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1. Introduction 

Historically, the word diabetes was coined from the Greek word meaning a siphon by the 2nd 
century Greek physician, Aretus the Cappadocian. He used the word to connote a condition 
of passing water (urine) like a siphon. Later the Latin description mellitus meaning sweetened 
or honey-like was added. Put together, the term diabetes mellitus was literarily used to denote 
a disease condition which was associated with the persistent passage of sweetened urine (Krall 
& Braser, 1999). 
In 1999, the World Health Organization described diabetes mellitus as a metabolic disorder of 
multiple aetiology characterized by chronic hyperglycaemia (the fasting blood glucose level 
equal or above 200 mg/dl taken at least twice, on different occasions) with disturbances of 
carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin 
action, or both. In other words, diabetes mellitus is a chronic disease with insidious onset in 
which the fasting blood glucose is persistently raised above the normal range values, the 
normal range being between 60 to 120 mg/dl of blood [Krall & Braser, 1999]. It occurs either 
because of a lack of insulin (the hormone responsible for glucose metabolism), or due to the 
presence of certain factors opposing the action of insulin on the body tissues that are involved 
in glucose metabolism, particularly, the liver and the skeletal muscles.  
The consequence of insufficient insulin action is hyperglycaemia which may be associated 
with many associated metabolic abnormalities notably the development of hyperketonaemia 
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resulting from disordered protein metabolism, and derangements in fatty acid and lipids 
metabolism. If the fasting blood glucose lies between 100 to 130 mg/dl, it is referred to as 
Prediabetes which is associated with an increased tendency or potential of developing frank 
diabetes. A fasting blood glucose of 140 mg/dl or higher is consistent with either type of 
diabetes mellitus, particularly, when accompanied by classic symptoms of diabetes 
[Diabetes Control and Complication Trial Research Group, 1997]. 

2. Diabetes mechanisms 

Defects in glucose metabolizing machinery (such as defective insulin secretion, insulin 
action due to de-expression of insulin receptors or insensitivity of expressed insulin 
receptors and glucose transporters, decreased peripheral glucose utilization and defective 
glucose metabolizing enzymes, etc.) and consistent efforts of the physiological system to 
correct the imbalance in glucose metabolism or maintain glucose homeostasis (such as 
increased insulin secretion, lipolysis, gluconeogenesis, glycogenolysis, etc.) place an over 
exertion on the endocrine system, resulting in hyperglycaemia. The persistent chronic 
exposure of pancreatic ǃ-cells to the supraphysiological glucose concentrations 
(hyperglycaemia) results in non-physiological and potentially irreversible ǃ-cell damage, a 
term known as glucose toxicity which is a gradual, time-related onset of irreversible lesion 
to pancreatic ǃ-cellular components of insulin content and secretion.  
Multiple biochemical pathways and cellular mechanisms for glucose toxicity have been 
identified and these include glucose autoxidation (resulting from oxidative stress in the 
presence of chronic hyperglycaemia), protein kinase C (PKC) activation, increased flux 
through the hexosamine biosynthesis pathway (HBP), formation of advanced glycation end-
products (AGEs), altered polyol pathway flux and altered gene expression. However, all 
these pathways share in common the formation of highly reactive oxygen intermediates 
(ROIs) or reactive oxygen species (ROS) which in excess amount and on prolonged exposure 
induce chronic oxidative stress on the pancreatic ǃ-cell population, which in turn causes 
defective insulin gene expression and insulin secretion as well as increase pancreatic ǃ-cell 
death.  
Hyperglycaemia leads to the production of ROS which modulates various biological 
functions by stimulating transduction signals, some of which are involved in the 
pathogenesis of diabetes mellitus. Thus, redox-sensitive signalling pathways have been 
shown to play a pivotal role in the development, progression, and damaging effect on ǃ-
cells population within the pancreatic islet of Langerhans. In the pancreatic tissues, as 
hyperglycaemia worsens, the redox-sensitive signalling pathways mediating insulin 
synthesis, storage and release from the pancreatic ǃ-cells becomes compromised 
progressively. In addition, the oxidative stress induced by chronic hyperglycaemia 
promotes pancreatic ǃ-cells apoptosis which ultimately resulting in an overt reduction in the 
insulin secreting pancreatic ǃ-cells population.  The hallmarks of these molecular events are 
pancreatic ǃ-cells failure and hypoinsulinaemia, which constitute the major pathogenic 
factors in type 1 diabetes mellitus.  
Similarly, chronic hyperglycaemia-induced oxidative stress (the presence of an excess 
amount of reactive oxygen intermediates, due to an imbalance between their formation and 
degradation as a result of chronic hyperglycaemia) has been considered a proximate cause 
and common pathogenic factor for tissue/systemic complications of diabetes such as 
endothelial cells (micro- and macro-angiopathies), nerve cells (neuropathy), proximal renal 
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epithelial cell (nephropathy), pancreatic ǃ-cells (pancreatic ǃ-cell failure) through lipid 
peroxidation and glycation mechanisms in these organs. Hyperglycaemia has been shown to 
result in glycation (a non-enzymatic conjugation of glucose to proteins leading to the 
formation of advanced glycation (glycosylation) end-products (AGEs) and tissue damage.  
Increased glycation and build-up of tissue AGEs have been implicated in the aetiology of 
diabetes mellitus, its complications and progression because they alter glucose metabolizing 
enzyme activity, decrease ligand binding, modify protein half-life and alter 
immunogenicity.  
One mechanism by which the effects of glucose toxicity result in chronic hyperglycaemia are 

