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A Shape-Factor Method for Modeling  

Parallel and Axially-Varying Flow in Tubes and 

Channels of Complex Cross-Section Shapes 

Mario F. Letelier and Juan S. Stockle 
University of Santiago of Chile, 

Chile  

1. Introduction 

In the study of some industrial, biological and natural fluidic systems it is often necessary to 
model fluid flow through tubes, channels or passages of complex geometries. The 
complexity may arise from the cross-sectional shape, or from longitudinal cross-section 
variation, or from both. Typical cases include flow of molten metals or plastics through dies 
and moulds, blood flow, microfluidic applications, and flow in porous media, among many 
others. Characteristics of these flows are laminar state, incompressibility, small rates of flow 
and varied time patterns. One field where pertinent applications are being developed at a 
fast rate is Microfluidics   (Cetin and Li., 2008; Chen et al., 2008; Forte et al., 2008; Gebauer 
and  Bocek, 2002 ; Mathies and Huang, 1992; Sommer et al., 2008; Srivastava et al., 2005; 
Woolley and Mathies, 1994; Yeger et al., 2006.) . In this specific field, present microchannel 
manufacturing techniques produce typically non-circular capillaries (Sommer et al., 2008). 
Also the introduction of electrical or magnetic field induce plastic behavior in the working 
fluid.  
In particular, it is well known that blood is a  biological fluid that behaves as a Newtonian 
fluid in arteries, veins and large capillaries, but becomes non-Newtonian in the smaller 
vessels, where the size of suspended particles is big as compared to the vessel´s diameter 
size (Pedley ,2008). A relevant problem in this field as to the method presented in the next 
sections is the analysis of diseased arteries and veins for quirurgical   interventions. 
Specifically, stenosed arteries are blood conduits of irregular geometry in which cross-
section geometry usually varies along the vessel length.   
The above context implies that it is desirable, particularly for modeling and design 
purposes, to count with analytical techniques that can integrate variables such as the non-
circular cross-section of conduits, axial variation of conduit geometry, and plastic flow in 
some cases.  
In this chapter it is presented a method of analysis that allows to address in a general way 
the problem here outlined. 
The standard analytical technique for tube flow problems is usually the search of specific 
solutions to the momentum equations with associated boundary and initial conditions 
(Batchelor, 2000). Otherwise numerical solutions are developed for some purposes (Xue et 
al.,1995). 
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The main aim of this chapter is, thus, to introduce and explore the potential use of a general 
analytical approach to irregular conduit flow, which makes it possible to determine velocity 
field, rate of flow, shear stress, recirculation regions and plug zones, this last when fluid 
plasticity is operant.  
The method already referred to has been developed by the authors through specific 
applications mainly during the past decade. In this chapter some previous results are 
organized within a common analytical pattern, together with novel material.  
This chapter includes sections for the general model, considering one velocity component and 
more than one velocity component versions, applications related to flow in straight tubes and 
to axially-varying flows, and a closing conclusion section.  

2. The general model  

The concept of “shape factor” herein used is applied to a function ܩ of spatial coordinates, 
such as when  ܩ ൌ Ͳ, a series of closed curves are determined for a range of some 
parameters contained in ܩ. One typical example is 

ܩ  ൌ ͳ െ ଶݎ ൅ ௡ݎߝ sin  (1) ߠ	݊

In this ሺݎ,  is a parameter such as that ߝ ሻ are polar coorfinates, ݊ is an integer number andߠ
for ߝ ൌ Ͳ the curve described by (1) is a circle, and as ߝ increases, the shape evolves to some 
limiting shape, controlled by ݊. In all cases here considered, the maximum allowable value 
of ߝ is less than unity, and beyond that value, the curve is no longer a closed one. If ߝ ൌ  ௖  isߝ
the critical, or maximum, allowable value of ߝ, then for the shape factor described by (1), ߝ௖ 
is found to be  

௖ߝ  ൌ	 ଶ௡ ቀ௡ିଶ௡ ቁሺ௡ିଶሻ/ଶ     (2) 

n ௖ߝ
3 0,385 

4 0,250 

5 0,186 

6 0,148 

A more general shape factor is  

ܩ  ൌ ͳ െ ଶݎ ൅ ௡భݎ	ଵߝ sin ݊ଵ	ߠ ൅ ௡మݎ	ଶߝ sin ݊ଶߠ ൅⋯ (3) 

which leads to more complex shapes.  Some instances of these shapes are shown in Fig. 1. 

