
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



8 

HIV Drug Resistance in Sub-Saharan Africa – 
Implications for Testing and Treatment  

Kuan-Hsiang Gary Huang1,3, Helen Fryer1, Dominique Goedhals2,3,  
Cloete van Vuuren2,3 and John Frater1,3 

1University of Oxford, Oxford,   
2University of Free State, Bloemfontein,  

3Bloemfontein-Oxford Collaborative Group 
1,3UK 

2,3South Africa 

1. Introduction 

This chapter will review the current evidence surrounding the emergence of HIV drug 
resistance in sub-Saharan Africa, the current guidelines for the drug resistance testing, and 
their implication. Data from a cohort study in the Free State province of South Africa will be 
used as an applied example in the discussion.  

2. ARV and mechanism of drug resistance emergence 

The first antiretroviral therapy (ARV) drug, azidothymidine (zidovudine, originally developed 
to treat cancer), was discovered to inhibit the reverse transcriptase (RT) enzyme of HIV in 1986 
(Yarchoan, et al. 1986). Since then, more inhibitor classes to other essential steps of viral 
replication have been discovered (Barbaro, et al. 2005). The ability of HIV to mutate and 
recombine frequently allows it to evade individual ARV rapidly (Aboulker and Swart 1993). In 
1996, the introduction of combination ARV, often termed highly active antiretroviral therapy 
(HAART), introduced a dramatic treatment response to patients. HAART delays disease 
progression, reduces AIDS mortality (by up to 70% annually) and partially restores CD4 T 
cells, but cannot clear HIV infection (Palella, et al. 1998). Furthermore, HAART delays the 
emergence of resistant HIV isolates, which accumulated rapidly during the pre-HAART era, 
when mono-, or dual-, therapy were in use (Kuritzkes 2007). 

Under multiple ARV drug selection (usually 3 agents, balancing clinical efficacy and patient 
tolerability), HIV is successfully suppressed (Larder, et al. 1995). However, given time or 
opportunity (such as when therapy is interrupted or not adhered to), HIV can acquire 
resistance to one or more agents in HAART regimens, requiring changing of failed ARV 
components. Drug toxicity is another major health concern (Carvajal-Rodriguez, et al. 2007, 
Larder, et al. 1993, Larder, et al. 1995). Although some drug escape mutants are impaired in 
replication fitness, others seem unaffected or may even have increased fitness (Armstrong, 
et al. 2009, Garcia-Lerma, et al. 2004, Prado, et al. 2002). Similar to escape seen in natural 
selection, reversion to wild type virus occurs rapidly following treatment cessation. Drug 
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compensatory mutations also arise secondarily to restore fitness in the mutants harbouring 
costly escape (Gandhi, et al. 2003, Stanford University 2011). 

Furthermore, intra-subtype and inter-subtype differences in HIV genetic sequences evoke 
different pathways leading to escape (Pieniazek, et al. 2000). Therefore, concerted efforts, 
surveillance programs and comprehensive databases have been set up to describe subtype-
specific drug resistance mutations and their accessory mutations (which may either have 
predisposing, compensating or augmenting effects to drug concurrent resistance mutations) 
(Bennett, et al. 2009, Gifford, et al. 2007, Stanford University 2011).  

2.1 HIV, HAART and drug resistance in sub-Saharan Africa 

In sub-Saharan Africa, 22.5 million people (5% of adult population) are infected with HIV, 

effectively harbouring over two thirds of the world prevalence (33.3 million) 

(UNAIDS/WHO 2011). Furthermore, in 2009, HIV infected over 1.8 million adults and 

children in the sub-Saharan region, and caused 1.3 million deaths through AIDS. This 

represents public health emergency, requiring immediate effective intervention. However, 

resource limitation, escalating disease burden and established stigmata remain major 

challenges to effective intervention. In particular, poverty and resource limitations 

undermine HIV control by constraining the access, availability and affordability of HIV 

testing, anti-retroviral therapy (ARV), follow up, and skilled staff (UNAIDS/WHO 2011).  

Similarly, sub-Saharan African nations lacked the resources to research and develop their own 
ARV and HAART. Fortunately, although the ARV and HAART regimens were originally 
designed to inhibit subtype B HIV-1, they are also efficacious against other subtypes, including 
C - the dominant subtype infecting sub-Saharan Africa (Frater, et al. 2001, Gordon, et al. 2003, 
Kantor, et al. 2005). In the pol gene subtype C varies from subtype B by 10-12% at the 
nucleotide level, yet these genotypic differences do not appear to confer major pre-therapy 
drug resistance, although may be associated with more accessory resistance mutations and 
different molecular pathways to resistance (Frater, et al. 2002, Gordon, et al. 2003, Pieniazek, et 
al. 2000, Robertson, et al. 2000, Sanches, et al. 2007, Velazquez-Campoy, et al. 2001).  

As HAART became available, many sub-Saharan Africa states initiated large scale primary 
care dispensing of HAART to qualifying patients according to the CDC and WHO guidelines 
(Department of Health 2003). However, the regional circulating strains of HIV remain poorly 
characterised in their molecular epidemiology and genotypic profiles. In addition, various 
mono- and dual-ARV are also indicated in the prevention of mother-to-child transmission 
(PMTCT) program of different sub-Saharan regions, exposing patients to potential resistance 
development (Jourdain, et al. 2004). Therefore, ahead of the mass dispensing of HAART, it is 
important to study the molecular characterisation and baseline pre-therapy drug resistance 
profiles of subtype C HIV-1 in South Africa (Department of Health 2003, Gilks, et al. 2006). 
This will also contribute to the long-term follow up of resistance development.  

2.2 Characterising drug resistance 

There are three types of ARV resistance (DHHS-Panel 2011): 

 Clinical resistance: occurs when viral replication continues despite HAART institution, 
and carries direct clinical impact. Clinical criteria exist to define virological (increase 
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viral load, VL) and immunological failure (poor increase or decreasing of CD4 cell 
count and development of opportunistic infection) during HAART. 

 Phenotypic resistance: can assess viral growth in the presence of ARV in vitro. This test 
is highly specialized (requiring recombination of HIV pol gene with a laboratory viral 
backbone) and is time consuming (viral culture and measurements take three to four 
weeks). The test is more expensive, and has no proven advantage over genotypic 
resistance testing, and may suffer reduced sensitivity in the detection of minority 
resistant mutant isolates (when the mutants are present at less than 20% of circulating 
viral population). 

 Genotypic resistance: is conducted to sequence the RT and protease genes for the 
detection of known resistance mutations (Integrase sequencing can also be done, on 
request). The test is considerably less expensive, time consuming and more widely 
available when compared to the phenotypic resistance assay (although the level of 
expertise required is still very high and not common to routine diagnostic laboratories). 
Furthermore, different sequencing assay techniques could be employed to improve 
sensitivity of detecting minority resistant mutants. A ‘virtual phenotype’ can also be 
imputed to measure the phenotypic impact of a mutation using laboratory strain 
manipulation. To date, global databases including Stanford HIV drug resistance 
database (Stanford HIV db) have collated, analysed and summarised considerable 
amounts of different genotype-treatment, genotype-clinical, and genotype-phenotype 
evidence based academic publications. 