thought to be mediated is oxidative stress [Baynes, 1991; Evans et al., 2002], and 

hyperglycaemia is known to be one of the main causes of oxidative stress in type 2 diabetes 

mellitus [Bonnefont-Rousselot, 2002; Robertson et al., 2003]. Oxidative stress is a state of 

imbalance between free radical generation and mopping up.  

Oxidative stress is known to play a pivotal role in the pathogenesis of insulin resistance 

which is itself is thought to be mediated via its contribution to glucose toxicity, particularly, 

in insulin target tissues including the pancreatic ǃ-cells [Gleason et al., 2000; Fantus, 2004]. 

Tissues such as the mesangial cells (in the kidneys), retinal cells and pancreatic islets are 

least endowed with intrinsic antioxidant enzyme expression, including superoxidases-1 and -

2, catalase and glutathione peroxidase [Hayden & Tyagi, 2002; Robertson, 2004]. Prolonged 

exposure of pancreatic ǃ-cell to hyperglycaemia, as in diabetes, results in decreased 

expression of the antioxidant gene Ǆ-glutamylcysteine ligase (Ǆ-GCL) and down-regulation of 

the rate-limiting enzyme for glutathione synthesis [Robertson, 2004]. The Ǆ-GCL catalyses 

the rate-limiting step in the synthesis of Ǆ-glutamyl cysteine from cysteine, which forms the 

substrate for the second enzyme regulating glutathione synthesis [Yoshida et al., 1995; 

Tanaka et al., 2002]. Reduced gluthathione plasma and tissue concentrations, as marked by 

elevated levels of ceruloplasmin, promote free radical generation, production of advanced 

glycation products (AGEs) and acute flunctuations in glucose concentrations.  

In addition, oxidative stress promotes the onset and development of diabetes mellitus by 

directly decreasing insulin sensitivity and causing direct cytotoxicity to the pancreatic 

insulin-producing ǃ-cells [Maiese et al., 2007].  The generated ROS penetrates through the 

cell membranes and reacts with the membrane phospholipids through the process of lipid 

peroxidation as well as reacts with the mitochondrial DNA to distrupt the mitochondrial 

respiratory machinery (mitochondrial electron transport) which is regulated by NADPH 

ubiquinone oxidoreductase and ubiquinone-cytochrome c reductase systems [Maiese et al., 

2007].  

Oxidative stress is known to depress the mitochondrial oxidoreductase and citrate synthase 
activities resulting in significant reductions in mitochondrial oxidative and phosphorylation 
activities as well as reduces the levels of mitochondrial proteins and mitochondrial DNA in 
adipocytes, particularly in type 2 diabetes mellitus (Petersen et al., 2003). Oxidative stress 
has been shown to trigger the opening of the mitochondrial membrane permeability 
transition pore which results in a significant depletion of mitochondrial NAD+ stores and 
subsequently apoptotic cell injury (Maiese et al., 2007). In the pancreatic tissues, these 
cellular events result in depletion of the ǃ-cells population, insulin deficiency while in the 
skeletal muscle, it manifests as insulin resistance.   
Oxidative stress is also known to modify a number of cellular signalling pathways that can 
results in insulin resistance. For example, a significant increase in muscle protein carbonyl 
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content (often used as a reliable biological marker of oxidative stress) and elevated levels of 
malondialdehyde and 4-hydrononenal (as reliable indicators of lipid peroxidation) have 
been implicated in the aetiology of insulin resistance diabetes mellitus [Haber et al., 2003]. 

3. Glucose-insulin regulatory system modeling and simulation of OGTT blood 
glucose concentration dynamics to obtain indices for diabetes risk and 
detection  

This section deals with the bioengineering modelling of the glucose-insulin regulatory 
system and the OGTT blood glucose dynamics data, for more reliable detection of diabetes 
as well as designation of risk to diabetes.   
The conventional way of diagnosing diabetes is based on designation of specific values of 
fasting plasma glucose equal or greater than 126 mg/dl (7.0 mmol/l),  and (ii) 2-hour 
plasma glucose concentration equal or greater than 200 mg/dl (11.1 mmol/l) during OGTT.  
Instead of this rigid approach, we are proposing that for more reliable monitoring and 
diagnosis of diabetes, it is more relevant to mathematically characterise the trend of blood 
glucose concentration rise and decline after an oral intake of 75 g glucose load in OGTT.   
Hence, we provide the bioengineering analysis of the Glucose-insulin regulatory system and 
glucose response data, leading to the formulation of a novel nondimensional diabetes index 
for diagnosis of diabetic patients as well as of those who are at risk of becoming diabetic.    
So, in this section, we present the Glucose-Insulin Regulatory System (GIRS) modeling in 
the form of governing differential equations, and converge to the equation representing 
blood glucose response to glucose infusion rate. This equation forms the basis of modeling 
of the Oral Glucose Tolerance Test (OGTT).  We then demonstrate how this OGTT model 
equation’s solutions can simulate the OGTT data, to evaluate the model parameters 
distinguishing diabetes subjects from normal subjects.  The climax to this section is the 
formulation of the Non-dimensional Diabetes Index (DBI), involving combination of the 
model parameters into just “one number” by which we can reliably detect diabetes. In fact, 
by determining the range of values of DBI for a big patient population, we can even detect 
“patients at risk of being diabetic”.   

