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1. Introduction 

Multiple myeloma (MM) is a B cell malignancy involving the post germinal centre B cells. 
The disease is characterized by the presence of blood and urinary monoclonal proteins, 
osteolytic bone lesions and infiltration of bone marrow with malignant plasma cells of low 
proliferative index. Multiple myeloma is mainly a disease of elderly males, but, there is 
evidence to support that there is increasing incidence in younger individuals as well. 
American blacks are more prone than American whites. MM is the most common non 
Hodgkin’s haematological malignancy, contributing 13% of all malignancies and 1% of all 
neoplasias. The median survival is 3-4 years, but with autologous stem cell transplantation 
and high dose chemotherapy, the median survival has increased to 5-7 years [1]. 

Most, if not all, multiple myeloma evolve from a premalignant condition known as 
‘Multiple Gammapathy of Undetermined Significance (MGUS)’. It then progresses via a 
‘smouldering multiple myeloma’ stage, to a full blown disease and finally to an 
‘extramedullary MM’ condition, where the malignant cells are no longer dependent on the 
bone marrow microenvironment for their proliferation. On a cellular scale, the origin of MM 
is thought to be post germinal centre B cell or memory B cell, indicated by the presence of 
hypermutated immunoglobulin gene. Evidence also supports the stem cell origin of the 
disease, as indicated by activated Wnt and Hedgehog signalling in the subset of cells in MM 
primary samples [2].  

Cornelius Celsus, a Roman physician, first described the features of inflammation 
(inflammation - to set on fire) with the following signs: heat (calor), pain (dolour), redness 
(rubor) and swelling (tumour). The main purpose of inflammation is to protect the host 
                                                                          
* Corresponding Authors 

www.intechopen.com



 
Multiple Myeloma – An Overview 

 

94

organism from the microbes and other noxious stimuli. However, when the infection cannot 
be controlled or when there is a constant presence of the damaging stimuli, inflammatory 
process gets deregulated, resulting in a condition called chronic inflammation, which is 
destructive to the host organism. Thus inflammation is aptly termed as a 'double edged 
sword'. The link between inflammation and cancer was first established in 1897, by a 
German pathologist named Dr. Rudolf Virchow. He found that leukocytes infiltrate tumour 
tissue and therefore, termed tumours as 'wounds that do not heal'. Since then there has been 
much evidence to link inflammation and cancer, so as to be able to add inflammation as one 
of the hallmarks of cancer [3-5].  

In the linking of inflammation and cancer, two pathways are said to exist - extrinsic and 

intrinsic. In the extrinsic pathway, chronic inflammation leads to autoimmune diseases, 

which eventually culminate in cancer. For example, H.pylori infection in the stomach, 

Hepatitis B and Hepatitis C infections in the liver, inflammatory bowel diseases and 

inflammation of the prostate gland (prostatitis); lead to incidences of gastric cancer, 

hepatocarcinoma, colon cancer and prostate cancer, respectively. In fact, about 20% of all 

cancers are said to arise in an inflammatory environment. In the intrinsic pathway, 

activation of oncogenes or inactivation of the tumour suppressor genes, causing both cancer 

and inflammation, which complement each other [6, 7]. Irrespective of the pathways 

involved, the perpetrators of the cancer related inflammation are inflammatory cells and 

inflammatory mediators, such as cytokines, chemokines, growth factors, all of which finally 

converge on a few transcription factors [8]. Not surprisingly, agents modulating cancer-

related inflammation have been tried in cancer therapeutics [9]. 

MM cells depend largely on a bone marrow microenvironment for their growth and 

survival, until the last stage of the disease, where they invade other areas to be termed as 

extramedullary MM. The bone marrow microenvironment can be broadly divided into 

cellular and non-cellular components. Cellular components include myeloma cells, bone 

marrow stromal cells or bone marrow fibroblasts, haematopoietic precursor cells, 

osteoclasts, osteoblasts, endothelial cells and immune cells. Of these, the supportive role of 

stromal cells in MM has been studied extensively. The interactions between myeloma cells 

and osteoclasts have also been studied to an extent. The bone marrow stromal cells and 

osteoclasts provide the myeloma cells with the ability to grow and survive, either by direct 

adhesion and/or by secreting growth and survival cytokines. 

The non-cellular compartment is comprised of the extracellular matrix and the soluble 
factors. Extracellular matrix consists of various proteins like collagen, fibronectin and 
laminin. The extracellular matrix not only acts as depots for the growth factors, but also 
provides the myeloma cells with the ability to resist cell death induced by 
chemotherapeutic agents. The survival advantage offered by the bone marrow 
microenvironment to the MM cells is achieved by 1. the soluble growth factors which are 
secreted by various cellular components, 2. insoluble growth factors that are bound to the 
extracellular matrix component and 3. adhesion molecules that help MM cells adhere to 
the extracellular matrix and the cellular compartment. In fact, in a recent study, 22 out of 
the 51 multiple myeloma growth factor genes that could be interrogated by affymetrix 
were found to be significantly overexpressed by at least one bone marrow environment 
population compared to others [10].  

www.intechopen.com



Targeted Inhibition of Multiple Proinflammatory  
Signalling Pathways for the Prevention and Treatment of Multiple Myeloma 

 

95 

The stromal derived factor (SDF/CXCL12), secreted by the bone marrow stromal cells, plays 
an important role in the homing of MM cells to the bone marrow, which expresses receptor 
CXCR4. Moreover, adhesion of MM cells to stromal cells or fibronectin, induces 
chemoresistance in MM cells, mediated by integrins [11]. The adhesion molecules namely, 
very late antigen (VLA-4), vascular cell adhesion molecule (VCAM-1) and lymphocyte 
function–associated antigen 1 (LFA-1), intercellular adhesion molecule (ICAM–1), mediate 
integrin induced chemoresistance [12]. The resistance is mediated partly due to the 
activation of NF-κB, which upregulates anti-apoptotic gene products. MM samples are 
found to have various mutations activating both classical and alternative NF-κB. Apart from 
the mutations, the NF-κB pathway can also be stimulated by B cell growth factors like BAF 
and APRIL, which are secreted by the bone marrow microenvironment [13].  

Adhesion of MM cells to the stromal cells, induces the latter to secrete IL-6. IL-6 is the main 
growth factor for the MM cells. IL-6 then induces JAK/STAT 3, PI3/AKT and MAPK 
survival pathways. STAT 3 transcription factor upregulates its targets, namely, cyclin D1 
and Mcl-1, which promote cell proliferation and antiapoptosis respectively. In addition to 
the IL-6 induced activation of STAT 3, DNA methylation is found to silence the negative 
regulators of STAT 3. On the other hand, IGF secreted by bone marrow stromal cells induces 
PI3/AKT pathways [14]. AKT promotes cell proliferation by phosphorilating GSK3ǃ, which 
regulates cyclin D1 proteolysis. Activated MAPK pathway leads to the activation of ERK, 
promoting MM growth and survival [15]. The following section will elaborate on the very 
common and important inflammatory player, involved in the progression of MM. 

