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1. Introduction 

Transgenic technology has been applied mainly in the study of gene structure and function 
in model organisms and gene therapy for human diseases. Transgenic technology has 
potential for rapidly improving quantity and quality of agricultural products, compared to 
traditional selection and breeding methods in domestic animals that are time consuming 
when attempting to alter the desired allele frequency for specific traits. Additionally, 
transgenic animals can be used as biomedical research models or directly for human health, 
by producing recombinant pharmaceutical proteins and/or organs for xenotransplantation. 
Due to the advantage of bypassing the need of embryonic stem (ES) cells that are difficult to 
isolate in domestic animal species, cell-based method of transgenesis followed by somatic 
cell nuclear transfer (SCNT) is currently widely applied. However, due to the limitations in 
making genetic modifications and SCNT, producing genetically modified animals is still 
inefficient. Fortunately, the current advancement of new techniques and methods in both 
gene targeting (Urnov et al., 2010) and abilities to produce pluripotent stem cells (Voigt and 
Serikawa, 2009) holds great promises for this field.  
In this chapter, we will review the recent progress and technical route of the cell-based 
method of transgenesis by SCNT and discuss the newly emerging methods to enrich the 
gene targeting frequency of somatic cells. We will also discuss factors to improve the 
efficiency of SCNT and our future perspectives on the promises of this field. 

2. Recent progress and applications of transgenic domestic animals 

2.1 Methods of creating genetically modified animals 
2.1.1 Pronuclear microinjection /viral-mediated /sperm-mediated /ICSI 
(Intractyoplasmic sperm injection)- mediated gene transfer 
Numerous methods have been successfully used to introduce genetic modifications and 
produce transgenic animals, including pronuclear microinjection of foreign DNA into zygotes 
(Hammer et al., 1985; Pursel and Rexroad, 1993), viral-mediated gene transfer (Chan et al., 
1998; Cabot et al., 2001; Whitelaw et al., 2008), sperm-mediated gene transfer (Castro et al., 
1991; Chang et al., 2002; Lavitrano et al., 2002 and 2006) and intracytoplasmic injection (ICSI) of 
a sperm head carrying foreign DNA (Perry et al., 1999; Osada et al., 2005; Moisvadi et al., 2009; 
García-Vázquez et al., 2010). Despite the proven successful application of these techniques, 
some problems, such as inefficiency and mosaicism (transgene not going into the germline) 
(Table 1) remain to be solved and limit the practical application of these methods. 
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Method Advantages Disadvantages 

Pronuclear microinjection The first method successfully used for 

different animal species. 

Low embryo survival, low 

and random integration, 

multiple copies, high cost in

domestic animals. 

Viral-mediated DNA transfer Infect both dividing and non-dividing 

cells, less damage by co-culture with 

zona-free zygotes or injection into the 

perivitelline space compared with 

pronuclear microinjection, high 

integration. 

Limited DNA capacity, 

random integration. 

Sperm-mediated DNA transfer Relatively high efficiency as compared to 

pronuclear injection, low cost, ease of 

use. 

No control of integration site. 

Intracytoplasmic sperm injection 

-mediated DNA transfer 

Allow introduction of very large DNA 

transgenes, relatively high efficiency as 

compared to pronuclear injection. 

No control of integration site. 
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Gene targeting by homologous recombination often offers more precise and site-specific 

integration, sometimes at single nucleotide level. This is particularly important since single 

nucleotide changes can be a common culprit for some of the human diseases, which require 

more precise manipulation to build biomedical models using transgenic animals. 

2.1.2 Cell-based transgenesis via SCNT 

The first live animal by SCNT was produced in 1997, “Dolly” (Wilmut et al., 1997), 

demonstrating the ability of a differentiated somatic cell to produce live offspring following 

nuclear remodeling and reprogramming by an oocyte. Then, the birth of “Polly” in the same 

year (Schnieke et al., 1997), the first transgenic sheep produced by transfer of nuclei from 

transfected fetal fibroblasts, demonstrated a route to create transgenic cloned animals. This 

cell-based method of transgenesis by SCNT can bypass the absence of ES cells, offers the 

reliability of germline transmission by avoiding mosaic transgene integration, and provides 

the only currently used strategy to knock out a gene in domestic animals (reviewed by Ross 

et al., 2009a). Currently, SCNT using transgenic cells cultured in vitro as a source of donor 

nuclei is becoming the most utilized technique to produce the transgenic domestic animals. 

However, while the advantages and success of this strategy are well documented (Table 2), 

the procedure is still labor-intensive and inefficient. Recently, some new techniques have 

been reported that may have the potential to improve the production efficiency of cloned 

transgenic domestic animals by increasing the efficiency of gene targeting or nuclear 

remodeling and reprogramming following SCNT. 

2.2 Utilization of transgenic models 

The potential for transgenic domestic animals to benefit humans is not only in agricultural 

production by providing more and better agricultural products for human consumption but 

also in biomedicine, such as for producing recombinant pharmaceutical proteins, making 

organs suitable for xenotransplantation and establishing human disease models. An 

overview list of the transgenic domestic animals produced via SCNT is given in Table 2 to 

demonstrate their applications. 