3.1 Differential equation model of the glucose-insulin system 
With reference to the Blood Glucose-Insulin Control System (depicted in Fig. 1), the 
corresponding first-order differential equations of the insulin and glucose regulatory sub- 
systems are given by equations (1) and (2) [Dittakavi et al., 2001]. 

 x’ = p - ax - ǃy  (1) 

 yxqy δγ −−=′  (2)                 

where x’ and y’ denote the first time-derivatives of x and y, x: insulin output, y: glucose 
output, p: insulin input, q: glucose input, for unit blood-glucose compartment volume (V). In 
these equations, the glucose-insulin model system parameters (regulatory coefficients) are 
α , ǃ, γ , ǅ. 
These coefficients, when multiplied by the blood-glucose compartment volume V (which is 
proportional to the body mass) denote, respectively,  

• the sensitivity of insulinase activity to elevated insulin concentration ( Vα ),  

www.intechopen.com



 
Diabetes Mechanisms, Detection and Complications Monitoring 

 

423 

• the sensitivity of pancreatic insulin output to elevated glucose concentration (ǃV),  
• the combined sensitivity of liver glycogen storage and tissue glucose utilization to 

elevated insulin concentration ( Vγ ), and  

• the combined sensitivity of liver glycogen storage and tissue glucose utilisation to 
elevated glucose concentration ( Vδ ).  

 

 

Fig. 1. Physiological model of the Blood Glucose Control system 
(represented by equations 1 and 2). 

From equations (1) and (2), the differential equation model in glucose concentration (y) for 
insulin infusion rate (p = 0) and glucose in flow rate (q), is obtained as 

 qqyyy αβγαδβα +′=+++′+′′ )()(  (3) 

where y’ and y’’ denote first and second time derivatives of y. 
The transfer-function corresponding to Eqn. (3) is obtained by taking the Laplace transforms 
on both sides (assuming the initial conditions to be zero). Thereby, we obtain (for glucose 
response) 

 ( ) ( )
( )

( ) ( )
( )

α

α α2

s +
Y s / Q s = = G s

s + s + ǅ + ǅ+ ǃǄ
 (4)   

3.2 Model analysis to simulate Oral Glucose Tolerance Test (OGTT) 
The OGTT model-simulation response curve is considered to be the result of giving an 
impulse glucose dose (of 4 gm of glucose/liter of blood-pool volume) to the 
combined system consisting of GI tract and blood glucose concentration (BGCS).  
Now, we can put down the transfer-function (TF) of the gastro-intestinal (GI) tract to be 1/ 
(s + ǂ), because the intestinal glucose-concentration variation is an exponential decay, and 
the exponential parameter value is close to that of the parameter ǂ. When we multiply this 
GI tract TF [1/(s + ǂ)] by the TF of the blood-pool glucose-metabolism given by Eqn.  (4), 
and put Q(S) = ‘G’ gm of glucose per litre of blood-pool volume per hour, we get 

 ( ) ( ) ( ){ }Y s G /= 2s + s + ǅ + ǅ+ ǃǄα α  (5) 
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The corresponding governing differential equation is now: 

 y"+ 2Ay'+ωn2y    =  Gδ(t) 
 or 

                            y"  + λTdy'+ λy= Gδ(t)                                              (6)                          

wherein ωn (= λ1/2)  is the natural frequency  of the system, A is the attenuation or damping  

constant  of the  system,  λ = 2 A /Td =  ωn2,  and  ω = (ωn2 - A2) 1/2  is  the angular frequency  

of damped  oscillation of the  system. 

The solution of Eq. (6), for an under-damped response (corresponding to that of normal 

subjects, represented by the lower curve in Fig. 2) is given by 

           y(t) =  (G /ω)e-At  sin ωt, (7) 

where in ω (or ωd) = 
1

2 2 2
n( A )ω − .                                                  

The solution for over-damped response (corresponding to that of diabetic subjects, 
represented by the upper curve in Fig 2) is given by: 

 y(t) = (G/ω)e-At sinh ωt (8)                          

where in ω (or ωd) = 
1

2 2 2
n(A -ω )  

The solution for a critically-damped response (in which A = ω n), which applies to subjects at 

risk of becoming diabetic (whose blood glucose response curve would lie between the two 
curves of normal and diabetic subjects), is given by: 

 ( ) -Aty t  = G t e ;  (9) 

for 2 2
nω = A = λ,  and derivative-time period d 2

n

2A 2A
T = =

λ ω
                                                                     

These solutions are employed to simulate the clinical data, and to therefore evaluate the 

model-system parameters A and ω (or λ and Td), to not only differentially-diagnose diabetes 

subjects as well as sbut also to characterize resistance-to-insulin. 