2. Role of proinflammatory cytokines and growth factors 

2.1 Interleukin - 6 

Interleukin-6, a pleotropic cytokine, is involved in processes such as haematopoiesis, 
immunity and inflammation. It was discovered as a factor secreted from mitogen 
stimulated T cells, which helps mature B cells transform into antibody producing plasma 
cells [16]. Because of its pleotropic nature, various laboratories were working with its 
different functions, giving it different names: B cell stimulating factor II (BSF II) as it 
stimulated B cells to turn into plasma cells and secrete antibodies, interferon-ß2 [17] as it 
was thought to have the properties of interferon but later it was proven that IL-6 does not 
have properties of interferon, 26 kDa protein - named after its molecular weight, a 
hybridoma/plasmacytoma growth factor as it induced plasmacytoma in balb/c mice 
injected with mineral oil [18] and a hepatocyte-stimulating factor as it stimulated 
hepatocytes to produce acute phase proteins [19].  

IL-6 binds to its receptor, which is either membrane bound or in soluble form. It then 
activates ubiquitously expressed receptor gp130 [20]. Once gp130 gets activated, IL-6 acts by 
three of the following signalling pathways: JAK-STAT pathway, MAPK-ERK and PI3-AKT 
pathway. Most of the actions of IL-6 are executed by JAK-STAT pathway [21]. IL-6 is found 
to be involved in the growth of many solid tumours like prostate cancer and renal cancer. 
Pathogenesis of Kaposi sarcoma has been proven to be due to the secretion of IL-6 [22-24]. 
IL-6 is also involved in the growth of many haematological malignancies. 

IL-6 is one of the main growth factors in multiple myeloma [25]. In fact, IL-6 knock out mice 
failed to develop MM [26]. Moreover, the serum level of IL-6 and soluble IL-6 receptor has 
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been proven to be a prognostic marker for tumour load, disease progression and survival 
[27-31]. Moreover, serum levels of IL-6 in patients with smouldering MM and monoclonal 
gammapathy of undetermined significance are comparable with healthy individuals, 
indicating the important role of IL-6 in the disease progression [32].  

Initially, it was thought based on the following findings that myeloma cells secrete and 
respond to IL-6 in an autocrine manner. Firstly, IL-6 induces in vitro growth of freshly 
isolated MM cells. Secondly, MM cells express the IL-6 receptor (IL-6R). Thirdly, purified 
MM cells produce IL-6 and lastly, in vitro growth of MM cells is inhibited by anti-IL-6 
antibodies [33]. But, again controversies prevailed among the research laboratories on the 
autocrine secretion of IL-6 by myeloma cells. Because, though all myeloma derived cell lines 
and patients cells express IL-6 receptor, only subsets of cell lines express IL-6 mRNA [34]. It 
was also found that bone marrow stromal cells are the main source of IL-6 [35-37]. 
Interestingly, when myeloma cells were co-cultured with bone marrow stromal cells, they 
tend to adhere to each other tightly and the IL-6 secretion by these cells reaches the peak. 
But, when the bone marrow stromal cells were fixed by paraformaldehyde, there was no 
increase in the level of IL- 6, confirming that the source of IL-6 was bone marrow stromal 
cells and not myeloma cells. Moreover, it was found that the stromal cells secrete IL-6 when 
stimulated by the adhesion of myeloma cells to the stromal cells. This is evident from 
experimental setup where these cells were cultured in transwell chambers without any 
physical contact with the myeloma cells. As a result, the bone marrow cells failed to secrete 
IL-6, emphasising the importance of adhesion molecules in the cross talk between the group 
of cells and pathophysiology of myeloma [38]. The adhesion mediated secretion of IL-6 was 
found to be NF-κB dependent [39].  

In addition to bone marrow stromal cells, adhesion of myeloma cells to the peripheral blood 
derived osteoclastic cells protected myeloma cells from serum deprivation induced 
apoptosis and doxorubicin induced apoptosis. Osteoclasts produced osteopontin (OPN) and 
IL-6, and adhesion of MM cells to osteocleasts increased IL-6 production from osteoclasts. In 
addition, IL-6 and osteopontin in combination, enhanced MM cell growth and survival. 
However, the effects of osteoclasts on MM cell growth and survival were only partially 
suppressed by a simultaneous addition of anti–IL-6 and anti-osteopontin antibodies and 
were completely abrogated by inhibition of cellular contact between MM cells and 
osteoclasts. Osteoclasts enhance MM cell growth and survival through a cell-cell contact-
mediated mechanism that is partially dependent on IL-6 and osteopontin [40]. 

The IL-6 induced survival of myeloma cells is mediated by STAT3, which upregulates anti-
apoptotic proteins Bcl-XL and Mcl-1 and cell cycle proteins like cyclin D1, c-Myc and Pim. 
The IL-6 induced proliferation is mediated by MAPK-ERK pathway [41]. A PI3-AKT 
pathway mediates proliferation and induces survival by phosphorilating Bad and activating 
cell cycle proteins and NF-κB. Gene expression profiling studies demonstrated that out of 
138 genes shown to be regulated by IL-6 in myeloma cells, 54% regulated cell cycle 
progression. This finding emphasises the role of IL-6 in myeloma cell proliferation [42]. IL-6 
was shown to inhibit Fos induced apoptosis [43]. IL-6 can inhibit dexamethasone induced 
apoptosis of myeloma cells by gp130 induced activation of SHP2, which deactivates related 
adhesion focal tyrosine kinase (RAFTK) [44, 45] and activates the PI3/AKT pathway [46]. 
Partial reduction in the levels of IL-6 can sensitise the myeloma cells to chemotherapeutic 
agents [47, 48]. 
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Various strategies, including IL-6 antagonist, IL-6 receptor inhibitor (CNTO 328), antisense 
oligonucleotides against IL-6 and IL-6 super antagonist (SANT7), have been tried for MM, 
but even after effectively blocking IL-6 receptor by the monoclonal antibody, the results 
were disappointing in clinical trials [49]. Accordingly, in the presence of bone marrow 
stromal cells, IL-6 receptor inhibition did not induce apoptosis, indicating the significance of 
the pleotropism offered by other growth and survival factors present in the bone marrow 
microenvironment [50, 51].  

2.2 TNFα 

In 1894, William Coley noticed that an injection of bacterial extracts into the tumour, could 

induce necrosis of tumours [52]. O’Malley et al. demonstrated that serum from mice injected 

with bacterial endotoxin can induce tumour regression [53]. The factor that can induce anti-

cancer activity in vivo and in vitro, present in the sera of mice treated with endotoxin or 

LPS, was identified as Tumour Necrosis Factor ǂ [54, 55]. The gene expressing human TNFǂ 

was cloned in 1984 [56]. Thereafter, the recombinant TNFǂ was used for experimental and 

therapeutic purposes. The therapeutic dose of TNFǂ induced serious hemodynamic 

instability and septic shock-like symptoms preclinically. TNFǂ can induce necrosis of the 

tumour by selective destruction of the blood vessels, only when injected at higher 

concentrations loco-regionally [57]. Its induction of apoptosis is highly context dependent. 

Physiologically, TNFǂ is an important cytokine regulating inflammation, immunity and 

haematopoiesis. Its deregulation is involved in lots of inflammatory and autoimmune 

conditions like rheumatoid arthritis and Crohn’s disease. Recent research has realised the 

potent protumerigenic effect of TNFǂ [58]. TNFǂ KO and TNFǂ-R1 KO mice do not develop 

chemical carcinogen induced skin cancers [59, 60]. TNFǂ-R1 KO mice do not develop 

chemical carcinogen induced liver cancer [61]. TNFǂ antagonists are in various stages of 

clinical trials for a variety of cancers. 