The identification of drug resistance in sub-Saharan Africa has become a major issue in 
patients receiving HAART and in drug-naïve individuals (Shekelle, et al. 2007). Guidelines 
exist for the surveillance of both - the World Health Organisation (WHO) and Stanford HIV 
db publish a list of mutations for use in surveillance of transmitted drug resistance (TDRM) 
and the International AIDS Society (IAS) produce a list for use in the monitoring of treated 
populations (HRDS-Team 2003, Johnson, et al. 2008, Stanford University 2011). The WHO, 
Stanford HIV db and IAS committees regularly update the definitions and clinical 
significance (phenotypic resistance, clinical association and outcome meta-analyses) of drug 
resistance mutations and drug associated polymorphisms (Bennett, et al. 2009, Shafer, et al. 
2007). However, authorities disagree on the classification of naturally occurring non-clade B 
polymorphisms, drug-associated polymorphisms not associated with direct measurable 
drug resistances, and polymorphisms associated with reversion of previous drug-resistance 
mutation (Stanford University 2011). Therefore, many of the Stanford db’s ‘potentially low 
grade’ and ‘low grade’ resistance mutations are excluded from the IAS and WHO 
surveillance lists, showing there are discrepancies between the key opinion leaders. 
Recently, the updated TDRM list from the Stanford HIV db has become unified with the 
WHO guidelines (Gilks, et al. 2006, HRDS-Team 2003). The mutations in the TDRM 
surveillance list are selected on the basis that they are non-polymorphic, clinically 
significant and applicable across all subtypes. The implementation of such a standard 
should facilitate a specific method to assess changes in drug resistance prevalence in 
populations over time (Garcia-Diaz, et al. 2008, HRDS-Team 2003, Seebregts, et al. 5-8 June 
2007). It is clearly ideal to have a single mutations list to screen all populations, however the 
possibility exists that for South Africa where the dynamics of therapy provision and the 
more recent introduction of universal access to HAART makes for a unique situation, a 
subtype C-specific list may become more applicable (SATuRN-Database, et al. 2011).  
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3. Molecular epidemiology and genotypic drug resistance in treatment-naïve 
HIV population of South Africa 

In South Africa (SA, Figure 1), 5.5 million people are infected with HIV (ASSA 2007, 
UNAIDS/WHO 2011, Venter 2005). Since 2004, the SA government has made antiretroviral 
therapy (ARV) available to HIV positive individuals through public sector ARV programs - 
an initiative with significant clinical, public health and economic impact (Department of 
Health 2003, Egger, et al. 1997, Frater 2002, Palella, et al. 1998, Sow, et al. 2007, Venter 2005).  

Until recently, only a few small to medium-sized South African cohorts have reported the 
molecular characterisation and baseline pre-therapy resistance profiles of HIV infection, 
predominantly amongst the KwaZulu Natal, Gauteng and Limpopo provinces (Bessong, et 
al. 2006, Gordon, et al. 2003, Pillay, et al. 2002, Shekelle, et al. 2007). There are also emerging 
data on drug resistance from other major cities of sub-Saharan countries such as Uganda, 
Tanzania, Botswana, Zimbabwe, Zambia, Malawi and Kenya (Bussmann, et al. 2005, 
Eshleman, et al. 2009, Gordon, et al. 2003, Hamers, et al. 2010, Kamoto and Aberle-Grasse 
2008, Lihana, et al. 2009, Mosha, et al. 2011, SATuRN-Database, et al. 2011, Shekelle, et al. 
2007, Tshabalala, et al. 2011). There is currently no similar information available from other 
less urbanised regions of South Africa, such as Free State Province (Figure 1) with a 
population of approximately 3 million, an antenatal clinic HIV prevalence of 33.9%, and the 
life expectancy estimate of 46.5 years (ASSA 2007). Under the Free State Comprehensive 
Care, Management and Treatment of HIV and AIDS program, highly active antiretroviral 
therapy (HAART) has been available since 2004 as a combination stavudine and lamivudine 
with either nevirapine or Kaletra, and has significantly reduced the number of HIV-related 
deaths (hazard ratio 0.14) (Fairall, et al. 2008).  

In patients who report that they are drug-naive, resistance mutations might either reveal 
transmitted variants or might indicate that patients are not, in fact, drug-naive or are 
unaware of previous ARV exposure (Garcia-Diaz, et al. 2008). The extent to which 
unrecognized access contributes to the level of resistance in patients enrolling onto public 
sector ARV is unknown in South Africa, and very difficult to measure. Prior to the 
introduction of the public sector ARV treatment programme, ARV drugs were available for 
the PMTCT through private clinics and other unregulated routes, although previous studies 
suggest a low prevalence of baseline drug resistance in South Africa (Bessong, et al. 2006, 
Gordon, et al. 2003, Pillay, et al. 2002, Shekelle, et al. 2007).  

Here, the discussion on molecular epidemiology and pre-therapy drug resistance will be 
applied to a South African clinical cohort study (Huang, et al. 2009). In the Free State 
province of South Africa, 425 HIV type-1 (HIV-1)-positive patients newly recruited to the 
public sector ARV treatment programme and reporting to be drug-naïve were studied. The 
molecular epidemiology of HIV-1 infection within this region were characterised, and the 
prevalence of drug resistance and other polymorphisms associated with drug exposure 
were measured. A correlation existed between low CD4 T cell counts and drug-selected 
polymorphisms, suggesting that many mutations in drug-naive individuals are not 
transmitted, but are the result of acquired resistance through unrecognised ARV access.  

The aims of this study were: to describe the viral molecular epidemiology of Free State 
Province, South Africa (Figure 1), to investigate the prevalence of drug-resistance associated 
mutations, and resistance to HAART in the pre-therapy cohort and to model the impact of 
ART availability on baseline antiretroviral resistance.   
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Left panel: South Africa (in red) at the south of Sub-Saharan Africa (boxed and enlarged from the world 
map in left lower corner).  
Right panel: Free State province (in blue, capital: Bloemfontein) and KwaZulu Natal province (in 
purple, capital: Durban) are two of the nine provinces in central east region of South Africa. 

Fig. 1. Map of South Africa and its provinces, figure modified from original (Wikimedia-
Commons 2010) 

4. Experimental approach to the Free State cohort 

In total, 884 adult patients were recruited at their first visit to government antiretroviral 
therapy (ART) clinics in the Free State province of South Africa between February and 
September 2006. Informed consent for additional sampling of plasma for viral sequencing 
was obtained. All patients had been diagnosed with HIV infection at local primary care 
clinics, and then referred to district or regional HIV clinics to be assessed for suitability for 
HAART. On attending the clinic, patients were counseled by trained HIV nurses and asked 
directly whether they had previously received PMTCT, mono-, dual- or triple antiretroviral 
therapy. Patients who admitted previous drug exposure were excluded from this analysis. 
Demographic details, routine CD4 T cell counts and an additional 10ml of peripheral venous 
blood were collected from each individual patient. The ethics and study design were 
approved by the regional university and department of health.  

The 884 patients were stratified according to their CD4 cell count into 5 groups as follows: 

<100 cells/l (n = 195, 22.1%); 100-199 cells/l (n= 212, 24%); 200-349 cells/l (n=244, 
27.6%); 350-499 cells/l (n=123, 13.9%) and >500 cells/l (n=110, 12.4%) (Table 1). From this 
cohort of 884, viral sequences were analysed from 425 patients to form the ‘low’ (<100 CD4 

cells/l; n=195), ‘intermediate’ (200-349 CD4 cells/l; n=120) and ‘high’ (>500 CD4 cells/l; 
n=110) CD4 cell count stratification groups. 

For sequencing, RNA was extracted from plasma, converted to cDNA and then amplified by 
polymerase chain reaction before sequencing using ABI Big Dye terminator kits (Applied 
Biosystems). The primers used for the PCR and sequencing are described elsewhere (Frater, 
et al. 2007). From the 425 patients, complete protease sequences (99 amino acids) and amino 
acids 1-530 of reverse transcriptase (RT) were successfully. The pol gene sequences were 
submitted to the BioAfrica database and REGA HIV-1 subtype tool for subtype 
(www.bioafrica.net/subtypetool/html/) and locus identification (de Oliveira and Cassol 
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2011, de Oliveira, et al. 2005). Phylogenetic analysis and maximum likelihood trees were 
constructed using the General Time Reversible substitution model with optimised 
proportions of invariable sites and gamma distribution (GTR+G+I) using PAUP* (version 
4.0 beta) and PhyML (version 2.4.4) software. The pol sequences of the cohort were 
compared to 986 well-characterised isolates from the BioAfrica database and those available 
on the Los Alamos database (www.hiv.lanl.gov) to determine subtype and lineage 
relationships (Guindon and Gascuel 2003, Los Alamos National Laboratory 2011). The 
Slatkin and Maddison test was used to assess clustering between the Free State Province 
sequences and other South African sequences, using MacClade (version 4) (Gifford, et al. 
2007). 