Now, we can employ equations (7) and (8) to simulate the OGTT data shown in Fig. 2 to 

obtain the value of parameters:  (i) λ = 2.6hr−2, Td = 1.08 hr, for the normal subject, and (ii) 

λ =0.27hr−2 and Td = 6.08 hr, for the diabetic subject [Ghista, 2004]. 

We now formulate the Non-dimensional Diabetes Index (DBI), as 

 
2 2

d 2
n

2A 2A
DBI = AT = =

λ ω
 (10)                          

The value of DBI for the normal subject is 1.3, whereas for the diabetic subject it is 4.9. We 

have further found (in our initial clinical tests) that DBI for normal subjects is less than 

1.6, while the DBI for diabetic patient is greater than 4.5. Hence a DBI value of 2-4 can 

suggest that the subject is at risk of becoming diabetic. This is a testimony of how well we 

have simulated the OGTT by our BME model and employed this DBI to diagnose 

diabetes.  
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Fig. 2. OGTT Response Curve [Ghista, 2004], showing the glucose concentration responses 
of normal and diabetic subject.  

4. Biomedical signal processing and image processing techniques for 
diabetes analysis 

This section presents different signal and image processing methods that are used to 
evaluate the effect of diabetes on different organs. 

4.1 Analysis of the heart rate variability signal 
Heart rate variability (HRV) decreases in patients with diabetes [Acharya et al., 2006; 
Acharya et al., 2011b; Faust et al., 2011]. This variability can be analyzed in the time domain, 
frequency domain, and by using non-linear methods.  Fig. 3 shows typical HRV signals of 
normal and diabetes subjects. Visually, it is difficult to notice the variability in these two 
signals. Hence, analysis in time domain and frequency domain with the use of non-linear 
methods is necessary. These methods are explained in this section. 
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Fig. 3. Typical heart rate signals; (a) normal (b) diabetes. 

4.1.1 Time domain analysis 
The time-and frequency-domain measures of HRV were analyzed by the Task Force of the 
European Society of Cardiology [Task Force, 1996].  Several time domain parameters are 
calculated from the original R-R interval:  mean R-R interval, standard deviation of the NN 
intervals (SDNN), standard deviation of differences between adjacent RR (NN) intervals 
(SDSD), Standard Error, or Standard Error of the Mean (SENN), which is an estimate of the 
standard deviation of the sampling distribution of means based on the data,  number of 
successive difference of intervals which differ by more than 50 msec expressed as a 
percentage of the total number of ECG cycles analyzed (pNN50%).  
The HRV triangular index (TINN) is the integral of the density distribution (i.e. the number 
of all NN intervals) divided by the maximum of the density distribution. Thus, six standard 
measures namely Mean RR, SDNN, SENN, SDSD, pNN50% and TINN were studied.    

4.1.2 Frequency domain analysis 
Spectral analysis of HRV signal results in three main components: high frequency (HF) 
component, low frequency (LF) component, and very low frequency (VLF) component [Task 
Force, 1996]. The influence of the vagus nerve in modulating the sinoatrial node is indicated 
by the HF component (0.15Hz -40Hz) of the spectrum. The LF component (0.04Hz-.155 Hz) 
indicates the sympathetic effects on the heart. The VLF component (0.003Hz -.04 Hz) 
explains many details of the heart, chemoreceptors, thermareceptors, and renin-angiotensin 
system [Task Force, 1996; Kamath et al., 1987; Van der Akker et al., 1983].  
Fig. 4 shows a typical power spectral density (PSD) distribution of the heart rate signals 
obtained from a normal subject (Fig. 4-a) and a diabetes patient (Fig. 4-b).  The beat to beat 
variation is greater in the normal heart rate signal compared to the diabetes heart rate signal. 
Hence, the power spectral density is more predominant in HF in the normal subject[Faust et 
al., 2011]. 
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          (a)                                                                            (b) 

Fig. 4. Typical power spectral density of heart rate signal (a) normal (b) diabetes subject. The 
PSD of normal heart rate signal has LF, HF components. The diabetic heart rate signal, 
however, does not have HF components due to lower variability in the heart rate signal 
[Acharya et al., 2011b]. 

4.1.3 Non-linear parametric analysis of heart rate signals 
Various non-linear parameters can be used to analyze the diabetes heart rate signals. They 
are Approximate Entropy (ApEn), Correlation Dimension (CD), Largest Lyapunov 
Exponent (LLE),  The Hurst exponent (H), Recurrence plot (RP), and Fractal Dimension 
(FD).   
The Approximate Entropy ApEn measures regularity of the time series. The method 
proposed by Pincus et al can be used to evaluate the ApEn [Pincus, 1991].  For the data 
points )(),...,2(),1( Nxxx , with an embedding dimension m, the ApEn or APEN  is given by:  

 ∑ −
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∑ +−
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 is the correlation integral. For this study, m

 
is

 

set to 2, and r  is chosen as 0.15 times the standard deviation of the original data sequence, 
and N is the total number of data points.  

