et al., 2007). Both 5HT and dopamine (DA) modulate KIF-5-
dependent cellular transport, including transport of mitochondria. Acting through the 
GSK3 regulator of KIF-5, 5HT is observed to increase transport, while DA decreases it 
(Chen et al., 2007, Chen et al., 2008). Other neuromodulators, such as nitric oxide, GABAB, 
and adenosine, could also be worth investigating as modulators of motoneuron synaptic 
strength, reduction of the Ca2+ PIC, and modulation of both high-voltage-activated Ca2+ 
channels and input conductance, respectively (Marks et al., 1993, Mynlieff and Beam, 
1994, Li et al., 2004, Moreno-Lopez et al., 2011).  Another useful target of neuromodulators 
that modify Ca2+ influx is protein clearance; inhibition of L-type Ca2+ channels has been 
found to increase autophagy (Williams et al., 2008). 

10. Conclusions 

Factors causing neurodegeneration in ALS are present long before motor function is 
adversely affected. From research on the animal models of ALS, it is thought that excessive 
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Ca2+ entry, increased motoneuronal size, altered glutamate neurotransmission, astrocyte 
dysfunction, mitochondrial deficits, failures in axon transport, and problems in protein 
degradation act in concert and gradually push motoneurons outside the parameters under 
which they can function properly. The fact that motoneurons are able to remain functioning 
for as long as they do under adverse conditions suggests that there is a large window of 
time and intrinsic conditions within which motoneurons can maintain normal function. 
Hopefully future treatments can target these altered pathways to extend the time 
motoneuron properties remain within these parameters. 
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