2.2.1 Improved animal agriculture production 

Increased utilization of domestic animals and their products requires breeding and selection 

strategies for specific traits. However, classical breeding and genetic selection have some 

disadvantages, such as the inability to control gene frequency of desired genotypes coupled 

with long generation intervals. The application of transgenic technology offers a powerful 

tool to rapidly improve agriculture production by developing domestic animals that express 

desired traits via genome manipulation strategies. Previous studies have demonstrated the 

practical application of transgenesis to improve numerous agricultural traits of domestic 

animals, including increased growth rate (Pursel et al., 1999), increased meat quality (Saeki 

et al., 2004), enhanced disease resistance (Lo et al., 1991; Clements et al., 1994), and better 

milk production and composition (Wheeler et al., 2001; Reh et al., 2004). Nevertheless, 

utilization of the cell-based method of transgenesis via SCNT has also been successfully 

used to alter characteristics of pork quality (Lai et al., 2006), enhance disease resistance 

(Denning et al., 2001a; Wall et al., 2005; Richt et al., 2007) and improve milk composition 

(Brophy et al., 2003). 
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Table 2. Overview on successful transgenic domestic animals via SCNT. 
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2.2.2 Xenotransplantation  

Due to the potential application of human organ transplantation and the growing gap 

between the demand and availability of organs for transplantation, the pig has long been 

considered as an alternative source to provide organs for humans. In contrast to organs 

from other animal species, domestic pig organs share many similarities to those of 

humans including size, anatomy and physiology. However, despite these similarities, 

significant immunological barriers exist impeding the success of pig to human 

xenotransplantation (Cooper et al., 2008), in addition to concerns regarding the 

transmission of pig specific viruses to the human genome (Magre et al., 2003). The 

immunological obstacles of xenotransplantation include rapid hyperacute rejection 

(HAR), delayed acute vascular rejection (AVR), and the cellular immune response that 

occurs within weeks (Auchincloss and Sachs, 1998). Two transgenic strategies have been 

successfully applied to overcome HAR. One is to express human proteins that inhibit the 

complement cascade in transgenic pigs (Fodor et al., 1994; Cozzi and White, 1995; 

Diamond et al., 2001).  For example, transgenic expression of human complement 

inhibitor CD59, CD46 and DAF (decay-accelerating factor, also named as CD55) in pigs 

prolongs survival rates from minutes to days and months following heart and kidney 

transplantation into baboons or monkeys by blocking the damage from HAR (Diamond et 

al., 1996 and 2001; Byrne et al., 1997; Zaidi et al., 1998; Bhatti et al., 1998; Chen et al., 1999). 

The second strategy to avoid HAR is to knockout the genes that induce the production of 

antigenic structures (ǂ-gal-epitopes) on the surface of pig organs (Lai et al., 2002a; Dai et 

al., 2002; Phelps et al., 2003; Yamada et al., 2005). ǂ-gal-epitopes on endothelial cells of 

porcine transplanted organs can be recognized by human xenoreactive natural antibodies 

(XNA) and activate the HAR cascade (Galili, 1993). Genetically engineering of pigs to 

lower or inhibit the expression level of XNA targets is thought to be a promise way to 

eliminate the HAR. Following the successful production of ǂ-1,3-galactosyltransferase 

knockout pigs (Lai et al., 2002a; Dai et al., 2002; Phelps et al., 2003; Yamada et al., 2005), 

van Poll et al. (2010) recently showed that exposure of isolated xenogeneic pig liver 

sinusoidal endothelial cells (LSECs) from ǂ-1,3-galactosyltransferase-deficient pigs to 

human and baboon serum reduces IgM binding and complement activation levels as 

compared to wild-type pig LSECs. However, Diswall et al. (2010) found a different 

reactivity pattern of baboon and human serum to pig glycolipid antigens isolated from ǂ-

1,3-galactosyltransferase knockout and wild-type pig hearts and kidneys, suggesting that 

non-human primates may not be an ideal model for modeling pig to human 

xenotransplantation. If HAR is controlled, the next obstacle to xenotransplantation is AVR 

which is due to the loss of porcine thrombomodulin in xenograft rejection or the inability 

of porcine thrombomodulin to activate human protein C. One of genetic engineering 

strategies to overcome AVR is to express human thrombomodulin in pigs. Petersen et al. 

(2006) showed the production of transgenic cloned pigs using CD59/DAF and human 

thrombomodulin triple transgenic adult donor cells.  

With regard to risks associated with xenotransplantation, previous studies have shown 

that the risk of cross-transmission of pig endogenous retrovirus (PERV) to human patients 

or nonhuman primate recipients is low (Paradis et al., 1999; Switzer et al., 2001), although 

it has been found PERV can infect human cells in culture (Patience et al., 1997). Never-the-

less, some investigators have been working to further reduce the possibility by creating 
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pigs with suppressed expression of endogenous retroviruses (Ramsoondar et al., 2009). In 

addition to PERV, herpesvirus is another concern regarding biosafety in 

xenotransplantation (Mueller et al., 2011). Overall, dramatically increased knowledge will 

facilitate the clinical application of transgenic strategies of pig to human 

xenotransplantation.   

2.2.3 Production of recombinant proteins 

The mammary gland and blood of transgenic domestic animals, including sheep, goats, 

cows, pigs and rabbits, have been successfully used as bioreactor to produce numerous 

recombinant proteins, such as antibodies (Grosse-Hovest et al., 2004), growth factors 

(Schnieke et al., 1997) and pharmaceuticals (reviewed by Melo et al., 2007). Using various 

mammary gland-specific or blood-specific promoters to drive the expression of specific 

protein-coding genes, transgenic domestic animals can continuously produce the 

recombinant proteins in large quantities in their milk or blood. Recombinant proteins, 

including human von Willebrand factor (Lee et al., 2009), human erythropoietin (Park et al., 

2006), human insulin-like growth factor-I (Monaco et al., 2005), human factor VIII 

(Paleyanda et al., 1997) and bovine alpha-lactalbumin (Bleck et al., 1998) have been 

produced in the milk of transgenic pigs. Transgenic goats, capable of synthesizing human 

butyrylcholinesterase (Huang et al., 2007) and human longer acting tissue plasminogen 

activator (Ebert et al., 1991) in their milk have also been created.  Human salmon calcitonin 

in milk of transgenic rabbits (McKee et al., 1998); human factor IX (Schnieke et al., 1997) and 

alpha-1-antitrypsin (Wright et al., 1991) in milk of transgenic sheep;  and human lactoferrin 

(van Berkel et al., 2002; Yang et al., 2008), human growth hormone (Salamone et al., 2006) 

and human ǂ-lactalbumin (Wang et al., 2008) in milk of transgenic cows are all additional 

examples of using transgenic domestic animals and the mammary gland as a bioreactor for 

production of recombinant proteins.  Table 2 summarizes some recombinant proteins 

expressed in milk or blood of cloned transgenic domestic animals. One of the major 

advantages of using domestic animals for this purpose is that the produced protein is 

thought to undergo more accurate posttranslational processing to ensure their biological 

activity. While this application of transgenic technology to produce recombinant protein 

products is rapidly developing, research efforts exploring the efficacy of these products are 

still needed.    