For the purposes of this presentation, a general shape factor in polar coordinates can be 
defined as  

ܩ  ൌ ݄଴ሺݎሻ ൅	εଵ݄ଵሺݎ, ሻߠ ൅ εଶ݄ଶ	ሺݎ, ሻߠ ൅ ⋯ (4) 

in which    ݄ଵ	,  ݄ଶ … are boundary perturbation functions. For the case of channel flow, the 

structure of  (4) may be the same, in which polar coordinated may be substituted by 

Cartesian coordinates. The specific characteristics of functions   ݄௜	  are determined by the 

nature of the equations of motion and associated boundary conditions.  

Two relevant cases can be highlighted, namely, flow with one velocity component, and flow 

with more than one velocity component. 
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n = 3 ߝ ൌ Ͳ.ʹͺͲʹͳ 

n = 4 ߝ ൌ Ͳ.ʹͶ͸ͷ  n = 5 ߝ ൌ Ͳ.ͳ͹
 

 
 

 

 

݊ଵ ൌ 3  ߝଵ ൌ Ͳ.ͳͳ͵   ݊ଶ ൌ ͷ ߝଶ ൌ Ͳ.Ͳ͹ͺ 

݊ଵ ൌ ʹ ଵߝ  ൌ Ͳ.ʹͷͺ   ݊ଶ ൌ Ͷ ߝଶ ൌ Ͳ.ͳͶͻ 

݊ଵ ൌ ʹ ଵߝ  ൌ Ͳ.ʹͳ   ݊ଶ ൌ ͵ ଶߝ  ൌ Ͳ.ͳʹ 

Fig. 1. Samples of tubes contours from shape factors (1) and (3). 

2.1 Flow with one velocity component  

These are flows in straight tubes of constant cross-section. In these cases the axial velocity    ݓ can be modeled as  

,ݎሺݓ  ,ߠ ሻݐ ൌ ,ݎሺܩ	 	ሻሾߠ ଴݂ሺݎ, ሻݐ ൅ 	ߝ	 ଵ݂ሺݎ, ,ߠ ሻݐ ൅	ߝଶ ଶ݂ሺݎ, ,ߠ ሻݐ ൅ ⋯ ሿ (5) 

where, for the sake of simplicity, only one boundary perturbation function has been 
considered. Functions ௜݂  are to be determined from the equation of motion in terms of a 
standard regular perturbation scheme around the small parameter ߝ. 

2.2 Flows with more than one velocity component 
These are mainly flows with axial variation of tube or channel geometry. In these cases the 
solution procedure will usually involve the use of a stream function ƹ. In such problems 
both ƹ and the velocity components should be zero at the boundary, a condition that can be 
met by defining   

 Ȳ ൌ ,ݎଶሾ݃଴ሺܩ ሻݐ ൅ ,ݎଵሺ݃	ߝ ,ߠ ሻݐ ൅ ,ݎଶ݃ଶሺߝ ,ߠ ሻݐ ൅ ⋯ ሿ (6) 

where again functions ݃ଵ have to be determined from the equations of motion. The 
definition of Ȳ is given for every  specific application in the corresponding section. 
In the following some specific applications of this method of analysis are presented. 