The protease and RT sequences were submitted to the Stanford drug resistance database 
(version 4.3.1, http://hivdb.stanford.edu/pages/algs/HIVdb.html) to identify subtype-
associated polymorphisms and drug resistance mutations (Bennett, et al. 2008). The Stanford 
mutation scoring system (Table 1) was used to distinguish accessory mutations (mutation 
score 0-9) from clinically significant mutations (‘potentially low level’ resistance (score 10-
14), ‘low level’ (score 15-30), ‘intermediate level’ (score 30-59) and ‘high level’ (score >=60) 
resistance) (Bennett, et al. 2008, Stanford University 2011). 

An ordinary differential equation model was devised for this study to describe the 
dynamics of resistance to a single drug, such as Nevirapine, with a simple genetic resistance 
profile. The model encapsulates four main processes: selection of drug resistance in hosts 
treated in the public sector ARV treatment program, selection of drug resistance prior to 
‘official’ treatment by other means such as private prescriptions, transmission of drug 
resistant strains to new hosts, and reversion to drug-sensitive strains in untreated hosts. 
Fisher’s exact test (two tailed) and chi-square test were used to compare pre-therapy 
resistance findings between groups with different CD4 cell counts.  

5. Molecular epidemiology and drug resistance prevalence in the Free State 

In the analysis, there were three key findings. Firstly, there was evidence of multiple 
introductions of HIV-1 into the Free State, but random distribution of drug resistance-
associated polymorphisms. Secondly, the overall prevalence of pre-therapy drug resistance 
was low, but drug-selected polymorphisms were concentrated among patients with low 
CD4 T cell counts. Thirdly, mathematical modelling suggested that baseline drug resistance 
may be driven by exposure to ARVs available through non-governmental routes and that, 
unless drug availability is controlled, resistance prevalence is likely to rise. In the section 
below, each of the findings will be described and discussed in more details.  

5.1 Characterisation of the Free State province cohort in South African 

Table 1 summarises the cohort demography and division for sub-studies. Patients attending 
antiretroviral clinics in Free State province during 2006 demonstrated a mean CD4 T cell 

count of 271 cells/l, with 44.8% of patients possessing a CD4 cell counts of less than 200 

cells/l, significantly lower than other published chronic HIV cohorts (Kiepiela, et al. 2004). 
In an earlier study of 2777 chronically HIV infected individuals in the Pelonomi Hospital, 
Bloemfontein recruited between 1991 and 1997 (van der Ryst, et al. 1998), the mean CD4 T cell 

counts was 421 cells/l. The low mean CD4 T cell counts seen in the Free State Cohort is likely  
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Table 1. Details of HIV-1 positive patients recruited to three subgroups according to CD4 T 
cell count 
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a result of the cohort studied – ARV clinics tend to be enriched with patients presented 
during symptomatic phase of late HIV. There was no public ARV program available during 
1990s. The availability of HAART from the government is expected to improve quality of 
life and reverse this population-wide fall in CD4 cell counts (Venter 2005). 

The 884 patients were stratified according to CD4 T cell count, and viral sequences were 
analysed from 425 patients to form the low (<100 cells/µl; n=195), intermediate (200–349 
cells/µl; n=120) and high (>500 cells/µl; n=110) CD4 T cell counts stratification groups. The 
mean CD4 T cell counts for all patients within the low, intermediate and high groups were 
45.4, 270.0 and 651.8 cells/µl, respectively. The mean age of the cohort was 36.1 years (Table 
1). Complete protease gene sequences (99 amino acids) and amino acids 1–530 of the RT gene 
were successfully amplified from 390 and 397 patients, respectively. The REGA subtyping 
tool revealed all isolates to be subtype C. All sequences were combined with reference 
sequences from the BioAfrica database and their phylogeny analysed using maximal 
likelihood trees (de Oliveira and Cassol 2011, de Oliveira, et al. 2005).  

5.2 Molecular epidemiology studies revealed dynamic relationships between the local 
circulating viral isolates and the Southern Africa strains  

The Free State is located in central South Africa and is relatively isolated from other South 

African centres. The phylogenetic analysis confirmed that Free State province is dominated 

by HIV-1 subtype C infection, much like the rest of South Africa (Table 1). There were 

multiple small but distinct clusters within the Free State, which suggests the mixing of HIV-

1 strains from across South Africa, with migration into and through the Free State, possibly 

a result of the mining industry, transport routes and other economic reasons (Figure 2 and 

3). However, despite these clusters, viruses with drug-resistance associated mutations are 

distributed randomly, suggesting that they have evolved recently as a result of individual 

drug exposure rather than being a transmission cluster.  

In Figure 2, the maximum likelihood tree shows 390 HIV-1 pol sequences from the Free State 

in the context of local and global HIV-1 subtype C viruses from the BioAfrica database. The 

Free State strains (n=390) are in red, the South African strains (n=428) are in green, and 

remaining global subtype C strains (n=551) are in black. In Figure 3, the tree shows the 

phylogeny of the Free State patients (n=390) in the context of local HIV-1 subtype C virus 

strains from other provinces within SA (n=428). The Free State strains are highlighted in red, 

the drug resistant strains are highlighted in blue, whilst the SA reference strains (mainly 

from Gauteng, Kwa-Zulu Natal and Western Cape Province) are highlighted in green. 

The Free State sequences appear to be distributed randomly amongst both Southern African 

(Figure 2) and South African (Figure 3) reference sequences. Quantitative analysis of 

clustering showed that 52.5% of sequences occurred in 61 clusters of between 2 and 18 

sequences (mean 3.4 patients per cluster: 27 clusters of two, 10 clusters of three, 8 clusters of 

four, 3 clusters of five, 1 clusters of six, 2 clusters of seven, and 3 individual clusters of eight, 

nine and eighteen sequences). The analysis also shows that 70.6% of the Free State sequences 

(in isolation or in clusters) have a South African reference sequence as the nearest neighbour, 

but there is also clustering of sequences sampled from the Free State compared with other 

major South African centres (Slatkins and Maddison test, P<0.001). In addition, 96.1% of  

Free State strains are most closely related to a Southern African sequence and 97.2%  
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The pol gene of HIV-1 isolates sampled from Free State patients (red) are shown in the context of 
published South African (green) and non-South African (black) HIV-1 subtype C reference sequences. 
Resistant isolates defined by International AIDS Society (IAS)–USA and other drug-associated 
mutations defined by the Stanford Drug Resistance Database are shown (blue dotted arrows, ending in 
“o” and “*”, respectively). This maximal likelihood tree was constructed using the general time 
reversible substitution model with optimised proportions of invariable sites and gamma distribution 
(GTR+G+I) using PAUP* (version 4.0 beta) and PhyML (version 2.4.4) software. 

Fig. 2. Phylogenetic tree of the HIV-1 molecular epidemiology in the Free State, South Africa 
in the context of global HIV-1 subtype C pol reference sequences  
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The pol gene of HIV isolates sampled from the Free State patients (in red) are shown in the context of 
published South African HIV-1 Subtype C database (in green). The two HIV population sequences 
showed remarkable homology, sharing common internal nodes. Only 1 group of 18 Free State isolates 
clustered with more than 10 sequences. The drug resistant isolates from Free State patients (blue stars) 
distribute sporadically across the tree. This maximal likelihood tree was constructed using the general 
time reversible substitution model with optimised proportions of invariable sites and gamma 
distribution (GTR+G+I) using PAUP* (version 4.0 beta) and PhyML (version 2.4.4) software. 

Fig. 3. Phylogenetic tree describing HIV molecular epidemiology of the Free State Province 
and its drug resistant subjects in the context of South African HIV-1 subtype C reference 
sequences  
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of Free State strains are most closely related to an African sequence. Only 2.8% of the Free 
State sequences are closely related to a non-African sequence.  

Sequences that contained any drug-associated polymorphism or a mutation from the IAS–
USA surveillance list are indicated and are randomly distributed (Johnson, et al. 2008). The 
absence of linkage of these variant sequences does not support significant transmission of 
drug resistance within this cohort (Slatkins and Maddison test, P=0.85).  