The Correlation dimension (CD) is a quantitative measure of the informational complexity of 

the heart rate signal [Grassberger, 1983].  Some unique ranges of CD for different cardiac 

diseases have been proposed by Acharya et al. [2007].  The formula for CD involves the 

correlation function C(r), which is the probability that two arbitrary points on the orbit are 

closer together than r.  This is done by calculating the separation between every pair of N 

data points and sorting them into bins of width dr proportionate to r.  The correlation 

dimension can be calculated by using the distances between each pair of points in the set of 

N number of points, ji XXjia −=),(
 

 ( ) ( ) ( )( )2

1
C r  = × Number of  pairs of  i, j  with a i, j  < r

N
 (12)            

Correlation dimension (CD) is given by: 

  
( )( )

( )0

log
lim

logr

C r
CD

r→
=  (13)   
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The Largest Lyapunov Exponent (LLE) measures the predictability of the system and 
determines sensitivity of the system to initial conditions [Rosenstien et al., 1993]. A positive 
LLE indicates chaos. The LLE is estimated by using a least squares fit to “average “line, and 
is given by: 

 ( )( )1
ln= 〈 〉iy(n) d n

Δt
 (14)                          

where ( )nd i  is the distance between th
i  phase-space point and its nearest neighbor at th

n time 

step, and .  denotes the average overall phase space points.  

The Hurst Exponent (HE) indicates the self-similarity and correlation properties of heart rate 
signal. The HE has been defined and proposed by Dangel et al [Dangel et al., 1999].  Unique 
range of H values has been proposed by Acharya et al, for various cardiac states [Acharya et 
al., 2007].  

 ( ) ( )H log R /S /log T=  (15) 

where T is the duration of the sample of data and R/S is the corresponding value of rescaled 
range.  An HE value of 0.5 indicates the presence of a random walk, HE < 0.5 depicts anti 
persistence, and HE > 0.5 indicates the persistence in the signal. 
The Recurrence plot (RP) can be used to unearth the non-stationarity in the heart rate signals 
[Acharya et al., 2006], and was originally introduced by Eckmann et al. [Eckmann et al., 1987]. 
A Fractal is a set of points which, when looked at smaller scales, looks similar to the whole 
group [Madelbrot, 1983]. The Fractal Dimension (FD) determines the complexity of the time 
series. FD has been used in heart rate analysis to recognise and differentiate specific states of 
physiologic functions [Acharya et al., 2007].  
The heart rate signal is a non-linear and non-stationary signal.  The hidden intricacies of the 
signal can be easily extracted using non-linear analysis methods. The heart rate variation is 
more random in normal subjects as compared to the diabetes subjects. Hence, most of these 
non-linear parameters may show distinct values for normal and diabetes subjects.  These 
clinically significant non-linear parameters can be fed into the classifiers as features for 
automatic classification. Moreover, these non-linear parameters can be combined in the form 
of an integrated index [Ghista, 2004; 2009a; 2009b]. Such an index may have unique range of 
values for normal and diabetes classes. Hence, one can diagnose normal and diabetes 
subjects by just using one index value without the need for automatic classifiers.  

4.2 Image processing of digital fundus images in diabetic retinopathy 
Diabetic retinopathy is an important complication of diabetes. As the diabetes retinopathy 
progresses, the number of blood vessels varies, and the exudates appear in the advanced DR 
stages [Yun et al., 2008; Acharya et al., 2011a]. Different image processing techniques have 
been used to extract blood vessels and exudates in DR subjects, and these techniques are 
explained in this section. Moreover, techniques for plantar pressure images analysis, which 
have proved to be useful in detecting diabetic neuropathy conditions, are also been 
presented in this section. 

4.2.1 Retinal blood vessels detection 
The detailed steps involved in the blood vessel detection are shown in Fig. 5 [Nayak et al., 
2008; Acharya et al., 2011a; Acharya et al. 2009; Acharya et al., 2011b]. The green 
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component of the RGB (Red, Green Blue) blood vessel image is considered for this study.  
The border of the image is obtained by applying an edge detection algorithm on the 
inverted green component of the image. Morphological operation is performed by using a 
disk shaped structuring element (SE) for blood vessels detection. Adaptive histogram 
equalization is then performed on these images to enhance the image, and subsequently, 
morphological opening operation is performed using a ball structuring element. 
Thresholding is carried out on the resulting image followed by the median filtering to 
obtain the boundary of the image. The small holes are then filled and the boundary is 
removed.  Finally, the image with only blood vessels is obtained (Fig. 7) [Acharya et al., 
2011b]. It can be seen from Fig. 7(a) that the number of blood vessels is different in the 
normal and the proliferative diabetes retinopathy (PDR) classes.  
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Fig. 5. The block diagram for detecting retinal blood vessels. 