A 
B

O 
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3. Applications  

3.1 Flow in straight tubes of constant non-circular cross-section 
3.1.1 Newtonian unsteady flow 

For incompressible, developed and isothermal flow, the equation of motion are the standard 
Navier-Stokes and continuity equations. In dimensionless variables they are 

 	Ω డ௪డ௧ െ ቀଵ௥ డ௪డ௥ ൅ డమ௪డ௥మ ൅ ଵ௥మ డమ௪డఏమቁ ൌ ߶ሺݐሻ ൌ െ డ௉డ௭ ሺݐሻ (7) 

 
డ௪డ௭ ൌ Ͳ (8) 

In this 

 Ω ൌ ఘ௔మఓ஋బ (9) 

is the so-called unsteadiness number of the flow, which measures the relative importance of 
a temporal inertia force against a steady viscous force, and where ߩ ൌdensity, ߙ ൌreference 
tube radius, ߤ ൌdynamic viscosity, and  ଴ܶ ൌreference time. 
A convenient solution of (7) (Letelier et al., 1995) for round tubes (ie for ߲/߲ߠ ൌ Ͳሻ can be 
worked out by postulating  

ݓ  ൌ ଶሺͳܣ െ ଶሻݎ ൅ ସሺͳܣ െ ସሻݎ ൅ ଺ሺͳܣ െ ଺ሻݎ ൅ ⋯ (10) 

Where ܣଶ௡ ൌ ݊ ሻ forݐଶ௡ሺܣ ൌ ͳ,ʹ,͵… 	∞. Equation (10) meets the no-slip boundary condition ݓሺͳ, ሻݐ ൌ Ͳ. After substituting (10) in (7) it is found that all functions ܣଶ௡  can be expressed 
in terms of ܣଶ ൌ  so that the axial velocity takes the form  ܣ

଴ݓ  ൌ ሺͳ െ ଶሻݎ ቄܣ ൅ Ωସమ ௗ஺ௗ௧ ሺͳ ൅ ଶሻݎ ൅ Ωమସమ଺మ ௗమ஺ௗ௧మ ሺͳ ൅ ଶݎ ൅ ସሻݎ ൅ ⋯ቅ (11) 

where ܣ is related to the forcing function  ߶ሺݐሻ as follows 

 
థସ ൌ ܣ ൅ Ωଶమ ௗ஺ௗ௧ ൅ Ωమଶమସమ ௗమ஺ௗ௧మ ൅⋯ (12) 

In these expressions ȳ can have any finite positive value. 
According to (5), it is found  

 ଴݂ ൌ ܣ ൅ Ωସమ ௗ஺ௗ௧ ሺͳ ൅ ଶሻݎ ൅ Ωమସమ଺మ ௗమ஺ௗ௧మ ሺͳ ൅ ଶݎ ൅  ସሻ⋯ (13)ݎ

If 

 L ൌ Ω பப୲െ ቀଵ୰ பப୰൅ பమப୰మ ൅ ଵ୰మ பమப஘మቁ (14) 

then, by collecting terms of order ߝ, it follows  

ሼܮ  ଵ݂ሺͳ െ ଶሻሽݎ ൌ ሼܮ ଴݂ݎ௡	݊݅ݏሺ݊ߠሻሽ (15) 

wherefrom 

 ଵ݂ ൌ ∑ሻߠሺ݊݊݅ݏ ቄΩ୧ ୢ౟୅ୢ୲౟ ቅ∝௜ୀଵ ∑ ൛ܥ௜௦ݎ௜ା௦ൟଶ௜ିଶ௦ୀ଴  (16) 
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The constants ܥ௜௦ in these equations are obtained by putting the coefficients of all powers of ݎ, for any ݀௜ݐ݀/ܣ௜ሺ݅ ൌ ͳ,ʹ,… ሻ,equal to zero in (13). The result is  

ଵ଴ܥ  ൌ ௡ିଷଵ଺ሺ௡ାଵሻ (17) 

ଶଶܥ  ൌ ଻ଶ஼భబା௡ିଶ.ହହ଻଺ሺ௡ାଶሻ  (18) 

ଶ଴ܥ  ൌ ሺ௡ାଵሻሺହ଻଺஼మమାଵሻିଵସସ஼భబିଽହ଻଺ሺ௡ାଵሻ  (19) 

and so on. Higher order terms in  ߝ can be obtained in like fashion. 
An example of velocity profiles is shown in figure 1 for ݊ ൌ ͸, ߝ ൌ Ͳ.ͳͶͺ at two semi-axes (cf 
Fig. 1). 
In this case the tube contour is an approximate hexagon and ߶ ൌ  ie a purely oscillatory 	,ݐݏ݋ܿ
flow is described. 
 