2.2.4 Biomedical models of human diseases 

Another important application of genetically modified domestic animals is to create better 

and novel biomedical models of human diseases. Pig models of different human diseases, 

including retinitis pigmentosa, cardiovascular disease, diabetes, Huntington’s disease, cystic 

fibrosis and Alzheimer’s disease have been well discussed by Prather et al. (2008). Many of 

these biomedical models created by SCNT are listed in Table 2. 

3. Technical aspects of cell-based transgenesis by SCNT 

The general procedure of cell-based transgenesis via SCNT is to construct a DNA vector, 

deliver the vector into cultured somatic cells, select transgenic cell lines, utilize SCNT and 

transfer cloned embryo into surrogates (Figure 1).  
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Fig. 1. Technical diagram of cell-based transgenesis followed by SCNT in pigs. 

3.1 Vector construction 

Currently, the whole genome sequence of several domestic animals, including cattle, 

poultry, cats, dogs, horses, pigs and rabbits is available via the ensembl database 

(www.ensembl.org), providing researchers useful sequence information for a large number 

of genes useful in designing DNA constructs for transgenic genome modification. Precise 

design and construction of DNA constructs is critical efficiently creating transgenic domestic 

animals. Transgenesis involves adding a gene to a host genome (transgenic), physically 

deleting a specific region of the host genome making a non-functional gene (knock-out), 

replacing an active gene by another active gene (knock-in), or introducing a point mutation 

(point mutation knock-in). Depending on the objective of the transgenic modification, 

different strategies of vector design need to be carefully considered to ensure success. 

3.1.1 Transgenic vs. Knock-out vs. Knock-in 

The design strategy for the transgenic vector, which is based on random integration, 

essentially includes a gene ORF (open reading frame), a promoter element and the 

appropriate RNA processing component(s). The promoter is a major transcriptional 

regulatory element that normally includes regulatory elements and the transcriptional start 

site typically located in 5′ sequence of the gene.  Utilization of specific promoter with a 

transgene enables tissue or cell specific expression and can significantly impact the 

expression efficiency of the transgene. Carefully choosing a well-characterized promoter 
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will enable the precise control of transgene expression. The gene ORF is usually derived 

from the cDNA for the protein of interest, which includes translational start (ATG) and stop 

codons. Examination of extra sequence, if any, existing between the transcriptional start site 

and the translational start codon should be performed to ensure the absent of potential 

regulatory elements. Furthermore, consideration should be given to remove non-coding 

sequence of genes to avoid the introduction of the regulatory elements although this may 

also have consequences impacting mRNA stability. Reliable transgene expression is not only 

regulated by the sequence in the expression vector, but also by intrinsic factors in the host 

genome following transgene integration. Several additional points should be considered in 

transgenic vector construction. (i) How GC rich regulatory sequence are, especially CpG 

islands in the promoters can have significant implications for the expression of the 

transgene as methylation of CpG islands can inactivate the promoter and silence the 

transgene expression. (ii) Inclusion of specific elements that favor mRNA maturation and 

transfer to the cytoplasm, as it has been demonstrated that the inclusion of an intron in the 

transgenic vector can increase the transgene expression level (Choi et al., 1991; Duncker et 

al., 1997). These genomic regions may have critical sequence motifs affecting mRNA 

splicing and accumulation. (iii) Removal of unnecessary plasmid DNA sequence used in 

recombinant DNA cloning. In mice, it was found that plasmid sequence existing in the 

transgenic vector can decrease transgene expression (Kjer-Nielsen et al., 1992). Furthermore, 

the local chromatin status of the transgenic locus can also affect expression meaning that the 

integration of the same transgene in different genomic locations can have profound effects 

on the expression level of the transgene. 

The primary strategy for targeted genome modifications, including knock-out and knock-in 

applications, is to use homologous recombination to introduce precise, site-specific genome 

alterations. In knock-out targeting vector systems, the primary approach is to delete DNA 

fragments (entire gene or partial deletion) important for the gene function by homologous 

recombination. Compared with the knock-out targeting vector, in addition to the targeting 

arms and positive selection cassette, the knock-in targeting vector includes the extra 

replacement cassette that will replace the target gene with a new gene (a set of genes or a 

point mutation). Targeting vectors relying on homologous recombination contain 5′ and 3′ 
homologous arms flanking a positive selection cassette (Rogers et al., 2008; Sun et al., 2008). 

Several principles should be considered when designing a successful targeting vector. (i) 

Avoid excessive repetitive DNA. In mouse ES cells it has been demonstrated that the 

excessive repetitive DNA within the targeting vector can significantly reduce targeting 

frequency (Wu et al., 2008). (ii) Use isogenic DNA as the source for producing exogenous 

homologous arms. While gene targeting in domestic species by using non-isogenic DNA as 

a source for targeting arms is possible (McCreath et al., 2000; Denning et al., 2001a and b; 

Kuroiwa et al., 2004; Marques et al., 2006; Richt et al., 2007), the use of isogenic DNA can 

largely improve the efficiency of gene targeting (te Riele et al., 1992). (iii) Increase the length 

of continuous exogenous homologous arms. The efficiency of gene targeting was generally 

found to be increased with the length of targeting arms in mouse ES cells (Hasty et al., 

1991a). (iv) Use multiple cell lines; when targeting the CFTR (cystic fibrosis transmembrane 

conductance receptor) gene in pig fetal fibroblast cell lines, Rogers et al. (2008) demonstrated 

drastic differences in the targeting efficiencies between cell lines derived from littermate pig 

fetuses.   
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3.1.2 Tissue specificity and inducible promoters 