It is also important to note that in contrast to the developed nations, HIV molecular 
epidemiology remains poorly characterised in the sub-Saharan Africa. In an effort to fight 
the pandemic in its epicentre, initiatives have begun to enhance the understanding of 
molecular epidemiology of HIV infection in sub-Saharan African. Consortiums such as 
Southern African Treatment and Resistance Network (SATuRN) were established as a 
regional mirror of the Stanford HIV db in sub-Saharan region (SATuRN-Database, et al. 
2011). In 2009, only 428 RT sequences were enlisted, with the active contribution from the 
likes of this cohort (n=390), the sample size of SATuRN is expanding rapidly. 

5.3 Low prevalence of pre-therapy drug resistance in the Free State  

All available pre-therapy pol gene sequences (n=390 for PR; n=397 for RT amino acids 1-530) 
from the Free State cohort were submitted to the Stanford HIV Resistance Database for 
identification of polymorphic sites associated with drug resistance. Although all potential 
resistance mutations were identified, specific attention was paid to the mutations from three 
drug classes currently being provided as part of the Free State public HAART regimen, 
namely protease inhibitor (PI), nucleoside reverse transcriptase inhibitor (NRTI), and non-
nucleoside reverse transcriptase inhibitor (NNRTI). 

According to the Stanford Drug Resistance Database list, the prevalence of non-accessory 
mutations was 4.1%, comprising 16 patients carrying a total of 19 non-accessory mutations 
(Table 1, Accessory mutations are defined as “atypical mutations or subtype-associated 
polymorphisms possibly related to secondary drug resistance” (Stanford University 2011)). 
The overall prevalence of clinically significant drug resistance mutations (according to the 
IAS–USA classification) was low (2.3%, Table 1), in concordence with the findings of 
previous smaller studies from South Africa (Bessong, et al. 2006, Gordon, et al. 2003, 
Johnson, et al. 2008, Pillay, et al. 2002, Shekelle, et al. 2007). A total of 64 (16.4%) patients 
sampled had a mutation at any of the drug resistance amino acid sites, including those that 
have been found to be naturally occurring polymorphisms (Table 1).  

The 16 patients with non-accessory mutations – according to the Stanford definition – are 
detailed in Table 2. Of these, nine had clinically significant mutations according to the IAS–
USA list. These were Y181C (n=2), K103N (n=3), Y188L (n=1), V106M (n=1), V108I (n=1) and 
K219E (n=1) in the RT gene, and M46L (n=1) and N88S (n=1) in the protease gene. The referral 
centres and local clinics where these patients had been recruited were either visited or 
contacted; however, in all but five cases the patients had been lost to follow-up. Of the four 
who had maintained undetectable viral loads on therapy, none had clinically significant IAS–
USA defined mutations at baseline (V179D, M46L, A98G and T69N). The one patient identified 
with a detectable viral load on ARVs (13,000 RNA copies/ml after 5 months) had V179D at 
baseline, although no sequence data was available from subsequent samples to determine the 
development of resistance (Table 2). Of the 16 patients with significant resistance, 6 were male. 
Of the 10 females, the median age was 34.5 years (range 25–56).  
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Table 2. Patients with drug-associated mutations to antiretroviral drugs during pre-therapy 
assessment 
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Table 3. Drug-associated mutations in the Free State Cohort 
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The non-accessory mutations identified in the cohort are explored in more detail in Table 3. 
For each mutation, the number in each CD4 T cell counts stratification is shown and 
compared with the reported prevalence in databases of drug-naive subtype B and C 
populations and in drug-experienced subtype C populations. To determine the clinical 
implications of these identified mutations, the Stanford database MARVEL report for each is 
summarized and the significance of the mutations in the surveillance lists of the WHO 
(updated 2009) and IAS–USA (updated December 2008) are compared (Table 3) (Bennett, et 
al. 2009, Johnson, et al. 2008, Stanford University 2011). For all the mutations, the prevalence 
in databases of drug-experienced subtype C cohorts was higher than in drug-naive patients 
with implications that these mutations might act as markers of drug exposure, even if not 
conferring clinically relevant resistance. 

5.4 Enrichment of drug-associated mutations among patients with low CD4 T cell 
counts  

Drug-associated polymorphisms (based on the Stanford database) were concentrated among 
patients with low CD4 T cell counts – 6.8% of patients with CD4 T cell counts <100 cells/µl 
carried non-accessory mutations compared with 1.8% and 1.2% of patients with 
intermediate and high CD4 T cell counts, respectively (P=0.015; Table 1 and Figure 4). The 
prevalence of resistance according to the IAS–USA definition was 3.6%, 0.9% and 1.2% for 
low, intermediate and high CD4 T cell counts groups, respectively (Table 1). Although not 
statistically significant, there were more accessory mutations among patients with low CD4 
T cell counts (19.3%) compared with the intermediate (13.4%) and the high (14.0%) CD4 T 
cell counts groups. When using the more relaxed Stanford definition, mutations 
concentrated among patients with low CD4 T cell counts for all mutations (Figure 4; 
P=0.004). Although not statistically significant, when only considering clinically relevant 
mutations, there was a trend for enrichment of resistance among low CD4 T cell counts for 
the IAS–USA (P=0.055) and the WHO TDRM lists (P=0.086; Table 3).  

In a supposedly drug-naive cohort, the enrichment of mutations with low CD4 T cell counts 
suggests that, rather than being transmitted, these polymorphisms had been selected by 
drug exposure (Garcia-Diaz, et al. 2008, Jourdain, et al. 2004). Transmitted mutations should 
be more common in recently infected individuals as they may revert to wild type over time 
in the absence of therapy (Gandhi, et al. 2003). Chronically infected patients with low CD4 T 
cell counts would be expected to have relatively less mutations if transmission was the only 
source of drug resistance. It should also be noted that other evidences have suggested that 
many of the transmitted resistance can stably persist over prolonged period within the HIV 
recipient (Brenner, et al. 2002, Novak, et al. 2005, Smith, et al. 2007). However, in the setting 
of this chronic cohort where majority of the patients are in advanced AIDS and HIV 
acquisition more likely occurred at a longer time ago, this explanation is unlikely to explain 
the observed drug-associated polymorphism prevalence given the availability of ARV in the 
distant past of SA. In this cohort, the patients were counselled by trained local HIV-1 nurses 
regarding drug history whether through the prevention of PMTCT, ARV programmes in 
different provinces, countries and private clinics or other non-governmental sources. This 
cohort does not comply with all the WHO guidelines for the identification of transmitted 
resistance (i.e. patients with recent infection, aged <25 years and no history of pregnancy 
(Bennett, et al. 2008, Gilks, et al. 2006, HRDS-Team 2003)), and although transmission of 
mutations is documented in other cohorts (Gifford, et al. 2007, Gilks, et al. 2006, Pillay 2007, 
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Richman, et al. 2004), a combination of phylogeny and the association with lower CD4 T cell 
counts in the data suggested that transmission was unlikely to be a significant cause of 
resistance in the Free State.  

The NNRTI class, in particularly Nevirapine, was associated with significant baseline drug-

associated mutations amongst the low CD4 T cell counts patient strata (Jourdain, et al. 2004). 

The genotypes and phylogeny of the NNRTI resistance strains were heterogenous (Figure 4 

and Table 2) and were not derived from any common founder (Figure 2 and 3). Of the 

patients with low CD4 T cell counts (<100 cells/µl), 5.2% possessed non-nucleoside reverse 

transcriptase inhibitor (NNRTI)-associated mutations compared with 1.8% of patients with 

intermediate and 0.0% of patients with high CD4 T cell counts (P=0.005; Figure 4 and Table 

3). The major mutation genotypes observed for NNRTI resistance were K103N (grade 5; 3 

isolates), V106M (grade 5; 1 isolate), Y181C (grade 5; 2 isolates), and Y188L (grade 5; 1 

isolate). Other NNRTI mutations included K103R (grade 1; 3 isolates), V108I (grade 2; 1 

isolate), A98G (grade 2; 2 isolates), V179D (grade 2; 3 isolates), E138K (grade 3; 1 isolate), 

(Table 2). This association remained significant when restricted to NNRTI mutations on the 

IAS–USA list (P=0.031; Table 3). The distribution of NNRTI mutations within patients with  

 

The plot depicts all pre-therapy patients carrying drug-associated mutations to any of the highly active 
antiretroviral therapy constituents, including protease inhibitors (PIs), nucleoside reverse transcriptase 
inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), stratified according to 
CD4 T cell count. The P-value was calculated using the ┯2 test, comparing the mutations across CD4 T 
cell counts.  