4.2.2 Exudates detection in digital fundus images 
Fig. 6 shows the block diagram of the exudates extraction in digital fundus images [Acharya 

et al., 2008; Nayak et al., 2008; Acharya et al., 2011a; Acharya et al., 2011b].   The green 

component of the original image is extracted and subjected to the morphological closing 

operation by using octagonal shaped structuring element.  Then, the resulting image is 

subjected to thresholding, and morphological closing operation is carried out by using disk 

shaped SE.  

The edges are detected by using the Canny method. Subsequently, an 80x80 region of 

interest (ROI) is considered to remove the optic disc, and then the border of the image is 

also removed.  Finally, by performing morphological erosion operation with disk shaped 

SE of size 3, the final image with only exudates is obtained (Fig. 7) [Acharya et al., 2011b].  

It can be seen from the Fig. 7(b) that there are no exudates in the normal image, while the 

PDR image has exudates.  
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Fig. 6. The block diagram for detecting exudates in digital fundus images. 

 
 

                                 
            Normal                       (a)                                PDR                   

                          
                                                        (b) 

                          
                                                        (c)                                      

Fig. 7. Results of blood vessel detection and exudate detection from normal and PDR 
images.  (a) Original normal and PDR images (b) Results of blood vessel detection (c) 
Results of exudate detection.  The number of blood vessels are different for normal and PDR 
images, and exudates are absent in the normal fundus image. 
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4.3 Plantar pressure distribution image analysis 
Fig. 8 shows the plantar pressure distribution images of normal subjects, and subjects with 
diabetes type II without and with neuropathy. It can be seen from the figure that the 
pressure distribution is different for normal, diabetes without and with neuropathy subjects 
[Acharya et al., 2008; Acharya et al., 2011b]. This difference can be further analyzed using 
Fourier transform and discrete wavelet transform (DWT). 
 

 
               (a)                                                         (b)                                                              (c) 

Fig. 8. Static pedobarograph images of (a) the normal foot, (b) a diabetic foot with 
neuropathy, and (c) a diabetic foot without neuropathy. 

The important feature used to diagnose the normal, diabetes type II with and without 
neuropathy classes is the power ratio (PR) that is obtained using the Fourier transform 
[Rahman et al., 2006].  This method is clearly explained below.  
Fourier domain analysis: The Fourier spectrum F(u,v) of each region of the image can be 
obtained by using the below equation (16) [Cavanagh et al., 1991].  In this equation, M and N 
represent the numbers of rows and columns of the image. The power ratio (PR) is the ratio of 
the high frequency power (HFP) to the total power (TP).  The Fourier spectrum is given by 

 ( ) ( )
1 1 2

0 0

1
, ,

yux
M N j

M N

x y

F u f x y .e
MN

ν

ν

⎛ ⎞
− − − Π +⎜ ⎟

⎝ ⎠

= =

= ∑ ∑  (16)                          

where vanduyx ,, are the variables. 

)0,0(F  is the DC component of the image in the frequency domain and is the sum of all the 

pixels of an image in spatial domain [Cavanagh et al., 1991]. The total power (TP) of the 
image is given by 

 { }2 2
( , ) (0,0)TP F u Fν= −∑∑  (17) 
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Fig. 9. Typical power spectra after deleting the DC component from region 6 of the left foot 
for (a) normal subject (b) diabetes subject without neuropathy (c) diabetes subject with 
neuropathy[Acharya et al., 2011b]. 
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The low frequency and high frequency components are separated by oS , which is given by   

 

    
4

    
4

o

M
if M N

S
N

if M < N

⎧
≤⎪⎪

= ⎨
⎪
⎪⎩

 (18)  

                                     
2 2

( , ) 0

( , ) (0,0)
oS

S u

LFP F u F
ν

ν
=

⎧ ⎫⎪ ⎪
= −⎨ ⎬
⎪ ⎪⎩ ⎭
∑  (19)                

                                                                 HFP TP LFP= −  (20)                          

 100
HFP

PR x
TP

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (21) 

where LFP, HFP, and PR, denote the low frequency power, high frequency power, and the 

power ratio, respectively. 

Fig. 9 shows the typical power spectra obtained for a normal subject, having diabetes 

without neuropathy, and subject having diabetes with neuropathy. It is a 3D figure, with u 

and v frequencies corresponding to row and column. The Y-axis indicates the power. The 

power spectrum of normal class has a peak in the centre and very small peaks around it.  In 

the case of diabetes without neuropathy, the adjacent peaks are slightly larger; in the case of 

diabetes with neuropathy, there are dominating peaks on four sides. These plots are unique 

and depict variation of power spectrum. The PR values extracted from various regions of 

the plantar image are shown in Table 1[Acharya et al., 2011b]. 