As mentioned, the promoter used in a transgenic DNA construct determines when, where 
and to what extent the transgene is expressed. Hundreds of promoters can be isolated for 
the expression of transgenes, and are generally classified as constitutive promoters, 
tissue/cell-specific or Developmental stage-specific promoters and inducible promoters. 
Constitutive promoters, such as commonly used SV40 (simian virus 40 promoter), CMV 
(cytomegalovirus immediate-early promoter), PGK (mouse phosphoglycerate kinase 1 
promoter) and CAGG (chicken ǃ-Actin promoter coupled with CMV early enhancer) 
promoters for mammalian systems (Qin et al., 2010), can continuously drive transgene 
expression in all tissues and species. Tissue/cell-specific or developmental stage-specific 
promoters can restrict transgene expression to specific tissue(s) or only during certain 
developmental stages. For example, the 5.5-Kb osteopontin (OPN) promoter has been used 
to drive GFP expression in transgenic mice in the same cell-specific and developmental 
stage-specific manner as endogenous OPN expression (Higashibata et al., 2004). Inducible 
promoters, as their name suggests, may be activated by the presence of endogenous or 
exogenous factors. Exogenous factors include chemical compounds such as antibiotics or 
physical factors such as heat and light. For example, TRE promoter (tetracycline-responsive 
element promoter) can be activated by the rtTA (reverse tetracycline-controlled 
transcriptional activator) in a doxycycline-inducible manner (Qin et al., 2010). Antibiotic-
induced promoters are the most commonly used in animal genetic modification because of 
easy manipulation. Inducible promoters provide a very useful tool in animal genetic 
engineering to turn on or off transgene expression in a particular tissue or at certain 
developmental stages.  

3.1.3 Positive/negative selection strategies 

Considering the rarity of a homologous recombination event relative to random integration 
of the targeting vector, an efficient targeting vector design should incorporate a good 
selection strategy, providing a powerful tool to improve the frequency of targeted colonies 
and reduce screening cell lines that result from random integration. Promoter-less gene 
targeting vector, also referred to  the promoter-trapping method, has been used to enrich the 
gene targeting events in somatic cells in pigs and sheep (McCreath et al., 2000; Denning et 
al., 2001a and b). In a promoter-trapping vector, the selectable gene lacks its own promoter 
but it becomes activated from the target gene promoter after correctly integrating into the 
genome. In a fibroblast cell line, promoter-less vectors can enrich targeting frequency 5,000- 
to 10,000-fold (Hanson and Sedivy, 1995). Despite this potential improvement, the major 
limitation of the promoter-trapping method is that it requires active transcription of the 
targeted gene to drive expression of the selectable marker used in the targeting vector. Thus, 
if the target gene is only active in cell types that are difficult to culture, it is nearly 
impossible to target the gene locus using this method. Compared with promoter-trapping 
method, a more widely used strategy includes utilization of both positive and negative 
selection (PNS) (Jin et al., 2003; Kuroiwa et al., 2004; Richt et al., 2007).  A positive selection 
gene (antibiotic-resistant gene such as neo) in the targeting vector is needed to select cells 
with an integrated construct a negative selection gene (cytotoxic genes such as the 
thymidine kinase (TK) gene or the diphtheria toxin A-chain (DT-A) gene) to further select 
against random integration event. The negative selection marker in the targeting vector 
usually is placed downstream of homologous arms and recombined away during the 
process of homologous recombination. The enrichment of the PNS selection is the ratio of 
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clones recovered with the positive selection only (PS) versus the positive and negative dual 
selections. The PNS strategy can be used to target both active and inactive gene loci. It has 
been shown that the targeting efficiency at the COL1A1 locus in fibroblasts by the promoter-
trapping strategy is 15.7-fold higher than by PS only (Marques et al., 2006).   

3.2 Delivery of DNA vector into cultured somatic cells 

Following vector construction and preparation of the DNA construct for delivery into a 
somatic cell, it is important to identify an efficient method of DNA delivery into somatic 
cells as efficiency between delivery methods varies greatly. There are numerous methods to 
introduce an exogenous DNA construct into somatic cells, which can be categorized as 
liposome-mediated DNA transfer (Hyun et al., 2003a; Lee et al., 2005), electroporation (Dai 
et al., 2002; Ramsoondar et al., 2003; Watanabe et al., 2005) and viral-mediated delivery (Lai 
et al., 2002b; Rogers et al., 2008).  

3.2.1 Liposome-mediated DNA delivery 

Liposome-mediated DNA transfer can easily transfect a large number of somatic cells 

without the need of specialized equipment and expertise, compared with other methods. 

Lee et al. (2005) demonstrated the efficiency of gene transfection with a plasmid containing 

the enhanced green fluorescence protein gene into fetal-derived bovine fibroblast cells by 

lipids was significantly higher than that obtained by electroporation.  They also validated 

that transfection efficiency in fetal-derived bovine fibroblast cells, regardless of the delivery 

methods, was significantly higher than delivering DNA into cumulus-derived fibroblast 

cells and adult ear skin-derived fibroblast cells, establishing that both delivery method and 

cell line origin affect the efficiency of gene transfection. Using liposome-mediated DNA 

delivery followed by SCNT, genetically modified pigs (Hyun et al., 2003a) and sheep 

(McCreath et al., 2000) have successfully been created. 