In MM, TNFǂ is not a strong growth factor, but it is an important factor secreted from 
myeloma cells to act on BMSCs to stimulate the secretion of IL-6. TNFǂ induces the 
expression of adhesion molecules on both myeloma cells and BMSCs. TNFǂ secreted by 
myeloma cells acts both directly and by increasing the adhesion between myeloma cells and 
the bone marrow stromal cells to secrete IL-6 by an NF-κB mediated mechanism in bone 
marrow stromal cells. TNFǂ is very potent when compared to other growth factors [62]. 
TNFǂ also participates in transendothelial migration of myeloma cells by acting via TNF-R2 
and upregulating the secretion of MCP-1 in myeloma cells [63]. Clinically, the agents which 
are known to inhibit TNFǂ; namely, thalidomide and its derivates and bortezomib, have 
significant anti-myeloma activity.  

2.3 BAFF and APRIL  

BAFF and APRIL also belong to the TNF family of cytokines. They act by binding to 
receptors TACI (transmembrane activator and calcium modulator, and cyclophilin ligand 
interactor), BCMA (B-cell maturation antigen) and BAFF-R (BAFF Receptor) which is 
specific for BAFF. Myeloma cells express these receptors in a heterogeneous manner [64]. In 
fact, patient groups whose myeloma cells had low expression of TACI receptor were less 
differentiated and showed attenuated dependence on the bone marrow and portending 

www.intechopen.com



 
Multiple Myeloma – An Overview 

 

98

poor prognosis; whereas patients whose myeloma cells express high levels of TACI receptor 
showed mature plasma cell signature exhibiting good prognosis [65]. There is evidence for 
these cytokines being secreted from myeloma cells [64, 66], bone marrow cells [67] and 
osteoclastic cells [65]. BAFF and APRIL seem to induce myeloma cell growth and inhibit 
dexamethasone induced apoptosis. BAFF and APRIL activate NF-κB, PI3kinase/AKT, and 
MAPK pathways in myeloma cells and induce a strong upregulation of the Mcl-1 and Bcl-2 
anti-apoptotic proteins [68, 69]. Cell adhesion induced bone marrow cells secrete BAFF, 
which acts on myeloma cells to regulate their growth and survival [67]. Interestingly, 
bortezomib has been found to inhibit BAFF and APRIL induce proliferation of myeloma 
cells [66]. 

2.4 Insulin-like Growth Factor 1 (IGF-1) 

Recent studies have delineated the role of IGF-1 in MM. IGF-1 was shown to be a strong 

indicator of prognosis in MM patients [70]. In the bone marrow milieu, IGF-1 is mainly 

produced and secreted from bone marrow stromal cells and mediates cell growth and 

survival in MM cells both in vitro [71, 72] and in vivo [73-75]. IGF-1 and its receptor were 

shown to be acting as growth factors [76] and preferentially expressed in MM cells [77] as 

compared to B-Lymphoblastoid cell lines. 

IGF-1 inhibits Dexametasone-induced apoptosis in MM cell lines [78]. IGF-1 augments the 

proliferative and anti-apoptotic effects of IL-6 [71, 79] . Although IL-6 has mostly been 

described as a proliferation factor for MM, it has become clear that IGF-1 has an equally 

important proliferative and anti-apoptotic effect [80-82]. It could be that IGF-1 plays an even 

more pivotal role in the survival of MM cells, as IL-6 independent lines still respond to IGF-

1 [80, 82]. Another group demonstrates that IGF-1 serves as a chemoattractant for MM cells 

[73]. In vivo induction of the receptor IGF-1R helps murine multiple myeloma cells in their 

homing and growth in the bone marrow [83].  

IGF-1 transduces its signal by receptor phosphorylation of the insulin response substrate 1 

and its activation of PI-3K and subsequently Akt kinase (PI-3K pathway). In fact, IGF-I 

increases adhesion of MM cell lines to fibronectin (FN) in a time and dose-dependent 

manner, as a consequence of IGF-1R activation and subsequent activation of ǃ1- integrin 

and PI3-kinase/AKT signalling [84]. Several important biological characteristics have 

been associated with this segment of the PI-3K pathway [85]. Akt subsequently 

phosphorylates Bad, a member of the Bcl-2 family, producing an anti-apoptotic effect. The 

second pathway associated with IGF-I stimulation signals through the Shc, Grb-2, Sos 

complex, resulting in activation of Ras and subsequently the mitogen-activated protein 

kinase (MAPK) signalling cascade.  

IGF-1 is also shown to mediate the activation of NF-κB [86], induce the phosphorylation of 

FKHR (forkhead) transcription factor, upregulate a series of intracellular anti-apoptotic 

proteins (including FLIP, survivin, cIAP-2, A1/Bfl-1 and XIAP) and decrease drug 

sensitivity of MM cells [75]. Caveolin-1, which is usually absent in blood cells, is expressed 

in MM cells and plays a crucial role in IGF-1-mediated signalling cascades [87]. Specifically, 

IGF-1 induces HIF-1ǂ, which triggers VEGF expression [88, 89]; consequently, inhibition of 

IGFR-1 activity markedly decreases VEGF secretion in MM/BMSC co-cultures [75].  
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Therapies targeting IGF-1, such as inhibitors of IGF-1 receptor, have already shown 
preclinical anti-MM activity and will soon undergo clinical evaluation [75]. IGF-1R 
inhibition with neutralizing antibody, antagonistic peptide, or the selective kinase inhibitor 
NVP-ADW742 has in vitro activity against MM cell types and in orthotopic xenograft MM 
model had synergistic anti-tumour activity in combination with conventional 
chemotherapy. Another study [90] reports that IGF-1R inhibition blunts tumour cell 
response to other growth factors, overcomes the drug resistance phenotype conferred by the 
bone microenvironment and abrogates the production of proangiogenic cytokines. These 
sets of studies provide in vivo proof of the principle for therapeutic use of selective IGF-1R 
inhibitors in cancer. 

2.5 Fibroblast Growth Factor (FGF) 

Besides bone marrow microvessel density (MVD), serum levels of FGF, along with VEGF, 

are predicted to be prognostic markers of MM disease activity [91, 92]. Expression of bFGF 

correlates with clinical characteristics of MM and its high level also indicates poor prognosis 

[93]. However, the levels of bFGF may serve as a predictor for good response to the 

treatment of MM with Thalidomide [94]. Patients responsive to Thalidomide may have 

significantly higher concentrations of bFGF than non-responsive patients, but this 

observation is not consistent even between the same authors [95, 96]. Stimulation of BMSCs 

with FGF-2 induced a time and dose-dependent increase in IL-6 secretion, a well studied 

cytokine, which was completely abrogated by anti-bFGF antibodies. Conversely, stimulation 

with IL-6 enhanced bFGF expression and secretion by myeloma cell lines as well as MM 

patient cells, suggested a paracrine interaction between the myeloma and the stromal cells 

with respect to the above cytokines [97]. 

The FGF receptor 3 (FGFR3) is now recognized as a potential oncogene. Ectopic expression 

of FGFR3 originates from the translocation t(4;14) occurring in 10-25% of MM patients [98, 

99]. Gain of function mutations in FGF receptors, especially FGFR3, have been widely 

implicated and studied in MM pathogenesis [98]. Suppression of FGFR3 using short hairpin 

RNAs (shRNAs), lead to apoptosis and anti-tumour effects in MM [100, 101].  

FGF binding to the FGFR, results in dimerization of the receptor and autophosphorylation 

of the FGFR dimer at intracellular tyrosine residues. The activated receptor either binds 

directly to signalling molecules or recruits adapter molecules to link the activated receptor 

to downstream targets at the cell membrane.  