 

 

Fig. 2. Instantaneous velocity profiles for ƺ ൌ ͶͲ. (a) along maximum semi-axis OA; (b) 
along minimum semi-axis OB. 

The structure of (4) makes it possible to apply a regular perturbation method of solution 
around the dimensionless parameter ߝ. Since ߝ is bounded for a given value of ݊, and is 
always less than unity, the solution becomes actually an exact one when enough terms are 
obtained.  
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3.1.2 Steady plastic flow 

In this application it is considered steady flow of a Bingham plastic. Here (5) is also 
applicable, and the equation of motion, in terms of shear stress, as defined below, is  

 
ఛೝ೥௥ ൅ డఛೝ೥డ௥ ൅ ଵ௥ డఛഇ೥డఏ ൌ ߶ (20) 

 ߬௥௭ ൌ െቀͳ െ ேூ ቁ డ௪డ௥  (21) 

 ߬ఏ௭ ൌ െቀͳ െ ேூ ቁ ଵ௥ డ௪డఏ  (22) 

and 

ܫ  ൌ ටቀడ௪డ௥ቁଶ ൅ ቀଵ௥ డ௪డఏቁଶ (23) 

is the second invariant of the rate of deformation tensor. The dimensionless yield stress  
is   

 ܰ ൌ ఛబ௔௪బఎబ (24) 

The momentum equation (20) is the standard one for parallel steady flow. Its structure has 
been made consistent with (21-22) and with the standard mathematical ordering of terms. 
The constitutive expressions (21-22) come from the applicable form of the Bingham fluid 
model. Defining 

ݓ  ൌ ଴ݓ ൅ ଵݓ	ߝ ൅⋯ (25) 

then, from (5) it follows  

଴ݓ  ൌ ሺͳെݎଶሻ ଴݂ (26) 

ଵݓ ` ൌ ሺͳ െ 	ଶሻݎ ଵ݂ ൅ 	௡ݎ ଴݂ ݊݅ݏ  (27) ߠ݊

and the following equations are found 

 ߬௥௭ ൌ ܰ െ డ௪బሺ௥ሻడ௥ െ ߝ డ௪భሺ௥,ఏሻడ௥  (28) 

 ߬ఏ௭ ൌ ቆ ேങೢబሺೝሻങೝ െ ͳቇ ఌ௥ డ௪భሺ௥,ఏሻడఏ  (29) 

 െ ଵ௥ డ௪బሺ௥ሻడ௥ െ డమ௪బሺ௥ሻడ௥మ ൌ ߶ െ ே௥  (30) 

 
ଵ௥ డ௪భሺ௥,ఏሻడ௥ ൅ డమ௪భሺ௥,ఏሻడ௥మ ൅ ቆͳ െ ேങೢబሺೝሻങೝ ቇ ଵ௥మ డమ௪భሺ௥,ఏሻడఏమ ൌ Ͳ (31) 

Equations (28-29) are the result of substituting (25) in (23) and of ordering terms in powers 
of ߝ through a linearization procedure. From (30-31) it is found  

ሻݎ଴ሺݓ  ൌ ܰሺݎ െ ͳሻ ൅ థସ ሺͳ െ  ଶሻ (32)ݎ
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,ݎଵሺݓ  ሻߠ ൌ ଴ሺͳܣ ൅ ݊ଶ∑ ሺିଵሻ೔థ೔ሺ௡మିሺ௜ିଵሻమሻ!ଶ೔ே೔ሺ௜మሻ! ௜ሻ௡௜ୀଵݎ  ሻ (33)ߠሺ݊	ݏ݋ܿ

where  

଴ܣ  ൌ ଶ೙ሾ௡మ!ሿே೙ሺିଵሻ೙థ೙ൣ௡మ൫௡మିଵ ൯ሺ௡మିଶమሻ…ሺ௡మିሺ௡ିଵሻమሻ൧ (34) 