 

Type Control 

subjects (CS) 

Diabetic 

control (DC) 

Neuropathic 

 (N) 

p-value 

Region 1 12.80 ± 3.49 9.562 ± 2.25 17.657 ± 3.27 <0.0001 

Region 2 11.865 ± 2.13 9.678 ± 2.58 14.453 ± 2.31 <0.0001 

Region 5 13.769 ± 3.31 9.512 ± 2.530 14.542 ± 2.69 <0.0001 

Region 6 10.179 ± 2.09 9.697 ± 1.23 12.35 ± 2.19 <0.0001 

Region 7 9.28 ± 6.03 8.67 ± 3.30 11.56 ± 1.45 <0.0001 
 

Table 1. Power ratio values for the various regions of the plantar pressure images obtained 

from the three classes. 

The PR is the ratio of HF power to the total power. This value is higher for diabetes subjects 

with neuropathy when compared to the normal and diabetes without neuropathy subjects 

for regions 1, 2, 5, 6, and 7 (Table 1). These ranges are unique and clinically significant 

(p<0.0001).  These PR features can be used to diagnose the three classes automatically using 

classifiers.  

Likewise, DWT coefficients have also been used to identify the normal, diabetes type II with 

and without neuropathy classes [Acharya et al., 2008; Acharya et al., 2011b].  
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5. Diabetic autonomic neuropathy diagnosis from HRV power spectrum plots 

The RR interval files are processed to get HRV and HRVPS [Desai, K.D et al., 2011].  The 
sampling frequency used to get HRV form RR file is 2Hz.  The power spectrum plots depict 
power in (BPM)2 versus Frequency (in Hertz). The auto regression statistics gives display of 
the following parameters: 
Power under Low frequency range: frequency range from 000 to 0.04Hz 
Power under Mid frequency range:  frequency range from 0.04 to 0.15Hz 
Power under High frequency range: frequency range from 0.15 to 0.40Hz 
Sympatho/Vagal balance ratio: ratio of mid to high frequency powers 
The Sympatho-Vagal ratio is found in the different frequency characteristics of the 
parasympathetic and sympathetic influences on heart rate. The HRVPS plots (for the supine, 
standing and deep breathing modes) are plotted with time-scale up to 150 seconds and heart 
rate scale in the range of 40 bpm to 140 bpm. 
 

 

Fig. 10. HRVPS plots of a normal subject in supine, standing and deep breathing modes. The 
power statistics on the right side show the power in low, medium and high frequency 
bands. There is an increase in the mid frequency power in standing position and in high 
frequency power in deep breathing mode. 
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Figure 10 displays the HRVPS of a typical normal subject in supine, standing and deep 
breathing modes. In this figure, the power statistics show the power in low, medium and 
high frequency bands. It can be noted that there is an increase in the mid-frequency power 
in standing position and in the high-frequency power in deep breathing mode.  Figure 11 
depicts the HRVPS plot of a typical diabetic subject in supine, standing and deep-breathing 
modes. Now, it can be seen that there is a decrease in mid-frequency power and in high-
frequency power in deep-breathing mode compared to corresponding power levels of a 
normal subject (in Figure 10) [Desai, K.D et al., 2011]. 
 

 

Fig. 11. HRVPS plots of a diabetic subject in supine, standing and deep breathing modes. 
The power statistics on the right side show the power in low, medium and high frequency 
bands. There is a decrease in the mid frequency power in standing position and in high 
frequency power in deep breathing mode compared to corresponding power levels of 
normal subject as shown in Fig 10a[Desai, K.D et al., 2011]. 

5.1 Diagnostic indices (based on HRVPS) 
The analysis of HRV power spectra is commonly focused on the power in different frequency 
bands. In particular, the power in the high-frequency range reflects the fast parasympathetic 
never activity [Fallen et al., 1985], and the power in the mid-frequency range reflects both 
parasympathetic and sympathetic never activity [Akselrod, S., et al., 1981]. 
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The ratio of the mid-frequency range power to the high-frequency range power is 
sometimes used as a relative index of the sympatho/vagal balance [Bianchi et al., 1990]. The 
high frequency range power ratio between supine and standing position is used as a 
parasympathetic index [Fallen et al., 1985]. The same ratio is used to study sympathetic 
function in standing position in the mid frequency range [Fallen et al., 1985]. Sympathetic 
vasomotor nerve function is quantified by the baro receptor oscillation frequency (i.e., the 
mid-peak frequency) in the HRVPS [Kamath et al., 1987]. 
In our study, autonomic function indices are defined in terms of spectral power indices and 
HRV period (or frequency) shift indices. The mid and high-frequency ranges are considered 
for defining indices. The diagnostic indices are based on parameters measured from the 
HRVPS. The values of diagnostic indices for the three groups of subjects have shown 
significant difference and can provide rational basis for selecting prognostic therapy before 
a diabetic patient develops cardiac arrhythmic complications. 
The diagnosis indices are defined as follows: 

 1 2I Relative sympathetic to vagal balance index P /P3= − − = , (22)                   

where   
(P2)=area under HRVPS spectral plot between 0.04 Hz and 0.15 Hz 
(P3)=area under HRVPS spectral plot between 0.15 and 0.4 Hz. 