3.2.2 Electroporation 

In contrast to liposome-mediated DNA delivery, electroporation has been widely used for 
the delivery of exogenous DNA into the cytoplasm of somatic cells to generate genetically 
modified cell lines for nuclear transfer. Electroporation has been utilized to successfully 
provide genetically modified donor cells for SCNT to create transgenic cloned domestic 
animals, including cattle (Kuroiwa et al., 2004), goat (Yu et al., 2006; Zhu et al., 2009), pig 
(Dai et al., 2002; Lai et al., 2002a; Ramsoondar et al., 2003; Watanabe et al., 2005) and sheep 
(Denning et al., 2001a). Ross et al. (2010a) indentified optimal electroporation conditions 
(three 1 ms pulses of 300 V to 200 µL of 1x106 cells/mL in the presence of 12.5µg DNA/mL), 
which can consistently deliver DNA vector into the 65-80% surviving porcine fetal 
fibroblasts and have been used to produce healthy, viable transgenic piglets (Ross et al., 
2009b). In adult rhesus macaque fibroblasts, it has been demonstrated that electroporation 
can generate more transfected cells than liposome-mediated methods (Meehan et al., 2008), 
which is consistent with other similar comparisons (Yáñez and Porter, 1999). Of the 
numerous delivery methods, electroporation was demonstrated to have the greatest 
efficiency in generating targeted cell lines via homologous recombination (Vasquez et al., 
2001). Targeting the hypoxanthine guanine phosphoribosyl transferase (HPRT) locus, Mir 
and Piedrahita (2004) demonstrated that the electroporation of a DNA construct with a 
nuclear localization signal into s-phase synchronized cells can increase targeting efficiency 
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sevenfold and decrease random integration events 54-fold in primary fetal bovine 
fibroblasts. Later, Meehan et al. (2008) confirmed this method by successful gene targeting 
of the HPRT locus in adult rhesus macaque fibroblasts achieved by electroporation of S-
phase synchronized cells with a construct containing a SV40 enhancer. 

3.2.3 Viral-mediated delivery  

Because viruses have the natural ability to stably transfect somatic cells with high efficiency, 
utilizing viral particles to delivery exogenous DNA into somatic cells has been widely 
successful.  In contrast to liposome-mediated delivery and electroporation, which deliver 
linear, double-strand DNA into the cytoplasm of somatic cells, viral delivery of exogenous 
DNA delivers a high number of the linear, intact single-strand DNA molecules into the 
nucleus of cells. One report has demonstrated the efficient targeting of the PRNP gene 
encoding the prion protein PrP in bovine fetal fibroblasts by adeno-associated virus (AAV) 
vectors (Hirata et al., 2004). Also, the same transfection method followed by SCNT was used 
to successfully produce the CFTR-null and CFTR-DeltaF508 heterozygous pigs and CFTR-
deficient ferrets (Rogers et al., 2008; Sun et al., 2008). Despite high transfection efficiency and 
production of transgenic cloned animals using viral-mediated delivery method, the need to 
produce high concentrations of virus particles in addition to limitations of the size of DNA 
capable of being delivered via virus limits the application of this method.  

3.3 Selection and characterization of transgenic cell lines 
3.3.1 Selection by marker  

Following DNA construct delivery into somatic cells, transfected cells are cultured 24-48h in 

the absence of selection, followed by selection. Selection agents are chosen according to the 

DNA construct and added in cell-type specific concentrations into the cell culture medium. 

Typically, G418 (Geneticin) is used when the neomycin resistance gene is the positive 

selection marker and gangciclovir when using the TK gene for negative selection. Due to the 

limited lifespan of many of the somatic cell lines that are typically used for nuclear transfer 

and the significant amount of time to produce clonal colonies, it is important to perform the 

genetic screening by PCR or southern blotting as early as possible, prior to cell senescence. 

3.3.2 Genotyping by PCR or southern blotting 

Screening selected colonies by PCR for a gene targeting event typically involves using one 
PCR primer specific to the host genome sequence and the other primer specific to the 
selectable marker between the arms of homology in the targeting vector.  This approach 
provides a simple, rapid and highly sensitive method to identify the gene targeting event in 
the transfected cells (Gómez-Rodríguez et al., 2008). Furthermore, PCR can be performed 
using the lysate from the small amount of cells, and also can be facilitated by pooled 
analysis of multiple cell lines. These types of PCR analysis sometimes require optimization 
as the amplicon is typically several thousand bp depending on the length of the targeting 
arms.  Following the initial screening via PCR, the targeted colonies can be further expanded 
for analysis by southern blotting. A strategy for identifying targeted cells by southern 
blotting should be incorporated in the vector design. Two DNA probes on each side of the 
wild type gene, but outside the targeting vector, are designed to detect a change in fragment 
size resulting from either introduction or elimination. It is necessary to verify that the probes 
for southern blotting work well on wild-type genomic DNA from the somatic cells before 
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the targeting experiment. Also, it is important to perform southern blotting analysis using 
both probes to confirm the double-crossover event since homologous recombination can 
occur at only one end of the targeting vector (Hasty et al., 1991b; Moens et al., 1992). Of the 
methods of screening for gene targeting in somatic cells, southern blotting is considered to 
be the golden approach to identify correctly targeted colonies despite being time-consuming 
and relatively expensive compared to PCR approaches.  

3.3.3 Fluorescence In situ hybridization 

Fluorescence in situ hybridization (FISH) is most commonly used to identify the number of 
integration sites following random integration of a transgene.  FISH has been successfully used 
to detect the number of bacterial artificial chromosome (BAC) sequences integrated and  
chromosomal location(s) in mouse ES cells (Yang and Seed, 2003). Although the chromosomal 
location can be shown directly by FISH, Gómez-Rodríguez et al. (2008) found that screening of 
BAC-based constructs by FISH can be prone to false positives because of small pieces of 
integrated DNA that are below the limits of detection by fluorescent hybridization.   

3.4 SCNT using genetically modified somatic cells  

Once the cell line containing the appropriate genetic modification has been identified, those 
cells can then be used for SCNT as described in Figure 1. SCNT is a process in which the 
nucleus of a somatic cell is transferred into the cytoplasm of an enucleated oocyte. The 
hereby reconstructed SCNT embryos can be activated to initiate development and then are 
transferred into a synchronized surrogate mother immediately or after short-term in vitro 
culture. In addition to the technical factors involved in the SCNT process, the status of the 
donor cells and the quality of unfertilized oocytes are considered to largely affect the overall 
efficiency of the SCNT. This point will be discussed more below.  

4. Improvement of the efficiency of cell-based transgenesis via SCNT 

Since cell-based transgenesis via SCNT relies extensively on both transgenic and SCNT 
techniques, the efficiency could be improved by increasing SCNT efficiency and/or gene 
transfer efficiency. 