Functions ଴݂, ݂,  and following can be found equating terms in orders of ߝ in (5), ie 

 ଴݂ ൌ ௪బଵି௥మ (35) 

 ଵ݂ ൌ ௪భି	௥೙	௙బ	 ୱ୧୬௡	ఏଵି௥మ  (36) 

In this both functions are continuous for ݎ ൌ ͳ,  and so can be built higher order functions. 
Isovel plots and plug zones for selected instances of flow are shown in figure 3. A plug zone 
is such that inside its limiting boundary the shear stress is less than the yield stress.   
 

                   

(a)                                                                   (b) 

Fig. 3. Isovels from (25) for (a) ݊ ൌ ͵, ߝ ൌ Ͳ.͵, ܰ ൌ Ͳ.ʹ   and   ߶ ൌ Ͷ; (b) ݊ ൌ Ͷ, ߝ ൌ Ͳ.ʹͶ;		ܰ ൌ Ͳ.͹ and ߶ ൌ Ͷ. 
According to fig.3, in both cases therein depicted, the plug zone appears at the center and is 
essentially circular.  

3.2 Axially-varying flows in conduits  
3.2.1 Newtonian flow in round tubes of arbitrarily axially-varying cross-section   

A definition diagram is shown in fig.4 
 

 

Fig. 4. Definitions diagram for flow in round tubes of axially-varying cross-section. 

ݑ  ݖ ݓ

 ݎ

ͳ ݎ௪
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For this flow, the continuity and Navier-Stokes equations are  

 
ଵ௥ డሺ௥௨ሻడ௥ ൅ డ௪డ௭ ൌ Ͳ (37) 

ݑ  డ௨డ௥ ൅ݓ డ௨డ௭ ൌ െ ଶோ௘ డ௉డ௥ ൅ ଶோ௘ ቀ డడ௥ ቀଵ௥ డሺ௥௨ሻడ௥ ቁ ൅ డమ௨డ௭మቁ (38) 

ݑ  డ௪డ௥ ൅ݓ డ௪డ௭ ൌ െ ଶோ௘ డ௉డ௭ ൅ ଶோ௘ ቀଵ௥ డడ௥ ቀݎ డ௪డ௥ቁ ൅ డమ௪డ௭మቁ (39) 

where ܴ݁ is the Reynolds number. The velocity field is found after defining  

ݑ  ൌ ,ݎଵሺݑߝ  ሻ… (40)ݖ

ݓ  ൌ ሻݎ଴ሺݓ ൅ ,ݎଵሺݓߝ  ሻ… (41)ݖ

 ܲ ൌ ଴ܲሺݖሻ ൅ ߝ ଵܲሺݎ,  ሻ… (42)ݖ

 Ȳ ൌ Ȳ଴ሺݎሻ ൅ ,ݎȲଵሺߝ  ሻ… (43)ݖ

The velocity is next expressed in terms of de stream function as follows 

ݓ  ൌ ଵ௥ డ௪డ௥  (44) 

ݑ  ൌ െ ଵ௥ డஏడ௭  (45) 

The wall radius is a function of the axial coordinate, that is here defined as   

௪ݎ  ൌ ͳ ൅  ሻ (46)ݖሺܨሻݎሺ݄ߝ

in which ߝ is a small parameter. This algebraic structure allows to introduce a very large 
range of axial variation since h and F are arbitrary functions. Three cases will be considered. 
In the first case 

 ݄ ൌ ;ݎ ሻݖሺܨ															 ൌ sin߱(47) ݖ 

where is ߱ is an arbitrary frequency. 
The stream function is modelled from (6) and (46), ie 