Three FGF signalling downstream pathways have been identified in MM [102]: the Ras 

mitogen-activated protein kinase (MAPK) pathway, the phosphoinositol pathway and the 

signal transducer and activator of transcription (STAT) pathway.  

2.6 Transforming Growth Factor (TGF-β) 

Transforming Growth Factor beta (TGF-ǃ) is a growth factor that controls proliferation, 
cellular growth and differentiation [103], and embryonic development [104]. During 
tumourigenesis, the TGF-ǃ signalling pathway becomes mutated and TGF-ǃ no longer 
controls the cell cycle [105, 106]. The cancer cells along with the surrounding stromal cells 
(fibroblasts) proliferate unchecked. Both these cells increase their production of TGF-ǃ, 
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which acts on the surrounding stromal cells, immune cells, endothelial and smooth-muscle 
cells, causing immunosuppression [106, 107] and tumour angiogenesis, and increasing the 
invasiveness [108, 109] and motility [110] of cancer.  

TGF-ǃ also plays a role in the suppression of bone formation in MM bone lesions [111]. 
Overproduction of TGF-beta 1 in MM patients was reported by Kroning et al. [112]. TGF-ǃ is 
mainly produced by BMSCs, but is also secreted by malignant plasma cells and can regulate 
interleukin-6 (IL-6) secretion [113]. According to Cook et al., TGF-ǃ produced by MM cells 
plays a significant role in suppressing host T cells and immune responses [114, 115]. TGF-ǃ 
inhibition was able to suppress MM cell growth within the bone marrow while preventing 
bone destruction in MM-bearing animal models [116]. 

3. Role of chemokines  

In MM, chemokines mainly help homing the myeloma cells to the bone marrow 
microenvironment. Their role in proliferation and survival of myeloma cells is only 
moderate. This effect can be either direct or mediated indirectly by inducing the secretion of 
IL-6, VEGF, or any other growth factor involved in the growth and survival of myeloma 
cells. The role of chemokines, especially that of MIPs, in osteolytic bone lesions is well 
established. Homing is defined by transendothelial migration of cells from the blood stream 
towards the chemokine gradient. This involves adhesion of cells to the endothelial layer, 
transendothelial migration and eventually residing in the microenvironment. So, it is 
apparent that bone marrow endothelial cells play an active role in the migration of plasma 
cells. They do so by secreting various chemokines and expressing adhesion molecules; 
thereby helping myeloma cells to migrate towards them. Upon adherence, MM cells will 
extravasate using their MMP arsenal to move through the basal lamina of bone marrow 
sinusoids. This process is also aided by the chemokine gradient in the bone marrow 
microenvironment because certain chemokine are said to be present in higher 
concentrations in the bone marrow microenvironment than in bone marrow endothelial cells 
which make sure that the cells are confined to the bone marrow microenvironment. 

3.1 Macrophage Inflammatory protein: (MIP-1, CCL3) 

MIP1 belongs to the CC family of chemokine and mainly acts via CCR1, CCR5 and CCR9 
receptors. Myeloma cells have been shown to express both the receptors (CCR1, CCR5) and 
the chemokine [117, 118]. Controversial findings on the effect of growth and survival of 
myeloma cells could be due to usage of different experimental models and design [118, 119], 
but its role in migration and homing of myeloma cells, and in the progression of the 
myeloma bone disease, are clearly demonstrated. SCID mice injected with stable MIP1 
knock-down clones of ARH cell line showed comparably less adhesion to the bone marrow, 
reduced survival and less bone pathology when compared to wild type ARH cell line 
injected group [117].  Suzanne Lentzsch et al. showed in vitro evidence that MIP1ǂ can 
induce myeloma cell migration. Interestingly, they also showed that MIP1ǂ can induce 
proliferation and survival of myeloma cells by inducing MAPK/ERK pathway, PI3/AKT 
pathway [118]. There is a study in which the various effects of MIP1ǂ on 5TMM has been 
dissected. MIP1ǂ induced migration has been attributed to the CCR5 and CCR1 receptor 
mediated signalling. Both the receptors mediate the MIP1ǂ induced bone marrow 
angiogenesis and at least CCR1 mediates this effect directly [119]. 
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3.2 MCP1 (or monocyte chemoattractant protein - CCL2)  

As mentioned earlier, endothelial cells play an active role in the extravasation of myeloma 
cells and eventually their homing to the microenvironment. Murine endothelial cells are 
shown to secrete CCL2 and murine myeloma cells express the cognate receptor CCR2. 
Myeloma cells migrated towards the endothelial cell conditioned medium and this 
migration was inhibited by using antibodies against MCP1 [120]. Human bone marrow 
stromal cells also secrete MCP1, MCP2 and MCP 3, and myeloma cells migrate towards a 
stromal cell conditioned medium. This effect was inhibited by using antibodies against the 
MCPs and maximal inhibition was observed when all the three MCPs were blocked 
together, suggesting the role of various MCPs in myeloma homing [121]. 

3.3 CXC chemokines and CXCR3 receptor involvement in MM 

CXCR3 receptor is expressed by activated T cells. It binds to CXC chemokines namely,: 
CXCL11 or Interferon-inducible T-cell Alpha Chemoattractant (I-TAC), Mig 
(Monocyte/macrophage-activating IFNϒ-inducible protein)/CXCL9 and IP10 (IFNϒ -
inducible 10 kDa protein)/CXCL10. Myeloma cells derived from patients with myeloma, as 
well as myeloma derived cell lines, express CXCR3 receptor and they respond to their 
ligands by inducing tyrosine kinase phosphorylation and secreting MMP2 and MMP9 [122]. 
Bone marrow endothelial cells also secrete CXC chemokines and certain myeloma cells 
expressing their cognate receptors migrate in response to these chemokines [123]. 

3.4 Stromal Derived Factor (SDF-1α/CXCL12) 

Stromal derived factor is a member of CXC family of cytokines and its cognate receptor is 

CXCR4. CXC12/CXCR4 is the most extensively studied chemokine/receptor system with 

respect to cancer. It has been implicated in progression, migration, invasion and metastasis 

of various cancers. The role of CXC12/CXCR4 has been well established in the homing of 

haematopoietic progenitor cells. Bone marrow plasma and bone marrow stromal cells 

secrete this chemokine, with the myeloma cells from the patient sample and myeloma 

derived cell lines expressing the cognate receptors. The chemokine mediates the secretion of 

IL-6 and VEGF, and induces proliferation, migration and inhibits dexamethasone induced 

cell death [124]. In the 5TMM model, bone marrow stromal cells and endothelial cells secrete 

SDF-1ǂ and myeloma cells express the receptor. In vitro, SDF-1ǂ induces moderate 

proliferation of myeloma cells, which was abrogated by blocking antibodies. 5T myeloma 

cells migrated towards a stromal cells conditioned medium which was partially inhibited by 

CXCR4 inhibitor. SDF also stimulated myeloma cells to secrete MMP9, demonstrated by 

zymography. Accordingly, SDF induces invasion and the CXCR4 inhibitor inhibits SDF 

induced invasion. In vivo, CXCR4 inhibitor inhibited the tumour burden and the immediate 

homing to about 40% [125].  