4.1 Factors affecting SCNT efficiency 

SCNT is a technique that requires precise skills in micromanipulation. In addition to 

technical skills, numerous other factors also impact SCNT efficiency, including donor cell 

types, quality of the recipient oocytes, cell cycle synchronization of both donor cell and 

recipient cytoplasm, the epigenetic status of the donor cell, method of reconstructed zygote 

activation, epigenetic reprogramming following activation, in vitro culture conditions of 

reconstructed embryos and embryo transfer into surrogate mothers. Here, we will focus on 

the cell cycle synchronization and methods being used to improve nuclear remodeling and 

reprogramming during SCNT. 

4.1.1 Type of cell and synchronization of  cell and recipient oocyte  

Different types of donor cells and the different origins of recipient oocyte have been 
successfully used to produce the cloned animals in domestic species (Table 2). Generally, 
nuclei from less differentiated donor cells demonstrate greater SCNT efficiency than those 
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from differentiated donor cells (Hill et al., 2000; Lee et al., 2003). SCNT embryos created 
from in vivo-derived MII oocytes have better developmental potential than in vitro-
maturated MII oocytes; and in vitro-maturated oocytes from sexually mature animals have 
been demonstrated to more efficiently produce cloned embryos than oocytes in vitro-
matured from prepubertal animals (Lai et al., 2002a; Lee et al., 2003; Hyun et al., 2003b).   
Since the first SCNT animal was produced by transferring the nuclei from quiescent cells 
(G0), synchronization of the donor nuclei into G0/G1 is thought to be crucial to the success 
of SCNT (Wilmut et al., 1997). The G0 cells, with lower transcription activity and different 
chromatin configuration in contrast to the cells at other stages of the cell cycle, may be more 
responsive to factors inside the recipient oocyte cytoplasm that impact the nuclear 
remodeling and reprogramming process following  SCNT. The cell cycle of cultured somatic 
cells can be synchronized by serum starvation, contact inhibition and chemical treatments 
(Cho et al., 2005; Gibbons et al., 2002).  Serum starvation to induce the donor cells into G0 is 
widely used for the production of cloned transgenic animals (Table 2). However, recent 
studies have demonstrated that synchronizing the cell cycle of donor cells by serum 
starvation can cause apoptosis (Dalman et al., 2010) and reduce blastocyst production in 
cattle (Miranda Mdos et al., 2009). The production of the cloned transgenic calves from non-
quiescent fetal fibroblasts demonstrated that the synchronization of the donor cells is not an 
absolute requirement for SCNT success (Cibelli et al., 1998). However, the relative cell cycle 
combination of both donor cells and recipient oocyte, not just donor cells, is thought to be 
important for the maintenance of correct ploidy and the subsequent development of 
reconstructed embryos (reviewed by Campbell, 1999).  

4.1.2 Methods to improve nuclear remodeling and reprogramming 

Following transfer of a donor nucleus into a recipient oocyte cytoplasm and subsequent 
activation, nuclear remodeling events of the chromatin structure, such as changes of DNA 
methylation patterns and histone modifications, result in the reprogramming of gene 
expression to recapitulate developmental patterns observed in a normal fertilized embryo 
(Whitworth and Prather, 2010). In contrast to less differentiated donor nuclei, the relatively 
high level of DNA methylation and low histone acetylation exist in the chromatin of the 
highly differentiated nuclei. These epigenetic modifications are used to maintain the 
temporal and spatial patterns of gene expression specific to the cell type or developmental 
stage. When differentiated nuclei are transferred into the enucleated oocyte cytoplasm, 
correctly establishing normal patterns of zygotic gene expression is crucial to the full term 
development of SCNT animals. However, numerous studies have demonstrated improper 
reprogramming of genes in embryos and tissues of domestic animals following SCNT 
(Wrenzycki et al., 2001; Pfister-Genskow et al., 2005; Aston et al., 2010; Ross et al., 2010b). 
Thus, various strategies are under development to facilitate and promote appropriate 
nuclear reprogramming of the transferred nucleus following nuclear transfer or to pre-
program the genome of the donor nucleus prior to SCNT. Of these strategies, one widely 
used is to treat reconstructed SCNT embryos, but not the donor cells, with histone 
deacetylase inhibitors (HDACi), such as trichostatin A (TSA), 6-(1,3-dioxo-1H, 3H-benzo 
[de] isoquinolin-2-yl)-hexanoic acid hydroxyamide (Scriptaid), sodium butyrate and 
valproic acid. It has been demonstrated that histone deacetylase inhibitor treatment after 
SCNT can improve both in vitro development of SCNT embryos to the blastocyst stage and 
in vivo development to term following embryo transfer (Li et al., 2008; Cervera et al., 2009; 
Zhao et al., 2009a, 2010; Das et al., 2010; Himaki et al., 2010a; Miyoshi et al., 2010).  However, 
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these treatments may be with some level of toxicity, as one group has reported that 
offspring from TSA-treated rabbit embryos did not survive to adulthood (Meng et al., 2009). 
The exact mechanism by which the HDACi treatment significantly improves the cloning 
efficiency remains largely unknown, although it has been shown to increase levels of global 
histone acetylation after HDACi treatment which may subsequently change the structure of 
chromatin and improve nuclear reprogramming (Shi et al., 2008; Iager et al., 2008; Zhao et 
al., 2010; Das et al., 2010).  
Accruing investigations have demonstrated that abnormal DNA methylation patterns 
contribute to the lower developmental competency of SCNT derived embryos (Kang et al., 
2001, 2002; Bourc’his et al., 2001; Santos et al., 2003; Wrenzycki et al., 2006), suggesting the 
inability of oocyte to fully restore the DNA methylation pattern of differentiated donor 
nuclei to that of normal totipotent 1-cell stage embryos. Thus, the second method used to 
assist epigenetic reprogramming is to reduce the DNA methylation level in donor cells or 
reconstructed embryos by treating them with the DNA methyl-transferase inhibitor such as 
5-aza-2′-deoxycytidine (5-aza-dC). Unfortunately, previous studies have demonstrated that 
5-aza-dC treatment of donor cells or cloned embryos does not improve the in vitro and in 
vivo development of SCNT derived embryos (Enright et al., 2005; Tsuji et al., 2009). 
However, combining the treatment of donor cells and embryos with both TSA and 5-aza-dC 
resulted in improved blastocyst development (Ding et al., 2008). Furthermore, an additional 
study has demonstrated enhanced gene targeting frequency in ES cells with low genomic 
methylation levels, suggesting the epigenetic status of targeted loci may influence the 
efficiency of gene targeting by affecting the accessibility for the homologous recombination 
machinery (Domínguez-Bendala and McWhir, 2004).  
An additional strategy to promote developmental reprogramming of cloned embryos is to 
treat them with latrunculin A (LatA), an actin polymerization inhibitor. One group has 
reported that post-activation treatment with LatA is effective to improve in vitro 
developmental capacity of gene-modified cloned miniature pig embryos and embryos 
treated with LatA have the ability to develop into fetuses (Himaki et al., 2010b). Pre-
reprogramming donor nuclei prior to SCNT has also been attempted.  Rathbone et al (2010) 
reported that pretreatment of permeabilized ovine fetal fibroblasts with a cytoplasmic 
extract produced from germinal vesicle (GV) stage Xenopus laevis oocytes improves the live 
birth rate, but not development to blastocyst stage or pregnancy rate following embryo 
transfer. 