 Ȳ ൌ ሺݎ௪ െ ሻݎሻଶሾ݃଴ሺݎ ൅ ሻݎሼ݃ଵଵሺߝ sinሺ߱ݖሻ ൅ ݃ଵଶሺݎሻ cosሺ߱ݖሻሽ൅Ͳሺߝଶሻ ൅ ⋯ሿ (48) 

wherefrom  

 ƹ଴ ൌ ሺͳ െ ሻݎሻଶ݃଴ሺݎ ൌ థଵ଺ ሺݎଶ െ ͳሻଶ (49) 

and thus  

 ݃଴ሺݎሻ ൌ థଵ଺ (50) 

The first order stream funtion is  

 ƹଵ ൌ ሺͳ െ ሻݖሺ߱݊݅ݏሻݎሻଶ൫݃ଵଵሺݎ ൅ ݃ଶଶሺݎሻܿݏ݋ሺ߱ݖሻ൯ ൅ ʹሺͳ െ ሻݖሺ߱݊݅ݏ	ݎ	ሻݎ థଵ଺ (51) 
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which is next written as  

 	ƹଵ ൌ Hଵሺrሻ ∗ sinሺɘzሻ ൅ Hଶሺrሻ ∗ cosሺɘzሻ (52) 

and where H1  and H2  are  unknowns that are modelled as finite polynominals of even order 
terms, ie 

ሻݎଵሺܪ  ൌ ܽ଴ ൅ ܽଶݎଶ ൅ ܽସݎସ ൅ ܽ଺ݎ଺ ൅ ଼ݎ଼ܽ ൅ ܽଵ଴ݎଵ଴ ൅ ܽଵଶݎଵଶ ൅ ܽଵସݎଵସ ൅ ܽଵ଺ݎଵ଺ (53) 

ሻݎଶሺܪ  ൌ ܾ଴ ൅ ܾଶݎଶ ൅ ܾସݎସ ൅ ܾ଺ݎ଺ ൅ ଼ݎ଼ܾ ൅ ܾଵ଴ݎଵ଴ ൅ ܾଵଶݎଵଶ ൅ ܾଵସݎଵସ ൅ ܾଵ଺ݎଵ଺ (54) 

The coefficients ܽ௜ and ௝ܾ are determined by substituting (53) and (54) in the equation for Ȳ 

found from (38-39) once (44-45) are substituted in there. Examples of typical streamline and 
isovelocity patterns are shown in figures 5 and 6. Streamlines are plotted from (48) and 
isovelocity are curves where ݑଶ ൅   .ଶ is constantݒ
 

 

Fig. 5. Streamlines for Re=100 and ε =0.1.  

 

 

Fig. 6. Isovelocity lines for  Re=1  and  ε =0.3 from (48) and (44-45). 

A second kind of contour is defined through the expression 

ሻݖሺܨ  ൌ െͲ.Ͳʹͺݖସ ൅ Ͳ.Ͷ͵Ͷݖଷ െ ʹ.ͳͷ͸ݖଶ ൅ ͵.Ͷ͵(55) ݖ 

r

z

r 

z 
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which was transformed in a Fourier series in the range Ͳ ൑ ݖ ൑ ͵ in terms of sine and cosine 
functions that allow a modeling similar, but more complex, to that already described. 
Examples of typical streamline and isovelocity patterns are shown in figure 7 and 8. 
 

 

Fig. 7. Streamlines for Re=100 and ε =0.2. 
 

 

Fig. 8. Isovelocity lines for  Re=1 and ε =0.3. 

In similar fashion, the a third contour presented is defined by 

ሻݖሺܨ  ൌ െͲ.Ͳ͵ݖସ െ Ͳ.ͲͶͷݖଷ ൅ Ͳ.ͶͲͷݖଶ ൅ Ͳ.Ͷʹ(56) ݖ 

For this case, typical isovelocity and isobaric curves are shown in figures 9 and 10. 
 

 

Fig. 9. Isovelocity lines for  Re=1 and ε =0.3. 

r

z

r 

z

r

z
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Fig. 10. Isobaric lines for Re=100 and ε =0.2  from (42). 

3.2.2 Steady plastic flow in undulating channels  

A definition diagram for this flow is shown in fig. 11. 