When the myeloma cells were mobilized, the CXCL12/CXCR4 axis is downregulated. There 
is a downregulation of very late antigen (VLA4) in the peripheral blood myeloma cells after 
mobilization. This results in a suppression of the adhesion of myeloma cells to the bone 
marrow stromal cells, which can be rescued by induction with IL-6 [126]. Moreover, bone 
marrow endothelial cells are also shown to secrete CXCL12 and induce migration of 
myeloma cells towards the bone marrow endothelial cells. Thus, angiogenesis induced 
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migration of myeloma cells is also mediated by CXCL12 chemokine [123]. The expression of 
CXCR4 was higher in bone marrow plasma cells of patients with myeloma than patients 
with MGUS. Moreover, the bone marrow plasma of myeloma patients has higher SDF-1ǂ 
levels than that of peripheral blood of myeloma cells and bone marrow plasma of healthy 
individuals [127]. Consistent with its effect on migration, invasion, homing, proliferation 
and survival, CXCL12/CXCR4 axis induced MAPK/ERK, AKT, PKC and NF-kB pathways 
[124, 127]. 

4. Role of proinflammatory transcription factors  

4.1 STAT3 

STAT3 is a member of the STAT family of transcription factors. STAT family proteins were 
first discovered in the context of the specificity of the IFN signalling [128]. STAT3 was first 
described as a DNA-binding factor, in IL-6 stimulated hepatocytes, capable of selectively 
interacting with an enhancer element in the promoter region of acute-phase genes [129]. 

STAT3 is constitutively phosphorylated in v-Src–transformed cells and has been found to be 

necessary for the v-Src induced carcinogenesis. Expression of a constitutively active version 

of STAT3 on its own can lead to fibroblast transformation, showing that STAT3 is an 

oncogene [130]. Consistent with its role in various cancers, STAT3 regulates various genes 

involved in different aspects of cancer progression. Genes regulated by STAT3 that are 

involved in proliferation and growth include c-myc, cyclinD3, cyclin A, cdc25a, p21, 

cyclinD1, Pim-1 and Pim-2. Genes regulated by STAT3 that are involved in survival include 

proteins belonging to the family of Bcl-2 and IAPs, namely, Bcl-2, Bcl-xL, Mcl-1 and 

survivin. STAT3 has also been shown to downregulate the Fas cytokine. STAT3 mediated 

angiogenesis is mediated by VEGF; STAT3 also regulates MMP family members MMP2 and 

MMP9 [131]. STAT3 is vital for development, seen from STAT3 knock out mice which 

succumb to embryonic lethality [132]. However, disruption of STAT3 function either by 

deleting the gene or by introducing the dominant negative form of STAT3, leads to only a 

few phenotypical changes [133]. These findings are critical for the development of 

therapeutic strategies with high therapeutic index. In MM, STAT3 plays an important role in 

survival. It upregulates anti-apoptotic proteins like Bcl2, Bcl-XL and Mcl-1 [134-136]. 

Constitutive expression of STAT3 confers myeloma cells resistance to apoptosis [137]. Out of 

all the anti-apoptotic proteins regulated by STAT3, Mcl-1 seems to be more important. 

While antisense inhibition of Bcl-xL did not inhibit survival, knock down of Mcl-1 was 

sufficient to inhibit survival in myeloma cells. Overexpression of Mcl-1 was able to promote 

proliferation of multiple myeloma cells lines, even in the absence of IL-6 [138].  

Knock down of Bcl-2 can augment dexamethasone induced apoptosis [139], but again, the 
importance of STAT3 in regulating the anti-apoptotic proteins and thereby the survival of 
myeloma cells remains controversial in the light of a lack of correlation between the 
constitutive expression of STAT3 and the anti-apoptotic proteins [140]. However, it is clear 
that STAT3 is not the only factor which regulates the survival of myeloma cells because 
myeloma cells become independent of a IL-6-gp130-STAT3 pathway in the presence of bone 
marrow stromal cells [51]. Almost 48% of MM patients have constitutively activated STAT3 
[140]. There has been no activating mutations of STAT3 detected in MM. But, there has been 
epigenetic silencing of negative regulators of STAT3, namely, SHP1 and SOCS in MM. 27 of 
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34 (79.4%) myeloma samples showed SHP1 hypermethylation. At least in U266 MM cells, 
methylation of SHP1 may be responsible for constitutive STAT3 activation, because 
treatment with 5-azacytidine, a DNA demethylator, led to a progressive demethylation of 
SHP1 and a parallel downregulation of phosphorylated STAT3 [15]. SOCS-1 is 
hypermethylated in 23 out of 35 (62.9%) MM patient samples and consistently expression of 
this protein is upregulated after treatment with demethylators. So, it can be concluded that 
suppression of the expression of negative regulators of IL6-JAK-S TAT pathway by 
epigenetic silencing increases the sensitivity of myeloma cells to IL-6 induced proliferation 
and survival [141]. Moreover, overexpression of SOCS using adenoviral vector inhibited the 
IL-6 induced proliferation in IL-6 dependent multiple myeloma cells, hinting at another 
strategy to inhibit IL-6 induced downstream signal transduction pathways [142]. 

There are lots of therapeutic strategies that are being developed to target JAK-STAT3 

pathway in MM. In fact, the novel agents that are being used nowadays namely, 

thalidomide and its derivatives and bortezomib, act partially to disrupt the NF-κB induced 

activation of IL-6 and thereby STAT3 activation. Numerous drugs that inhibit IL-6-JAK-

STAT3 pathway at various levels induce apoptosis, both in vitro and in vivo [143-175].  

4.2 NF-κB pathway 

NF-κB is a Rel family of transcription factors consisting of p50, p52, c-Rel, p65/RelA and 

RelB subunits [176, 177]. It was discovered by Dr. Baltimore and colleagues in 1986 as a 

DNA binding protein, recognising specific sequences in the immunoglobulin kappa light 

chain joining (J) segment gene region in B cells [178].  

Various inflammatory stimuli activate the NF-κB pathway. There are two pathways 

involved in the activation of the NF-κB pathway: the classical pathway and the alternative 

pathway.  

NF-κB is a main transcription factor regulating various genes involved in inflammation. NF-
κB has been casually implicated in various types of tumours [179]. Selective deletion of NF-
κB in hepatocytes or inhibition of TNF-ǂ production by neighbouring parenchymal cells, 
induced programmed cell death of transformed hepatocytes and reduced the incidence of 
liver tumours. Paracrine activation of NF-κB in initiated cells was not important in the early 
stages of liver tumour development, but it was crucial for malignant conversion [180]. In 
colitis associated cancer model of mice, selective deletion of IKK-ǃ in inflammatory cells that 
are surrounding the enterocytes reduced the mRNA of inflammatory cytokine levels and 
subsequently decreased the tumour formation. However, selective deletion of IKK-ǃ in 
enterocytes did not reduce inflammatory features, but it induced enhanced cell death in 
enterocytes leading to a decrease in the incidence of colon cancer [181]. It is quite obvious 
from these experiments that NF-κB affects both tumour cells and inflammatory stromal cells 
to induce and promote cancer. NF-κB acts on enteroctyes to inhibit apoptosis and also acts 
on inflammatory cells to stimulate the secretion of various mediators of inflammation which 
inturn acts on the enteroctyes to induce cancer. However, in some tissues, NF-κB acts to 
prevent cancer. For example, inhibition of NF-κB in keratinocytes leads to squamous cell 
carcinoma of skin [182]. In MM, patient samples show a constitutive activation of NF-κB to a 
variable degree [183]. How these cells activate NF-κB in a constitutive manner is still under 
investigation. Soluble cytokines belonging to TNFǂ super family including TNF-ǂ, BAFF, 
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APRIL, lymphotoxin b, are known to activate NF-κB and are present in the bone marrow 
microenvironment. Adhesion of myeloma cells to the bone marrow stromal cells and 
osteoclasts also activates the NF-κB pathway in both myeloma cells and osteoclasts, and 
bone marrow stromal cells. 