Fig. 4. Distribution of drug-associated mutations in pre-therapy patients according to CD4 T 
cell counts  
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low CD4 T cell counts was concentrated further among the individuals with lowest CD4 T 
cell counts (Table 2), who also tended to have higher grade resistant mutations.  

In contrast, the prevalence of resistance to non-NNRTI classes of HAART was much lower 
(Table 2 and 3). Only two major PI resistance mutations in protease were observed (M46L 
(grade 3) and N88S (grade 4)) and two NRTI mutations (T69N (grade 2) and K219E (grade 3)).  

Very few individuals were identified with clusters of mutations, indicative of potential 
multi-class resistance (Table 2). One patient (OX927) had significant resistance to both NRTI 
(K219E) and NNRTI (Y181C). One patient (OX1082) possessed two significant NNRTI 
resistance mutations, V106M and Y188L. Another (OX2032) carried E138K and Y181C. 

A key route of ARV exposure is the nevirapine-only regimen initially used for PMTCT from 
2000 (Department of Health 2003, Jourdain, et al. 2004, Shekelle, et al. 2007). Those patients 
with major NNRTI mutations were predominantly women of child-bearing age. Nevirapine 
is an inexpensive and effective agent and a key constituent of HAART regimens in resource-
limited settings. In this cohort, nevirapine had the highest prevalence of drug-associated 
mutations. The drug has a long half-life, a simple mutational pathway and is prone to rapid 
resistance even with the single doses used in PMTCT (Grossman, et al. 2004, Jourdain, et al. 
2004, Shekelle, et al. 2007). Unfortunately, despite contacting or visiting the referring clinics, 
the demographic details to determine the extent of this effect were not available for this 
analysis because of loss of follow-up for most of the affected patients.  

5.5 Mathematical modelling of acquisition of drug resistance 

The presence of inducible drug-resistance mutations in a population prior to recruitment to 
the ARV program indicates either access to antiretroviral therapy from alternative routes or 
transmission of drug-resistant strains. A mathematical model was developed to address two 
questions. Firstly, how long would it take for the observed level of inducible resistance 
mutation prevalence to develop in the absence of non-governmental access to drugs? 
Secondly, if alternative routes of drug access are maintained at the current rates, what is the 
likely prevalence of drug resistance in the next ten years? 

Regarding the first question on the attributable impact on baseline inducible drug resistance 
of non-governmental access to ARVs, the model estimates that it should take between 20 
and 35 years for a treatment naïve population exposed to NNRTI as part of HAART to 
achieve the observed level of resistance in the Free State cohort (Figure 5a). This supports 
the existence of additional sources of NNRTI exposure and that the Free State population is 
not entirely treatment naïve before the government program. 

In answer to the second question, the model predicts that in patients with low CD4 T cell 
counts the prevalence of NNRTI resistance will increase to 7.1% (confidence interval (CI): 5.7 
to 8.2%) over the next 10 years, if the additional sources of NNRTI exposure are maintained 
(Figure 5b). The resistance prevalence can however be stabilised to 5.2% (CI = 3.6 to 6.2%) 
over next 10 years, if additional exposure to NNRTI causing resistance can be reduced to 1% 
(currently 4.2%, Figure 5c). If all additional NNRTI exposure could be restricted, the present 
resistance prevalence could not sustain itself and would be expect to fall. 

Therefore, according to the mathematical model, the prevalence of NNRTI resistance is 
likely to increase, if additional non-governmental ART exposure is not controlled. The 
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Panel A: A projection of how resistance would develop in the absence of alternative, non-governmental 
sources of ARTs, if there was no initial resistance to NNRTI.  
Panel B: A projection of how NNRTI resistance will increase over the next 10 years if the percentage of 
infected hosts acquiring resistance from alternative access to therapy continues at the current level of 
4% (estimated using the model).  
Panel C: A projection of resistance emergence over the next 10 years, if the percentage of infected hosts 
acquiring resistance from alternative access to therapy reduces to 1%. 
Limited data were available to estimate the rate at which drug resistant virus reverts to drug sensitive 
virus in untreated hosts (┰), hence all model predictions were made for three different reversion rates: 
┰ = 0.13 years-1 (dashed line), ┰  = 0.05 years-1 (solid line) and ┰  = 0.01 years-1 (dotted line). 

Fig. 5. Model predictions of how the prevalence of NNRTI resistance in hosts, prior to 
enrolment onto governmental ARTs, is expected to develop over time in the Free-State 
population 

implications of this would include reduced drug efficacy and a requirement for clinical drug 
resistance surveillance, with its inherent financial costs. Newer antiretroviral classes, such as 
integrase and CCR5 inhibitors are currently unavailable through SA government programs 
re-enforcing the need to preserve the NNRTI class (Department of Health 2003). In 
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December 2007, South Africa revised its PMTCT regimen to a combination of zidovudine 
and nevirapine. Although this measure should improve PMTCT efficacy and reduce the 
emergence of NNRTI resistance, the logistics of introducing this change might delay its 
implementation in all areas of South Africa and a proportion of mothers might still receive 
nevirapine monotherapy.  

Nonetheless, PMTCT cannot be responsible for all the observed resistance in the cohort – 6 of 
the 16 patients were men and the age of the females ranged from 25 to 56 years. These patients 
predominantly had lower grade mutations, suggestive of exposure but not clinical resistance. 
It is possible that some individuals had previously received treatment in other clinics, for 
example, contract workers travelling between provinces. In addition, patients with lower CD4 
T cell counts are more likely to be symptomatic, to use drugs prescribed to family or friends 
and might have previously sought medication through other non-government sources 
(Novak, et al. 2005, Uy, et al. Jul 2007). At the time of sampling, drugs such as nevirapine, 
lamivudine, stavudine and didanosine were also available through private practitioners in the 
Free State, although the duration for which drugs would be prescribed is dependent on the 
patient’s ability to pay (Dahab, et al. 2008, Garcia-Diaz, et al. 2008).  

6. Conclusion 

In summary, this chapter has reviewed the molecular epidemiology and the practical 
implications for HIV drug resistance testing in sub-Saharan Africa. The example study of a 
large cohort from South Africa has revealed new molecular epidemiological and drug 
resistance surveillance data. The prevalence of drug-associated mutations among patients is 
reassuringly low, but the association with low CD4 T cell counts is previously undescribed 
and warrants close monitoring of the virological response when these patients start therapy. 
In particular, with increasing access to antiretrovirals and growing evidence for the role of 
treatment as prevention, continued robust resistance surveillance mechanisms will be 
required for the foreseeable future. 

Funding and Competing Interests: K-HGH is supported by the Rhodes Scholarships and 
James Martin 21st Century School. JF is funded by the Medical Research Council. The 
funders had no role in study design, data collection and analysis, decision to publish, or 
preparation of the manuscript. The data presented here have been presented at international 
conferences and in peer-reviewed journals prior to this publication. 

Competing interests: The authors have declared that no competing interests exist. 

7. References 

[1] Aboulker, J. P., and A. M. Swart. 1993. Preliminary analysis of the Concorde trial. 
Concorde Coordinating Committee. Lancet 341:889-90. 

[2] Armstrong, K. L., T. H. Lee, and M. Essex. 2009. Replicative capacity differences of 
thymidine analog resistance mutations in subtype B and C human immunodeficiency 
virus type 1. J Virol 83:4051-9. 