4.2 Methods to improve gene transfer efficiency 

Production of transgenic domestic animals has been widely accomplished, however, several 
limitations remain. Typically, plasmid based DNA constructs are limiting in the size of 
exogenous DNA to transfer and creating animals with targeted genetic modifications has 
been significantly more challenging. Thus, it is important to continue development of new 
strategies that broaden application and increase the efficiency of creating targeted genetic 
modifications in domestic animals.  

4.2.1 Artificial chromosomes as DNA transfer vector 

In contrast to plasmid based vector, artificial chromosomes have the capacity to carry 
Megabase-sized pieces of DNA that are maintained as autonomous, replicating 
chromosomes. Artificial chromosome vectors include a centromere, two telomeres and 
origins of replication (Robl et al., 2007). A 10 Mb human artificial chromosome (HAC) vector 
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containing the entire unarranged sequences of the human immunoglobulin heavy and light 
chain loci (1-1.5 Megabase for each locus) have been transferred into bovine fibroblasts 
using a microcell-mediated chromosome transfer approach. Following SCNT using selected 
cells, trans-chromosomal cloned bovine offspring were produced that expressed human 
immunoglobulin proteins in the blood. HAC was retained as an independent chromosome 
with the proportion of cells ranged from 78 to 100% in most animals and HAC retention rate 
has not changed over several years. This system provides a useful tool to produce human 
therapeutic polyclonal antibodies using trans-chromosomal cloned domestic animals 
(Kuroiwa et al., 2002; Robl et al., 2007). In domestic animals, the swine artificial chromosome 
(SAC) (about 310 kb) containing pig centromeric DNA and the neomycin resistance gene 
was constructed and introduced into pig cell lines, and one positive clone was characterized, 
showing the possibility for producing transgenic pigs for xenotransplantation and other 
purposes (Poggiali et al., 2002). 

4.2.2 Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases 
(TALNs)  