Moreover, around 15-20% of myeloma samples and 40% of the cell lines show activating 
mutations in the NF-κB pathway [13, 184, 185]. There could be some unidentified genetic 
mutations or epigenetic modifications that might explain the constitutive activation in the 
remaining tumours. Gain of function mutations include ones encoding receptors known to 
activate NF-κB namely, CD40, LTǃR, TAC1, NIK (NF-κB-inducing kinase), and direct 
mutations involving NF-κB1 p50/p105 and NF-κB2 p52/ p100. Loss of function mutations 
include those that involve negative regulators of NF-κB activation namely, TRAF3, TRAF2, 
CYLD and cIAP1/cIAP2, inactivation of TRAF3 being the most common. These mutations 
activate both classical and alternative pathways of NF-κB. CD40, LTǃR, TAC1 and receptor 
overexpression may be sufficient to activate the NF-κB pathway or might enhance the 
sensitivity of MM cells to factors in the tumour microenvironment. Overexpression of NIK 
or NF-κB1 p105 directly leads to constitutive activation of NF-κB. Deletion of sequences in 
the p100 IκB-like domain of NF-ΚB2 promotes processing of p100 to p52 and activation of 
the alternative NF-κB pathway [184, 185]. Activating mutations of the NF-κB pathway helps 
the myeloma cells become independent of the bone marrow, as they overcome the need for 
external cytokines activating the pathway [13].  

Activation of NF-κB in myeloma cells induces proliferation, survival and chemoresistance. 

When compared to chemosensitive myeloma cell lines, chemoresistant myeloma cells express 

higher levels of NF-κB, suggesting a link between NF-κB and development of chemoresistance 

[186, 187]. Moreover, dexamethasone induced apoptosis is associated with a decrease in the 

NF-κB DNA binding activity. Interestingly, NF-κB can also serve as a prognostic indicator for 

response to dexamethasone. Only patients who responded to dexamethasone, demonstrated 

decreased NF-κB DNA binding activity in their samples. Enforced ectopic expression of Bcl-2 

in myeloma cells conferred resistance to dexamethasone induced apoptosis, and this was also 

associated with enhanced NF-κB DNA binding [187]. Inhibition of NF-κB by IKK inhibitor 

abrogates the protective effect of IL-6 on dexamethesone induced apoptosis. It also potentiated 

TNFǂ induced apoptosis in myeloma cells. NF-κB inhibition abrogated the TNFǂ induced 

upregulation of ICAM-1, both in myeloma cells and in bone marrow stromal cells. It also 

inhibited the myeloma cell adhesion induced IL-6 secretion by bone marrow stromal cells and 

resulting proliferation of myeloma cells. These findings indicate that pro-survival functions of 

the bone marrow microenvironment are abrogated upon NF-κB inhibition. The novel 

therapeutic agents namely, bortezomib and thalidomide and its derivatives, act at least 

partially by inhibiting NF-κB [188].  

5. Role of matrix proteinases, angiogneic and adhesion molecules  

5.1 Matrix metalloproteinase  

Matrix metalloproteinase belong to a family of proteases, capable of degrading all kinds of 
extracellular matrix proteins. In 1962, Gross et al. discovered MMP, when they found 
collagenase activity in the tail of a tadpole during metamorphogenesis [189]. These proteins 
function not only to remodel the extracellular matrix, but also are involved in the cleavage 
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and thereby activation and inactivation of various biologically significant proteins like 
chemokines and growth factors. In the context of cancer, both the cancer cells and stromal 
cells secrete MMPs. Their involvement in invasion and metastasis was examined in various 
clinical models. Recent evidence suggests the role of MMPs in various hallmarks of cancer 
progression [190]. Culture supernatants of bone marrow derived stromal cells from multiple 
myeloma patients were found to have higher levels of MMP-1 and MMP-2 than control 
samples [191]. Moreover, endothelial cells secrete hepatocyte growth factor, which acts on 
myeloma cells to stimulate the secretion of MMP-9 [192]. 5T MM bone marrow expresses 
various MMPs, such as MMP2, MMP8, MMP9 and MMP13. Adequate inhibition of these 
MMPs by a broad spectrum MMP inhibitor SC-964 suppresses angiogenesis, reduces 
tumour load and osteolytic lesions [193]. 

5.2 Vascular Endothelial Growth Factor (VEGF) 

VEGF is a signal protein that stimulates formation of new blood vessels, through 

vasculogenesis and angiogenesis. The activity of VEGF is mediated through three receptor 

tyrosine kinases: VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 [194]. Dysregulation 

of VEGF has been shown to be a major contributor to tumour angiogenesis as well, 

promoting tumour growth, invasion and metastasis [195]. Upon stimulation by VEGF, 

bovine capillary endothelial cells were shown to proliferate and show signs of capillary-like 

tube structures [196]. Significantly elevated levels of VEGF are observed in a variety of 

haematologic malignancies [197-201]. Several studies link VEGF inactivation to anti-tumour 

effects [202]. Angiogenesis appears to play a role in haematological malignancies [203]. 

There is growing evidence that increased bone marrow angiogenesis occurs in myeloma 

[204, 205] and is related to disease activity [206, 207]. Angiogenesis in myeloma also appears 

to be correlated with the Plasma Cell Labelling Index, PCLI [206]. Micro vessel density 

(MVD) increases five-to-six fold in magnitude with progression from gammopathy of 

undetermined significance (MGUS) or non-active MM to the active MM [93, 208]. Moreover, 

after chemotherapy, MVD decreases significantly in patients in complete or partial 

remission [209]. MM cells release angiogenic factors, such as FGF and VEGF [93, 210], and 

are shown to induce angiogenesis in vivo in the Chick Chorioallantoic Membrane assay [93]. 

They secrete matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) and urokinase-type 

plasminogen activator [93] and cytokines recruiting inflammatory cells, such as mast cells, 

that then induce angiogenesis through secretion of angiogenic factors in their granules [211]. 

A better understanding of some of the above angiogenic factors would help in developing 

novel therapeutic targets against MM. A few of the widely prominent angiogenic factors are 

reviewed in detail in the following section. 

A number of studies implicate dysregulation of VEGF in MM pathogenesis and associated 

clinical features, including lytic lesions of the bone and immune deficiency. VEGF protein 

was found in malignant cells from 75% of MM patients studied [212]. Increased serum levels 

of VEGF have been correlated with a poor prognosis in patients with advanced stages of 

MM [213]. In fact, Iwasaki T et al. report predicting treatment responses and disease 

progression in myeloma using serum vascular endothelial growth factor [214]. Another 

patient study claims that the levels of VEGF, along with FGF, parallel disease activity [210]. 

VEGF may also affect the immune response in MM patients. Sera from MM patients' bone 
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marrow inhibits antigen presentation by dendritic cells (DCs); conversely, anti-VEGF 

antibodies neutralized this inhibitory effect, confirming that VEGF mediates 

immunosuppression in MM patients [215]. The cytokine is probably involved in the 

progression of MM to plasma cell leukaemia (PCL) [216]. Not just the ligand, its receptor 

VEGFR-1 is also widely expressed on both MM cell lines and patient MM cells, confirmed 

both by reverse-transcriptase polymerase chain reaction (RT-PCR) analyses and 

immunoprecipitation [217-219]. VEGF is generally present in the bone marrow (BM) 

microenvironment of patients with MM and associated with neovascularization at sites of 

MM cell infiltration [220]. The induction of VEGF enhances the microvascular density of 

bone marrow and accounts for the abnormal structure of myeloma tumour vessels 

[221]http://www.nejm.org.libproxy1.nus.edu.sg/doi/full/10.1056/NEJMra1011442 - ref12. 