[3] ASSA. 2007. ASSA 2003 Demographic Model Produced by the Actuarial Society of South 
Africa. Demographic Model. ASSA. 

www.intechopen.com



 
HIV Drug Resistance in Sub-Saharan Africa – Implications for Testing and Treatment 

 

127 

[4] Barbaro, G., A. Scozzafava, A. Mastrolorenzo, and C. T. Supuran. 2005. Highly active 
antiretroviral therapy: current state of the art, new agents and their 
pharmacological interactions useful for improving therapeutic outcome. Curr 
Pharm Des 11:1805-43. 

[5] Bennett, D. E., R. J. Camacho, D. Otelea, D. R. Kuritzkes, H. Fleury, M. Kiuchi, W. 
Heneine, R. Kantor, M. R. Jordan, J. M. Schapiro, A. M. Vandamme, P. Sandstrom, 
C. A. Boucher, D. van de Vijver, S. Y. Rhee, T. F. Liu, D. Pillay, and R. W. Shafer. 
2009. Drug resistance mutations for surveillance of transmitted HIV-1 drug-
resistance: 2009 update. PLoS ONE 4:e4724. 

[6] Bennett, D. E., M. Myatt, S. Bertagnolio, D. Sutherland, and C. F. Gilks. 2008. 
Recommendations for surveillance of transmitted HIV drug resistance in countries 
scaling up antiretroviral treatment. Antivir Ther 13 Suppl 2:25-36. 

[7] Bessong, P. O., J. Mphahlele, I. A. Choge, L. C. Obi, L. Morris, M. L. Hammarskjold, and 
D. M. Rekosh. 2006. Resistance mutational analysis of HIV type 1 subtype C among 
rural South African drug-naive patients prior to large-scale availability of 
antiretrovirals. AIDS Res Hum Retroviruses 22:1306-12. 

[8] Brenner, B. G., J. P. Routy, M. Petrella, D. Moisi, M. Oliveira, M. Detorio, B. Spira, V. 
Essabag, B. Conway, R. Lalonde, R. P. Sekaly, and M. A. Wainberg. 2002. 
Persistence and fitness of multidrug-resistant human immunodeficiency virus type 
1 acquired in primary infection. J Virol 76:1753-61. 

[9] Bussmann, H., V. Novitsky, W. Wester, T. Peter, K. Masupu, L. Gabaitiri, S. Kim, S. 
Gaseitsiwe, T. Ndungu, R. Marlink, I. Thior, and M. Essex. 2005. HIV-1 subtype C 
drug-resistance background among ARV-naive adults in Botswana. Antivir Chem 
Chemother 16:103-15. 

[10] Carvajal-Rodriguez, A., K. A. Crandall, and D. Posada. 2007. Recombination favors the 
evolution of drug resistance in HIV-1 during antiretroviral therapy. Infect Genet 
Evol 7:476-83. 

[11] Dahab, M., S. Charalambous, R. Hamilton, K. Fielding, K. Kielmann, G. J. Churchyard, 
and A. D. Grant. 2008. "That is why I stopped the ART": patients' & providers' 
perspectives on barriers to and enablers of HIV treatment adherence in a South 
African workplace programme. BMC Public Health 8:63. 

[12] de Oliveira, T., and S. Cassol. 2011. The BioAfrica website, 2011 (accessible at: 
http://www.bioafrica.net). South African National Bioinformatics Institute. 

[13] de Oliveira, T., K. Deforche, S. Cassol, M. Salminen, D. Paraskevis, C. Seebregts, J. 
Snoeck, E. J. van Rensburg, A. M. Wensing, D. A. van de Vijver, C. A. Boucher, R. 
Camacho, and A. M. Vandamme. 2005. An automated genotyping system for 
analysis of HIV-1 and other microbial sequences. Bioinformatics 21:3797-800. 

[14] Department of Health, S. A. 2003. Operational Plan for Comprehensive HIV and Aids 
Care, Management and Treatment for South Africa. In S. A. Department of Health 
(ed.). 

[15] DHHS-Panel. 2011. Guidelines for the use of antiretroviral agents in HIV-1-infected 
adults and adolescents. , p. 1–166. In D. o. H. a. H. Services. (ed.). Panel on 
Antiretroviral Guidelines for Adults and Adolescents. 

[16] Egger, M., B. Hirschel, P. Francioli, P. Sudre, M. Wirz, M. Flepp, M. Rickenbach, R. 
Malinverni, P. Vernazza, and M. Battegay. 1997. Impact of new antiretroviral 

www.intechopen.com



 
HIV Testing 

 

128 

combination therapies in HIV infected patients in Switzerland: prospective 
multicentre study. Swiss HIV Cohort Study. Bmj 315:1194-9. 

[17] Eshleman, S. H., O. Laeyendecker, N. Parkin, W. Huang, C. Chappey, A. C. Paquet, D. 
Serwadda, S. J. Reynolds, N. Kiwanuka, T. C. Quinn, R. Gray, and M. Wawer. 2009. 
Antiretroviral drug susceptibility among drug-naive adults with recent HIV 
infection in Rakai, Uganda. Aids 23:845-52. 

[18] Fairall, L. R., M. O. Bachmann, G. M. Louwagie, C. van Vuuren, P. Chikobvu, D. Steyn, 
G. H. Staniland, V. Timmerman, M. Msimanga, C. J. Seebregts, A. Boulle, R. 
Nhiwatiwa, E. D. Bateman, M. F. Zwarenstein, and R. D. Chapman. 2008. 
Effectiveness of antiretroviral treatment in a South African program: a cohort 
study. Arch Intern Med 168:86-93. 

[19] Frater, A. J., A. Beardall, K. Ariyoshi, D. Churchill, S. Galpin, J. R. Clarke, J. N. Weber, 
and M. O. McClure. 2001. Impact of baseline polymorphisms in RT and protease on 
outcome of highly active antiretroviral therapy in HIV-1-infected African patients. 
Aids 15:1493-502. 

[20] Frater, A. J., H. Brown, A. Oxenius, H. F. Gunthard, B. Hirschel, N. Robinson, A. J. 
Leslie, R. Payne, H. Crawford, A. Prendergast, C. Brander, P. Kiepiela, B. D. 
Walker, P. J. Goulder, A. McLean, and R. E. Phillips. 2007. Effective T-cell responses 
select human immunodeficiency virus mutants and slow disease progression. J 
Virol 81:6742-51. 

[21] Frater, A. J., D. T. Dunn, A. J. Beardall, K. Ariyoshi, J. R. Clarke, M. O. McClure, and J. 
N. Weber. 2002. Comparative response of African HIV-1-infected individuals to 
highly active antiretroviral therapy. Aids 16:1139-46. 

[22] Frater, J. 2002. The impact of HIV-1 subtype on the clinical response on HAART. J HIV 
Ther 7:92-6. 

[23] Gandhi, R. T., A. Wurcel, E. S. Rosenberg, M. N. Johnston, N. Hellmann, M. Bates, M. 
S. Hirsch, and B. D. Walker. 2003. Progressive reversion of human 
immunodeficiency virus type 1 resistance mutations in vivo after transmission of a 
multiply drug-resistant virus. Clin Infect Dis 37:1693-8. 

[24] Garcia-Diaz, A., C. Blok, S. Madge, C. Booth, M. Tyrer, S. Bonora, T. Mahungu, A. 
Owen, M. Johnson, and A. M. Geretti. 2008. Detection of low-frequency K103N 
mutants after unstructured discontinuation of efavirenz in the presence of the 
CYP2B6 516 TT polymorphism. J Antimicrob Chemother 62:1188-90. 

[25] Garcia-Lerma, J. G., H. MacInnes, D. Bennett, H. Weinstock, and W. Heneine. 2004. 
Transmitted human immunodeficiency virus type 1 carrying the D67N or K219Q/E 
mutation evolves rapidly to zidovudine resistance in vitro and shows a high 
replicative fitness in the presence of zidovudine. J Virol 78:7545-52. 