 

 

Fig. 11. Definition diagram for flow in undulating channels.  

The Bingham constitutive equations are for this case are 

 ߬௫௫ ൌ െቀͳ െ ேூ ቁ ʹ ቀడ௨డ௫ቁ (57) 

 ߬௬௬ ൌ െቀͳ െ ேூ ቁ ʹ ቀడ௩డ௬ቁ (58) 

 ߬௬௫ ൌ ߬௫௬ ൌ െቀͳ െ ேூ ቁ ቀడ௨డ௬ ൅ డ௩డ௫ቁ (59) 

and the corresponding continuity and momentum equations are  

 
డ௨డ௫ ൅ డ௩డ௬ ൌ Ͳ (60) 

௪ͳݕ
ݕ

ݔ
 ݒ

 ݑ

r 

z
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ݑ  డ௨డ௫ ൅ ݒ డ௨డ௬ ൌ െ ଵோ௘ ቀడఛೣೣడ௫ ൅ డఛೣ೤డ௬ ቁ െ ଵோ௘ డ௉డ௫ (61) 

ݑ  డ௩డ௫ ൅ ݒ డ௩డ௬ ൌ െ ଵோ௘ ቀడఛೣ೤డ௫ ൅ డఛ೤೤డ௬ ቁ െ ଵோ௘ డ௉డ௬ (62) 

Next, the velocity, pressure and stream function are expanded as  

,ݔሺݑ  ሻݕ ൌ ሻݕ଴ሺݑ ൅ ,ݔଵሺݑߝ  ሻ… (63)ݕ

,ݔሺݒ  ሻݕ ൌ ,ݔଵሺݒߝ  ሻ… (64)ݕ

 ܲሺݔ, ሻݕ ൌ ଴ܲሺݔሻ ൅ ߝ ଵܲሺݔ,  ሻ… (65)ݕ

 ߰ሺݔ, ሻݕ ൌ ߰଴ሺݕሻ ൅ ,ݔଵሺ߰ߝ  ሻ… (66)ݕ

,ݔሺݑ  ሻݕ ൌ డడ௬ɗሺݔ,  ሻ (67)ݕ

,ݔሺݒ  ሻݕ ൌ െ డడ௫ɗሺݔ,  ሻ (68)ݕ

 ɗ ൌ ሺݕ െ ሻݕ௪ሻሺ݃଴ሺݕ ൅ ,ݔଵሺ݃ߝ ሻݕ ൅ ,ݔଶ݃ଶሺߝ ሻݕ ൅ ⋯ ሻ (69) 

where the wall is described by 

௪ݕ  ൌ ͳ ൅  ሻ (70)ݔሺ߱݊݅ݏሻݕሺܨߝ

Following a procedure similar to the one presented in section 3.2.1, it is found  

 ɗ଴ ൌ ሺݕ െ ͳሻଶ݃଴ሺݕሻ (71) 

 ݃଴ሺݕሻ ൌ െ ଵ଺ ሺʹݕ ൅ Ͷ െ ͵ܰሻ (72) 

 ɗଵ ൌ ሺͳ െ ሻݔሺ߱݊݅ݏሻݕሻଶ൫݃ଵሺݕ ൅ ݃ଶሺݕሻܿݏ݋ሺ߱ݔሻ൯ ൅ ʹሺͳ െ ሻݖሺ߱݊݅ݏሻݕሺܨሻݕ ଴݂ሺݕሻ (73) ܨሺݕሻ is defined as ܨ ൌ  and the first order stream function is modeled as  ݕ

 ɗଵ ൌ ሻݔሺ߱݊݅ݏሻݕሺܣ ൅  ሻ (74)ݔሺ߱ݏ݋ሻܿݕሺܤ

The unknown functions ܣሺݕሻ and ܤሺݕሻ are modeled as finite polynomial, ie 

ሻݕሺܣ  ൌ ܽ଴ ൅ ܽଵݕ ൅ ܽଶݕଶ ൅ ܽଷݕଷ ൅ ܽସݕସ ൅ ܽହݕହ ൅ ܽ଺ݕ଺ ൅ ܽ଻ݕ଻ ൅ ଼ݕ଼ܽ ൅ ܽଽݕଽ (75) 