VEGF increases both osteoclastic bone-resorbing activity [222] and osteoclast chemotaxis 

[223], and inhibits maturation of dendritic cells [224]. As marrow neovascularization 

parallels disease activity in MM, it is reasonable to postulate that the vascular growth factor 

is acting in an autocrine fashion. However, MM cells express VEGF receptors only weakly, if 

at all. Therefore, the mechanism may be paracrine and result from a VEGF-induced time 

and dose-dependent increase in stromal cell secretion of interleukin-6 (IL-6), a known MM 

growth factor [225]. Another cytokine, TNFǂ, has been reported to be involved in the control 

of VEGF production by myeloma cells [226]. Moreover, VEGF directly, or indirectly through 

its stimulatory activity on TNF-ǂ and IL-ǃ1, stimulates the activation of osteoclasts and thus 

contributes to the lytic lesions in MM [222]. 

Other factors modulating VEGF secretion include Interleukins: IL-1ǃ [227], IL-10 and IL-13 

[228]; secretion of IL-6 [218, 225, 229] or VEGF by both BMSCs and tumour cells 

(paracrine/autocrine loop); hypoxia and the presence of mutant oncogenes (i.e., mutant Ras 

[mutRas] or Bcr-Abl, which up-regulate VEGF expression via HIF-1ǂ protein); secretion of 

growth factors, such as insulin-like growth factor-1 (IGF-1) [88, 230], fibroblast growth 

factor- 4 (FGF-4) [231], platelet-derived growth factor (PDGF) [232], TGF-ǃ [233], TNF-ǂ 

[234] and gonadotropins [235]; c-maf–driven expression of tumour integrin ǃ7 [236]; tumour 

cell expression of ICAM1 and LFA1 modulating adhesion to ECM and BMSCs, thereby 

increasing VEGF production and secretion; and CD40 activation, which induces p53-

dependent VEGF secretion. Binding of VEGF to MM cells triggers VEGFR tyrosine 

phosphorylation, activating several downstream signalling pathways, particularly involving 

phosphatidyl-inositol-3 kinase [237, 238]. PI3-kinase- dependent cascade mediates MM cell 

migration on fibronectin, evidenced by using the PI3-kinase inhibitor bis-indolylmaleimide I 

and LY294002 [237]. This signal transduction pathway is mediated by focal adhesion 

proteins [239], such as FAK, paxillin and cortactin, which are responsible for the 

stabilization of focal adhesion plaques and the reorganization of actin fibres [240]. VEGF 

also regulates MM cell survival by modulating the expression of Mcl-1 and survivin [241].  

MAP kinases (MAPK) are the final effectors of the signal to the nucleus, thereby activating 
genes for proliferation, migration and survival [242]. This increased migration and cell 
proliferation is because of the activation of VEGFR-2, since it is totally inhibited by a 
VEGFR-2 blocking antibody [243]. In fact, MEK-extracellular signal-regulated protein kinase 
(ERK) pathway is shown to mediate MM cell proliferation, evidenced by use of anti-VEGF 
antibody and PD098059 [217]. Approaches to disrupt the VEGF/VEGF receptor signalling 
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pathways range from small molecule VEGF/VEGFR inhibitors, anti-VEGF and anti-VEGF 
receptor antibodies, such as bevacizumab [244, 245], and VEGF transcription inhibitors. Of 
interest are various kinase inhibitors that block the signal transduction mediated by VEGF. 
The VEGF receptor tyrosine kinase inhibitor PTK787 is active preclinically and undergoing 
clinical protocol testing in MM [246, 247]. It acts directly on MM cells to inhibit VEGF-
induced MM cell growth and migration, and inhibits paracrine IL-6–mediated MM cell 
growth in the BM milieu. Pazopanib [248], another VEGF receptor tyrosine kinase inhibitor, 
has been studied for cancer therapy.  

5.3 Adhesion molecules 

Cell adhesion is a key physiological event involved in morphogenesis and histogenesis. 
Adhesion molecules mediate cell-cell and cell-ECM interactions [249], and are also involved in 
intracellular signalling after engagement with their receptors. Broadly, there are five groups of 
adhesion molecules. They are 1) the integrins-mediating cell-ECM and cell-cell adhesion 2) the 
cadherin family-mediating homotypic cell-cell adhesion 3) the selectin family-mediating 
heterotypic cell-cell adhesion 4) the immunoglobulin superfamily-mediating cell-cell adhesion 
and 5) other transmembrane proteoglycans, such as CD44 adhesion molecules and syndecan 
that mediate cell-extracellular matrix adhesion [12]. Dysregulated expression or function of 
adhesion molecules are involved in various steps of cancer progression. 

In MM, there is evidence that adhesion molecules mediate homing of MM cells to the bone 
marrow, secretion of cytokines and growth factors, and development of chemoresistance. 
Out of all the adhesion molecules, VLA-4 and VLA-5 expressed by the myeloma cells play a 
crucial role in the myeloma pathogenesis [250]. VCAM-1 and fibronectin are the receptors 
for VLA. VLA adheres to the bone marrow stromal cells by binding to VCAM, CS-1 
fragment and H1 region of fibronectin [251]. Inhibition of VLA using blocking antibodies 
inhibit the adhesion of myeloma cells to the bone marrow stromal cells and fibronectin 
[252]. VLA dependent adhesion to the bone marrow is regulated by the CXCL12/CXCR4 
axis [253]. This is further supported by the finding that disruption of CXCL12/CXCR4 axis 
results in downregulation of VLA-4 and decreased adhesive capacity in the mobilised 
myeloma cells when compared to premobilisation bone marrow myeloma cells [126]. 

VLA dependent adhesion of MM cells to the bone marrow stromal cells induces secretion of 
IL-6 by an NF-κB mediated mechanism [38, 39]. Drug-sensitive 8226 human myeloma cells, 
expressing both VLA-4 and VLA-5 receptors, are relatively resistant to the apoptotic effects of 
doxorubicin and melphalan, when pre-adhered to FN and compared with cells grown in 
suspension. Upon exposure to chemotherapeutic agents, myeloma cells expressing high levels 
of VLA-4 have survival advantage over those that express them at low levels. When the cells 
were removed from a chronic drug exposure, the VLA-4 expression decreased. However, there 
was no upregulation of common mediators of drug resistance like anti-apoptotic proteins and 
drug exporting glycoproteins in the cells. It was concluded that though the survival advantage 
offered by VLA-4 induced adhesion to fibronectin is less, it is significant in helping them 
survive the acute drug exposure and gives them adequate time to employ the classic 
mechanisms of drug resistance [254]. How adhesion of cells to fibronecin is rendering the cells 
resistance to chemotherapy, is still not completely understood. It was shown that adhesion of 
myeloma cells to fibronectin activates NF-κB and its regulated gene products, leading to drug 
resistance [255]. Moreover, it seems that IL-6 and fibronectin collaborate to stimulate STAT3 
and fibronectin augments IL-6 induced STAT3 activation [256]. 
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Fig. 1. Comprehensive representation of the role(s) of various inflammatory mediators  
in MM 

 
 