[26] Gifford, R. J., T. de Oliveira, A. Rambaut, O. G. Pybus, D. Dunn, A. M. Vandamme, P. 
Kellam, and D. Pillay. 2007. Phylogenetic surveillance of viral genetic diversity and 
the evolving molecular epidemiology of human immunodeficiency virus type 1. J 
Virol 81:13050-6. 

[27] Gilks, C. F., S. Crowley, R. Ekpini, S. Gove, J. Perriens, Y. Souteyrand, D. Sutherland, 
M. Vitoria, T. Guerma, and K. De Cock. 2006. The WHO public-health approach to 
antiretroviral treatment against HIV in resource-limited settings. Lancet 368:505-10. 

[28] Gordon, M., T. De Oliveira, K. Bishop, H. M. Coovadia, L. Madurai, S. Engelbrecht, E. 
Janse van Rensburg, A. Mosam, A. Smith, and S. Cassol. 2003. Molecular 

www.intechopen.com



 
HIV Drug Resistance in Sub-Saharan Africa – Implications for Testing and Treatment 

 

129 

characteristics of human immunodeficiency virus type 1 subtype C viruses from 
KwaZulu-Natal, South Africa: implications for vaccine and antiretroviral control 
strategies. J Virol 77:2587-99. 

[29] Grossman, Z., V. Istomin, D. Averbuch, M. Lorber, K. Risenberg, I. Levi, M. Chowers, 
M. Burke, N. Bar Yaacov, and J. M. Schapiro. 2004. Genetic variation at NNRTI 
resistance-associated positions in patients infected with HIV-1 subtype C. Aids 
18:909-15. 

[30] Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate 
large phylogenies by maximum likelihood. Systematic Biology:8. 

[31] Hamers, R. L., M. Siwale, C. L. Wallis, M. Labib, R. van Hasselt, W. S. Stevens, R. 
Schuurman, A. M. Wensing, M. Van Vugt, and T. F. Rinke de Wit. 2010. HIV-1 drug 
resistance mutations are present in six percent of persons initiating antiretroviral 
therapy in Lusaka, Zambia. J Acquir Immune Defic Syndr 55:95-101. 

[32] HRDS-Team. 2003. Guidelines for Surveillance of HIV Drug Resistance. Guideline. 
WHO. 

[33] Huang, K. H., D. Goedhals, H. Fryer, C. van Vuuren, A. Katzourakis, T. De Oliveira, H. 
Brown, S. Cassol, C. Seebregts, A. McLean, P. Klenerman, R. Phillips, and J. Frater. 
2009. Prevalence of HIV type-1 drug-associated mutations in pre-therapy patients 
in the Free State, South Africa. Antivir Ther 14:975-84. 

[34] Johnson, V. A., F. Brun-Vezinet, B. Clotet, H. F. Gunthard, D. R. Kuritzkes, D. Pillay, J. 
M. Schapiro, and D. D. Richman. 2008. Update of the Drug Resistance Mutations in 
HIV-1. Top HIV Med 16:138-45. 

[35] Jourdain, G., N. Ngo-Giang-Huong, S. Le Coeur, C. Bowonwatanuwong, P. Kantipong, 
P. Leechanachai, S. Ariyadej, P. Leenasirimakul, S. Hammer, and M. Lallemant. 
2004. Intrapartum exposure to nevirapine and subsequent maternal responses to 
nevirapine-based antiretroviral therapy. N Engl J Med 351:229-40. 

[36] Kamoto, K., and J. Aberle-Grasse. 2008. Surveillance of transmitted HIV drug 
resistance with the World Health Organization threshold survey method in 
Lilongwe, Malawi. Antivir Ther 13 Suppl 2:83-7. 

[37] Kantor, R., D. A. Katzenstein, B. Efron, A. P. Carvalho, B. Wynhoven, P. Cane, J. 
Clarke, S. Sirivichayakul, M. A. Soares, J. Snoeck, C. Pillay, H. Rudich, R. 
Rodrigues, A. Holguin, K. Ariyoshi, M. B. Bouzas, P. Cahn, W. Sugiura, V. Soriano, 
L. F. Brigido, Z. Grossman, L. Morris, A. M. Vandamme, A. Tanuri, P. Phanuphak, 
J. N. Weber, D. Pillay, P. R. Harrigan, R. Camacho, J. M. Schapiro, and R. W. Shafer. 
2005. Impact of HIV-1 subtype and antiretroviral therapy on protease and reverse 
transcriptase genotype: results of a global collaboration. PLoS Med 2:e112. 

[38] Kiepiela, P., A. J. Leslie, I. Honeyborne, D. Ramduth, C. Thobakgale, S. Chetty, P. 
Rathnavalu, C. Moore, K. J. Pfafferott, L. Hilton, P. Zimbwa, S. Moore, T. Allen, C. 
Brander, M. M. Addo, M. Altfeld, I. James, S. Mallal, M. Bunce, L. D. Barber, J. 
Szinger, C. Day, P. Klenerman, J. Mullins, B. Korber, H. M. Coovadia, B. D. Walker, 
and P. J. Goulder. 2004. Dominant influence of HLA-B in mediating the potential 
co-evolution of HIV and HLA. Nature 432:769-75. 

[39] Kuritzkes, D. R. 2007. HIV resistance: frequency, testing, mechanisms. Top HIV Med 
15:150-4. 

[40] Larder, B. A., P. Kellam, and S. D. Kemp. 1993. Convergent combination therapy can 
select viable multidrug-resistant HIV-1 in vitro. Nature 365:451-3. 

www.intechopen.com



 
HIV Testing 

 

130 

[41] Larder, B. A., S. D. Kemp, and P. R. Harrigan. 1995. Potential mechanism for sustained 
antiretroviral efficacy of AZT-3TC combination therapy. Science 269:696-9. 

[42] Lihana, R. W., S. A. Khamadi, K. Lubano, R. Lwembe, M. K. Kiptoo, N. Lagat, J. G. 
Kinyua, F. A. Okoth, E. M. Songok, E. P. Makokha, and H. Ichimura. 2009. HIV 
type 1 subtype diversity and drug resistance among HIV type 1-infected Kenyan 
patients initiating antiretroviral therapy. AIDS Res Hum Retroviruses 25:1211-7. 

[43] Los Alamos National Laboratory, L. 2011. HIV Databases. Los Alamos National 
Security, LLC. 

[44] Mosha, F., W. Urassa, S. Aboud, E. Lyamuya, E. Sandstrom, H. Bredell, and C. 
Williamson. 2011. Prevalence of genotypic resistance to antiretroviral drugs in 
treatment-naive youths infected with diverse HIV type 1 subtypes and recombinant 
forms in Dar es Salaam, Tanzania. AIDS Res Hum Retroviruses 27:377-82. 

[45] Novak, R. M., L. Chen, R. D. MacArthur, J. D. Baxter, K. Huppler Hullsiek, G. Peng, Y. 
Xiang, C. Henely, B. Schmetter, J. Uy, M. van den Berg-Wolf, and M. Kozal. 2005. 
Prevalence of antiretroviral drug resistance mutations in chronically HIV-infected, 
treatment-naive patients: implications for routine resistance screening before 
initiation of antiretroviral therapy. Clin Infect Dis 40:468-74. 

[46] Palella, F. J., Jr., K. M. Delaney, A. C. Moorman, M. O. Loveless, J. Fuhrer, G. A. Satten, 
D. J. Aschman, and S. D. Holmberg. 1998. Declining morbidity and mortality 
among patients with advanced human immunodeficiency virus infection. HIV 
Outpatient Study Investigators. N Engl J Med 338:853-60. 

[47] Pieniazek, D., M. Rayfield, D. J. Hu, J. Nkengasong, S. Z. Wiktor, R. Downing, B. 
Biryahwaho, T. Mastro, A. Tanuri, V. Soriano, R. Lal, and T. Dondero. 2000. 
Protease sequences from HIV-1 group M subtypes A-H reveal distinct amino acid 
mutation patterns associated with protease resistance in protease inhibitor-naive 
individuals worldwide. HIV Variant Working Group. Aids 14:1489-95. 