The low frequency of homologous recombination hampers rapid progress and wide 
application of gene targeting in domestic animals. The generation of a site-specific double-
stranded DNA break (DSB) within the desired locus can facilitate gene targeting by 
resulting in additions and deletions causing inactivation of gene function. Naturally 
occurring DNA-binding proteins, including zinc finger proteins (ZFPs) and meganucleases, 
have been engineered to bind site-specific DNA sequence. Zinc finger nucleases (ZFNs) 
combine the specific DNA-binding domain (ZFP) with the non-specific cleavage domain of 
the restriction endonuclease FokI and offer powerful tools to create a site-specific DSB to 
facilitate local homologous recombination. The ZFN induced DSB can lead to incorporating 
exogenous DNA in a site specific manner by utilization of a homologous recombination 
targeting vector that overlaps with the DSB region.  Additionally, DSBs repaired by non-
homologous end-joining (NHEJ) can result in loss of a single nucleotide, multiple 
nucleotides, or small regions; all capable of rendering a targeted gene dysfunctional.  For 
increasing the specificity of DNA binding, multiple zinc fingers, each recognizing and 
binding to a 3-bp sequence of DNA nucleotides can be linked in tandem to recognize a 
unique genomic locus. In human somatic cells, custom-designed ZFNs yielded more than 
18% targeting efficiency at the X-linked interleukin-2 receptor gamma gene locus and about 
7% of the cells possessed a bi-allelic gene modification (Urnov et al., 2005). ZFNs can also 
promote the addition of novel DNA sequence into a targeted endogenous locus of human 
cells at a frequency ranging from 5% to 15% depending on the size of extra-chromosomal 
DNA (Moehle et al., 2007). Thus, the efficiency of gene targeting using ZFNs offers the 
possibility of gene therapy for human genetic disease and an approach for improvement of 
genetic engineering in domestic animals. Recently, targeted gene disruption of exogenous 
EGFP gene was achieved in porcine somatic cells using ZFNs (Watanabe et al., 2010) and 
transgenic EGFP knockout pigs were produced using ZFNs followed by SCNT (Whyte et al., 
2011).   
The appropriate design of a site-specific ZFN is critical to successfully introduce ZFN-
mediated genetic modifications. Of the available zinc-finger engineering methods, modular 
assembly is the most easily performed method, but is also associated with high failure rates 
to yield a functional three–zinc finger array for the majority of potentially targetable sites 
(Ramirez et al, 2008). The second method is to combine selection-based methods with ZFNs 
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made using modular assembly. While effective, this method is labor intensive and requires 
additional expertise. The third method, referred to as OPEN (Oligomerized Pool 
ENgineering) is based on bacterial 2-hybrid (B2H) selection and has been proven to be a 
rapid platform for plant and human cells with high targeting efficiency (ranging from 1 to 
50% at different loci) and less toxicity compared to modular assembly system. However, 
utilization of OPEN requires an archive of pre-selected zinc-finger pools and E. coli selection 
(Maeder et al., 2008). Furthermore, due to the challenge of engineering the endonucleases, 
orthophenanthroline (OP, a DNA cleaving molecule) was conjugated with triplex-forming 
oligonucleotides (TFOs, sequence-specific binding capacity) to induce targeted DSBs and 
stimulate mutations at the target site in approximately 10% of treated human cells (Cannata 
et al., 2008). TFO conjugating to OP or other DNA cleaving molecules may provide a useful 
tool to induce targeted gene modification because triplex-forming sequences are frequent in 
mammalian genes. While ZFN-driven gene targeting can be much more efficient than 
homologous recombination-based methods, the design and development of highly specific 
ZFNs remain difficult because of the lack of a simple correspondence between amino acid 
sequence and DNA recognition sequence.  
Recently, several groups have shown that transcription activator–like effectors (TALEs) 
from the bacterial genus Xanthomonas contain a central domain of tandem repeats that can 
be readily engineered to bind virtually any DNA sequence (Boch et al., 2009; Christian et al., 
2010; Morbitzer et al., 2010). The structure of the central protein domain, highly conserved 
in all the known TALEs, includes 17.5 tandem repeats with 34 amino acids per repeat. In 
each repeat monomer of a TALE, only amino acid positions 12 and 13 are hypervariable 
(repeat variable diresidues) (Boch et al., 2011), which can specifically recognize a single 
nucleotide in the target site (Boch et al., 2009; Moscou et al., 2009). Thus, the correspondence 
between each repeat variable diresidues and the binding nucleotide in DNA sequence opens 
the possibility to create novel sequence-specific DNA binding proteins by rearrangement of 
TALE repeats. The engineered hybrid TALE nucleases (TALNs), produced by fusion of the 
FokI endonuclease domain with the high-specificity DNA-binding domains of TALEs, can 
bind and create targeted DSBs in tobacco and yeast (Mahfouz et al., 2011; Li et al., 2011), 
showing the feasibility of engineering TALE-based hybrid nucleases capable of generating 
site-specific genome modification. Recently, Miller et al. (2011) reported the generation of 
discrete edits or small deletions within endogenous human NTF3 and CCR5 genes and the 
insertion of 46-bp sequence at CCR5 locus into the genome of human K562 cells using 
designed TALNs, demonstrating the effective application of TALNs to modify endogenous 
genes.  While the simple DNA-binding code of TALEs enables easier design strategies as 
compared to ZFPs, the repetitive nature of TALE DNA-binding domains results in difficulty 
to efficiently synthesize new TALEs by currently used vector construction methods. To 
overcome this problem, Zhang et al. (2011) recently developed a new strategy to construct 
repeat domains of TALEs by hierarchical ligation. 

4.3 Induced pluripotent stem (iPS) cells 

Owing to the lack of ES cells in domestic animals, it is difficult to replicate strategies 
routinely used to create genetically modified mice. As an alternative, cell-based transgenesis 
via SCNT is currently used to produce genetically modified domestic animals. Recent 
advancements in the ability to generate induced pluripotent stem (iPS) cells may open 
another potential strategy to improve the efficiency of SCNT in domestic animals. Induced 
pluripotent stem cells in mice and human were successfully generated by reprogramming 
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somatic cells with viral delivery of a combination of four defined transcription factors 
including Sox2, Oct4, Klf4, and c-Myc or Sox2, Oct4, Nanog, and Lin28 (Takahashi and 
Yamanaka, 2006; Takahashi et al., 2007; Yu et al., 2007).  The iPS cells are similar to ES cells 
in morphology, biochemistry, gene expression and the ability to differentiate into many cell 
types and self renew (Wernig et al., 2007; Lowry et al., 2008). Furthermore, subsequent 
studies have optimized existing procedures and discovered novel reprogramming protocols 
to generate the iPS cells, including non-integrating viruses (Stadtfeld et al., 2008), non-viral 
vectors (Okita et al., 2008), non-integration episomal vectors (Yu et al., 2009) and RNA-
induced reprogramming (Warren et al., 2010), which greatly decrease the biosafety concerns 
associated with the application of iPS cells. The use of iPS cells can benefit animal 
transgenesis in several aspects. (i) Stable genetic modification in iPS cells may be more 
efficient compared to somatic cells as is the case with ES cells. (ii) Genetically modified iPS 
cells can be used to produce chimeric animals since it has been reported that iPS cells 
produce viable, live-born and fertile mice offspring through tetraploid complementation 
(Zhao et al., 2009b; Boland et al., 2009). (iii) The use of genetically modified iPS cells as 
donors may increase the efficiency of cell-based transgenesis via SCNT owing to the 
pluripotent status of iPS cells. (iv) In contrast to the limited lifespan of somatic cells, true iPS 
cells are immortalized. These advantages, coupled to successful derivation of iPS cells from 
domestic animals (Esteban et al., 2009; Ezashi et al., 2009; Wu et al., 2009) presents a new 
opportunity to produce transgenic animals using iPS cells. 

5. Summary 

While the potential opportunities of transgenic domestic animals in biomedicine and 
agriculture are significant, current procedures, including cell-based transgenesis via SCNT, 
to produce genetically modified domestic animals are not without limitations. The 
combination of new technologies, including ZFNs/TALNs to enhance targeted genome 
modification and iPS cells and other strategies to improve epigenetic remodeling of SCNT 
embryos, represent pathways for improving the success rates of current genome 
manipulation strategies resulting in transgenic domestic animals. These modern approaches 
may have limitations of their own, such as the difficulty and high cost to design, produce 
and validate the target-specific ZFPs, constructing custom-designed TALEs, and 
maintenance of iPS cells.  However, despite these limitations, we expect to see these 
strategies become widely utilized as a result of the potential opportunities that utilization of 
these strategies offers to the field of targeted genome manipulation in domestic animals.  
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