Pharmacological/
Biological Blockers 

Mechanism(s) of Action References 

IL-6 
 

1339 
 
6-amino-4-quinazoline
Bortezomib 
CHIR-12.12 (Human 
anti-CD40 antagonist 
antibody) 
CNTO 328 
(siltuximab) 
ITF2357 histone 
deacetylase inhibitor  
Novel indolinone BIBF 
1000 
Sant7 

high-affinity fully humanized anti-IL-6 
mAb  
inhibits IL-6 signalling 
 
downregulates gp130 
inhibits CD-40 enhanced IL-6 secretion
 
IL-6 neutralizing monoclonal   
antibody  
down-modulates the interleukin-6 
receptor ǂ (CD126) 
abrogates stroma-derived IL-6 
secretion 
IL-6 receptor superantagonist 

[257] 
 
[166] 
 
[258] 
[259] 
 
 
[260-262] 
 
[263] 
 
[264] 
 
[265] 
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Pharmacological/
Biological Blockers 

Mechanism(s) of Action References 

TNF┙ Rituximab 
Thalidomide and its 
analogues 

monoclonal antibody 
suppresses the expression of TNFǂ 

[266] 
[267] 
 

BAFF & 
APRIL 

Atacicept blocks the binding of BAFF and APRIL [268] 

VEGF CHIR-12.12 (Human 
anti-CD40 antagonist 
antibody) 
Bevacizumab 
 
PTK787/ZK222584, 
SU6668, SU5416 
Sorafenib 

inhibits CD-40 enhanced VEGF 
secretion 
 
humanized murine anti--VEGF 
monoclonal antibody 
VEGF receptor tyrosine kinase 
inhibitors 
dual Raf kinase/VEGF-R    inhibitor 

[259] 
 
 
[269] 
 
[203, 270-272] 
[273]  

IGF ǂ-IR3 
 
JB-1 
 
NVP-ADW742 

neutralizing monoclonal antibody to 
IGF-1R 
IGF-1 like competitive peptide 
antagonist 
IGF-1R tyrosine kinase inhibitor 

[274] 
 
[275, 276] 
 
[277] 

TGF-┚ SD-208 TGF-ǃ receptor I kinase inhibitor [278] 
    
CXCL12 4F-benzoyl-TN14003 

AMD3100 
Thalidomide 

CXCR4 antoganist 
 
CXCR4 inhibitor 
immnunomodulator- downregulates 
CXCL12 and CXCR4 

[279] 
 
[267, 280] 
[281] 

STAT3 
 
 
 
 
 

AR-42 
Atiprimod 
Auranofin 
Avicin D 
Azaspirane 
AZD1480 
Baicalein 
 
 
Betulinic acid 
 
Butein 
 
 
Cantharidin 
Capsaicin  
 
Celastrol 
 

downregulates gp130 
inhibits STAT3 activation 
inhibits activation of JAK2 
activates protein phosphatase-1 
inhibits STAT3 
JAK-2 inhibitor 
Inhibits IL-6-mediated 
phosphorylation of signalling proteins
inhibits the activation of Src kinase, 
JAK1 and JAK2 
inhibits the activation of Src kinase, 
JAK1 and JAK2; and upregulates SHP-
1 
inhibits phosphorylation of STAT3 
inhibits the activation of Src kinase, 
JAK1 
inhibits JAK2 and Src kinase 
phosphorylation 
upregulates SHP-1 

[175] 
[143] 
[162] 
[282] 
[283] 
[174] 
[157] 
 
 
[165] 
 
[164] 
 
 
[172] 
[146] 
 
[284] 
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Pharmacological/
Biological Blockers 

Mechanism(s) of Action References 

Compound K 
Curcumin 
 
Decursin 
Embelin 
Emodin 
Genipin 
Guggulsterone 
 
Icariside II 
 
 
INCB16562 
INCB20 
Infectivity-enhanced 
adenoviral vector of 
SOCS 
Multitargeted kinase 
inhibitor, AT9283 
Nifuroxazide  
 
Plumbagin 
 
Pyridone 6 
Resveratrol 
 
TG101209  
Thymoquinone 
Tyrphostin AG490 
Ursolic acid 
 

inhibits constitutive and IL-6-inducible 
STAT3 phosphorylation 
inhibits activation of JAK2 
upregulates PTEN 
inhibitor of JAK-2 
inhibits the activation of c-src 
induces protein tyrosine phosphatase 
SHP-1 
inhibits the activation of c-src and 
JAK-2 and upregulates the expression 
of SHP-1 and PTEN 
JAK1/2 selective inhibitor 
Janus kinase inhibitor  
forced overexpression of SOCS  
 
 
inhibits Aurora kinase A, Aurora     
kinase B, and Janus kinase 2/3 
reduces Jak kinase auto- 
phosphorylation 
induces the expression of the protein 
tyrosine phosphatase, SHP-1 
pan-Janus-activated kinase inhibitor 
inhibits both constitutive and IL-6 
induced activation of STAT3 
inhibits activation JAK2 
inhibits of c-Src and JAK2 activation 
JAK2 tyrosine kinase inhibitor 
inhibits the activation of Src kinase, 
JAK1 and JAK2, and upregulates SHP-
1 

[167] 
[145] 
 
[150] 
[149] 
[161] 
[152] 
[172] 
 
[151] 
 
 
[155] 
[285] 
[142] 
 
 
[173] 
 
[163] 
 
[286] 
 
[169] 
[287] 
 
[171] 
[154] 
[148] 
[168] 

NF-B Azacitidine 
 
Azaspirane 
 
Bay 11-7082 
Celastrol  
 
Curcumin  
Genistein 
 
MLN120B 
Parthenolide 
Resveratrol 

inhibits both NF-κB nuclear 
translocation and DNA binding 
inhibits IκBǂ NFκB- p65 
phosphorylation TNF-ǂ 
pharmacological NF-κB inhibitors 
inhibits JAK2 and Src kinase 
phosphorylation  
suppresses NF-κB activation 
suppresses constitutively active NF-κB
IκB kinase ǃ inhibitor 
suppresses NF-κB activation  
suppresses constitutively active NF-κB 
through inhibition of IκBǂ kinase and 

[288] 
 
[283] 
 
[289] 
[284] 
 
[183] 
[290] 
 
[291] 
[292] 
[287] 
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Pharmacological/
Biological Blockers 

Mechanism(s) of Action References 

 
 
 

the phosphorylation of IκBǂ and of 
p65 

MMPs Chitosan  
 
SST0001 

a marine phospholipid that inhibits 
the activity of MMP-2 and MMP-9 
a chemically modified heparin with 
antiheparanase activity 

[293] 
 
[294] 
 

Integrins  Anti-alpha4 Ab  
 
QLT0267 

monoclonal antibody to alpha4 
integrin  
integrin-linked kinase inhibitor 

[295, 296] 
 
[297297] 

Table 1. List of various pharmacological/biological agents modulating inflammatory 
mediators in MM 

6. Conclusions 

Understanding the various growth and survival pathways activated in both myeloma cells 
and various components of the bone marrow microenvironment is of paramount 
importance, not only to the basic understanding of the biology of MM, but also to effectively 
produce efficacious and safer anti-myeloma agents. In essence, myeloma is initiated by the 
primary genetic abnormalities and supported by the bone marrow microenvironment 
induced growth and survival. The secondary genetic mutations and epigenetic 
abnormalities emancipate myeloma cells of their dependence on the bone marrow 
microenvironment, which is when they progress to extramedullary MM. There are multiple 
signalling pathways activated, which serve overlapping functions. Combined inhibition of 
multiple signalling pathways offers better effects.  
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