[48] Pillay, C., H. Bredell, J. McIntyre, G. Gray, and L. Morris. 2002. HIV-1 subtype C 
reverse transcriptase sequences from drug-naive pregnant women in South Africa. 
AIDS Res Hum Retroviruses 18:605-10. 

[49] Pillay, D. 2007. The priorities for antiviral drug resistance surveillance and research. J 
Antimicrob Chemother 60 Suppl 1:i57-8. 

[50] Prado, J. G., T. Wrin, J. Beauchaine, L. Ruiz, C. J. Petropoulos, S. D. Frost, B. Clotet, R. 
T. D'Aquila, and J. Martinez-Picado. 2002. Amprenavir-resistant HIV-1 exhibits 
lopinavir cross-resistance and reduced replication capacity. AIDS 16:1009-17. 

[51] Richman, D. D., S. C. Morton, T. Wrin, N. Hellmann, S. Berry, M. F. Shapiro, and S. A. 
Bozzette. 2004. The prevalence of antiretroviral drug resistance in the United States. 
Aids 18:1393-401. 

[52] Robertson, D. L., J. P. Anderson, J. A. Bradac, J. K. Carr, B. Foley, R. K. Funkhouser, F. 
Gao, B. H. Hahn, M. L. Kalish, C. Kuiken, G. H. Learn, T. Leitner, F. McCutchan, S. 
Osmanov, M. Peeters, D. Pieniazek, M. Salminen, P. M. Sharp, S. Wolinsky, and B. 
Korber. 2000. HIV-1 nomenclature proposal. Science 288:55-6. 

[53] Sanches, M., S. Krauchenco, N. H. Martins, A. Gustchina, A. Wlodawer, and I. 
Polikarpov. 2007. Structural characterization of B and non-B subtypes of HIV-
protease: insights into the natural susceptibility to drug resistance development. J 
Mol Biol 369:1029-40. 

www.intechopen.com



 
HIV Drug Resistance in Sub-Saharan Africa – Implications for Testing and Treatment 

 

131 

[54] SATuRN-Database, S. Y. Rhee, T. Liu, T. de Oliveira, and R. W. Shafer. 2011. SATuRN - 
Southern African Treatment and Resistance Network and the Stanford HIV Drug 
Resistance Database ( http://www.bioafrica.net/saturn/ ). 

[55] Seebregts, C. J., C. van Vuuren, D. Goedhals, T. de Oliveira, P. Drew, P. Makhoahle, R. 
Nhiwatiwa, V. Timmerman, F. L., E. Kotze, R. Chapman, and S. Cassol. 5-8 June 
2007. Baseline Characterization and Resistance Genotyping of HIV from the Public 
Sector Antiretroviral Treatment Program in the Free State Province of South Africa, 
The Third South African AIDS Conference, Durban, South Africa. 

[56] Shafer, R. W., S. Y. Rhee, D. Pillay, V. Miller, P. Sandstrom, J. M. Schapiro, D. R. 
Kuritzkes, and D. Bennett. 2007. HIV-1 protease and reverse transcriptase 
mutations for drug resistance surveillance. Aids 21:215-23. 

[57] Shekelle, P., M. Maglione, M. B. Geotz, G. Wagner, Z. Wang, L. Hilton, J. Carter, S. 
Chen, C. Tringle, W. Mojica, and S. Newberry. 2007. Antiretroviral (ARV) drug 
resistance in the developing world. Evid Rep Technol Assess (Full Rep):1-74. 

[58] Smith, D. M., J. K. Wong, H. Shao, G. K. Hightower, S. H. Mai, J. M. Moreno, C. C. 
Ignacio, S. D. Frost, D. D. Richman, and S. J. Little. 2007. Long-term persistence of 
transmitted HIV drug resistance in male genital tract secretions: implications for 
secondary transmission. J Infect Dis 196:356-60. 

[59] Sow, P. S., L. F. Otieno, E. Bissagnene, C. Kityo, R. Bennink, P. Clevenbergh, F. W. Wit, 
E. Waalberg, T. F. Rinke de Wit, and J. M. Lange. 2007. Implementation of an 
antiretroviral access program for HIV-1-infected individuals in resource-limited 
settings: clinical results from 4 African countries. J Acquir Immune Defic Syndr 
44:262-7. 

[60] Stanford University, U. 2011. HIV Drug Resistance Database  
(http://hivdb.stanford.edu/). Stanford University. 

[61] Tshabalala, M., J. Manasa, L. S. Zijenah, S. Rusakaniko, G. Kadzirange, M. Mucheche, 
S. Kassaye, E. Johnston, and D. A. Katzenstein. 2011. Surveillance of transmitted 
antiretroviral drug resistance among HIV-1 infected women attending antenatal 
clinics in Chitungwiza, Zimbabwe. PLoS ONE 6:e21241. 

[62] UNAIDS/WHO 2011, posting date. Report on the Global HIV/AIDS Epidemic. 
www.unaids.org. UNAIDS. [Online.] 

[63] Uy, J., C. Armon, K. Buchacz, J. Brooks, and H. Investigators. Jul 2007. Initiation of 
HAART at CD4 cell counts >= 350 cells/mm3 is associated with a lower prevalence 
of antiretroviral resistance mutations at virologic failure, 4th IAS Conference on 
HIV Pathogenesis, Treatment and Prevention. Kaiser Network, Sydney, Australia. 

[64] van der Ryst, E., M. Kotze, G. Joubert, M. Steyn, H. Pieters, M. van der Westhuizen, M. 
van Staden, and C. Venter. 1998. Correlation among total lymphocyte count, 
absolute CD4+ count, and CD4+ percentage in a group of HIV-1-infected South 
African patients. J Acquir Immune Defic Syndr Hum Retrovirol 19:238-44. 

[65] Velazquez-Campoy, A., M. J. Todd, S. Vega, and E. Freire. 2001. Catalytic efficiency 
and vitality of HIV-1 proteases from African viral subtypes. Proc Natl Acad Sci U S 
A 98:6062-7. 

[66] Venter, W. D. F. 2005. A critical evaluation of the South African state antiretroviral 
programme. The Southern African Journal of HIV Medicine. 

[67] Wikimedia-Commons, R.-a. a. 2010, posting date. South Africa  

www.intechopen.com



 
HIV Testing 

 

132 

(http://en.wikipedia.org/wiki/South_Africa). Multi-license with GFDL and 
Creative Commons CC-BY-SA-2.5 and older versions (2.0 and 1.0). [Online.] 

[68] Yarchoan, R., R. W. Klecker, K. J. Weinhold, P. D. Markham, H. K. Lyerly, D. T. 
Durack, E. Gelmann, S. N. Lehrman, R. M. Blum, D. W. Barry, and et al. 1986. 
Administration of 3'-azido-3'-deoxythymidine, an inhibitor of HTLV-III/LAV 
replication, to patients with AIDS or AIDS-related complex. Lancet 1:575-80. 

 

www.intechopen.com



HIV Testing

Edited by Prof. Ricardo Diaz

ISBN 978-953-307-871-7

Hard cover, 132 pages

Publisher InTech

Published online 18, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

It can be said that now is the best time for everyone infected to become aware of their own HIV status. The

state of the art in HIV management progressively reveals that antiretroviral treatment can prevent

transmission, as well as chronic damage in the human body, if started early. Unfortunately, antiretrovirals are

not widely available in many places, especially in developing countries. In these parts of the world, diagnosis of

HIV infection must be kept in the agenda as a priority, in order to understand specific details of local epidemics

and as an effort to interrupt the chain of HIV transmission.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kuan-Hsiang Gary Huang, Helen Fryer, Dominique Goedhals, Cloete van Vuuren and John Frater (2012). HIV

Drug Resistance in Sub-Saharan Africa – Implications for Testing and Treatment, HIV Testing, Prof. Ricardo

Diaz (Ed.), ISBN: 978-953-307-871-7, InTech, Available from: http://www.intechopen.com/books/hiv-

testing/hiv-drug-resistance-in-sub-saharan-africa-implications-for-testing-and-treatment



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