ሻݕሺܤ  ൌ ܾ଴ ൅ ܾଵݕ ൅ ܾଶݕଶ ൅ ܾଷݕଷ ൅ ܾସݕସ ൅ ܾହݕହ ൅ ܾ଺ݕ଺ ൅ ܾ଻ݕ଻ ൅ ଼ݕ଼ܾ ൅ ܾଽݕଽ (76) 

The coefficients ܽ௜ and  ௝ܾ  are determined by substituting (75) and (76) in the equations for ߰ found from the momentum equations. In the following figures are presented plots of 

streamlines (equation (69)), isovelocity lines ( ݑଶ ൅ ଶݒ ൌ .ݐݏ݊݋ܿ ሻ, plug zones and axial  

velocity profiles  

In figure 13 the plug zones are shown as shaded areas, which were determined by putting 

the condition that the shear stress should be equal or less the yield stress. The quasi-plug 

zones are zones where only  ߬௥௭ ൑ Ͳ. 
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Fig. 12. Streamlines for  Re=100, N=0.3 and ε = 0.3. 

 

 

Fig. 13.Plug and quasi-plug zones for  Re=1, N=02 and ε=0.2. 

 

 
Fig. 14. Streamlines for  Re=20, N=0.1 and ε=0.2. 
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Fig. 15. Isovelocity lines for Re=1, N=0.1 and ε=0.2. 

 

 

Fig. 16. Isovelocity lines for Re=20, N=0.2 and ε=0.3. 

 

 

Fig. 17. Isovelocity lines for Re=100, N=0.1 and  ε=0.3. 
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Fig. 18. Axial velocity profiles at  x=0.75 for ߝ ൌ Ͳ.ʹ and  Re =100.  

 

 

Fig. 19. Axial velocity profiles at x=2.25 for ߝ ൌ Ͳ.ʹ and  Re =100. 

 

 

Fig. 20. Axial velocity profiles at  x=0.75 for ߝ ൌ Ͳ.͵ and  Re =100.  
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Fig. 21. Axial velocity profiles at x=2.25 for ߝ ൌ Ͳ.͵ and  Re =100. 

4. Conclusion  

The method here described can lead to very accurate solutions for the velocity field and 

related variables such as shear stress, rate of flow and pressure in a great variety of flows in 

tubes and channels. Symbolic software presently available, such Maple and MathCAD make 

it possible to obtain and compute higher order solutions that, in some cases, may have 

complex algebraic structures. The fact that for all cases here considered, ie cases where ݊ ൒͵, ߝ is much less than unity (cf table 2), leads to a regular perturbation scheme that in most 

cases requires terms up to second order to achieve enough accuracy. The cases when ݊ ൌ ͳ 

and ݊ ൌ ʹ deserve special mention. For ݊ ൌ ͳ the shape factor (1) describes an excentric 

circle, and for ݊ ൌ ʹ an ellipse. In this last instance ߝ is not bounded and can take any finite 

value, which implies that the perturbation scheme would break down if ߝ ൒ ͳ. So that, in 

this particular case, the method is limited to elliptical cross-sections of axes ratio close to 

unity. The method can be expanded to many more complex flow geometries. This 

possibility is implicit in the more general shape factor (3), which makes it necessary to 

develop a compound perturbation scheme, in terms of more than one perturbation 

parameter. The structure of the shape factor (1) determines that the analysis, especially for ݊ ൒ ͵, is more sensible to the perturbation parameter for ݎ ൒ ͳ, ie close to the wall conduit. 

This requires a careful analysis of series convergency which should define the order of the 

higher order term considered. On the other hand, in the case of flow in straight tubes, in all 

cases studied, in a considerable region around the conduit axis, say for ݎ ൑ Ͳ.Ͷ, the flow 

variables are independent of the boundary geometry and take the values of the 

corresponding flow in round tubes.  
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