 ( )2I Orthostatic Stress Index P2sta –  P2sup /P2sup= = , (23)            

where   
(P2)=area under HRVPS spectral plot between 0.04 Hz and 0.15 Hz, and subscripts ‘sta’ and 
‘sup’ refer to standing supine positions. 

 ( )3I  Sympatho Vagal Integrity Index Hrmax – Hrmin / n= − =∑ , (24)             

where     
HRmax =  Local maximum heart rate (beats per minute) during one breathing cycle. 
HRmin =  Local minimum heart rate (beats per minute) prior to local maximum in the same 
breathing cycle. 
n=number of breathing cycles. 

( ) ( )4std std

2

I  Sympathetic HRV – Spectral Frequency Shift Index standing F2  0.1 /0.1,

where F  Frequency of the Baroreceptor reflex peak

= = −

=
. (25) 

( ) ( )5sup supineI  Sympathetic HRV – Spectral Frequency Shift Index supine   F2  0.1 /0.1= = −  (26) 

 ( )6 3db 3supineI Respiratory Stress Index  P –  P= = , (27)                          

where  

  
( )2supineP    area under HRVPS spectral plot

frequency 0.04 Hz and 0.15 Hz in supine position

=

.
 (28) 

www.intechopen.com



 
Diabetes Mechanisms, Detection and Complications Monitoring 

 

437 

 
( )3dbP    area under HRVPS spectral plot between

 frequency 0.15 Hz and 0.4 Hz   in deep breathing

=

.
 (29)                     

 
( )3supineP    area under HRVPS spectral plot between 

frequency 0.15 Hz and 0.4 Hz   in supine position .

=
 (30)            

The following Table 2 shows the calculated indices, for a sample normal subject, obtained 
from the HRVPS parameters. 
                       

Autonomic Index Formula Index Value 
Relative Sympathetic-to-
Vagal Balance Index 

I1 = P2/P3 I1(sup) = 2.06 
I1(st) = 7.82 
I1(db) = 0.32 

Orthostatic Stress Index I2 = (P2sta – P2sup)/P2sup I2 = 1.64
Sympatho-Vagal Integrity I3 = ∑ (HRmax – HRmin) / n I3 = 6.62
HRV-Freq-Shift Index 
(standing) 

I4 = (F2std – 0.1) / 0.1 I4 = -0.05

HRV-Freq-Shift Index 
(supine) 

I5sup = (F2supine – 0.1) / 0.1 I5 = -0.10

Respirator Stress Index I6 = (P3db – P3supine) / P3supine I6 = 16.70

Table 2. Computed Indices for a typical normal subject. 

In this Table 2,  I1(sp) = P2/P3 (equation 22) in supine position;  I2(st) = P2/P3 (equation 22) in 
standing position; I2(db) = P2/P3 (equation 22) in deep – breathing mode. 
Now,  diagnosis based on six indices makes  it somewhat  difficult to track in a patient as 
regards how much each index varies from its normal value, for making an appropriate 
diagnosis.  So now we will adopt the novel approach, as in Ghista [Ghsta, 2004; 2009a], of 
formulating an index by combining the parameters in such a way that the index values are 
distinctly different for normal subjects, diabetics, and diabetics with ischemic heart disease. 
Hence, we are proposing that, from a diagnostic and classification viewpoint, it would be 
more convenient to formulate a DAN Integrated  Index (DAN-IID) [Desai, K.D et al., 2011], 
as :  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )DAN IID I1,st I1,db I2 I3 I6 I4 I5      ⎡ ⎤ ⎡ ⎤− = + + + + − − +⎣ ⎦ ⎣ ⎦  (31)                         

5.2 Results and analysis: HRVPS of normal subjects, diabetic subjects, and diabetic 
subjects with ischemic heart disease  
The instantaneous heart rate average (IHRav), average of difference between maximum and 
minimum heart rate over a cycle (ΔHrav), power and frequency measurements (P,F) 
measured from HRVPS are determined. There from the diagnostic indices are computed (as 
per equation 22-27). 

Descriptive Statistics of Indices of the Three Groups  

The computed indices for the three categories of subjects are displayed in the following 
Tables 
Table 3 for normal subject group. 
Table 4 for diabetic subject group. 
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Table 5 for IHF subject group. 
Then, using the values in Tables (2), (3) and (4), the mean and standard deviation values of 

three groups are calculated and presented in the Table 6. 

          

Name I1sp(N) I1,st(N) I1,db(N) I2(N) I3(N) I4(N) I5(N) I6(N) DAN-IID 

Ahamidm 2.08 14.57 0.51 3.78 3.26 -0.1 -0.07 16.26 38.55 

Awmeah 2.07 7.83 0.33 1.64 6.62 -0.05 -0.1 16.7 33.27 

Fahmia 1.88 2.67 0.36 2.04 8.56 0.13 -0.1 17.81 31.41 

Fatimah 0.47 7.46 0.84 1.08 4.9 -0.57 0.07 0.24 15.02 

Gitakr 1.93 3.93 2.49 2.66 9.51 0.03 -0.07 2.8 21.43 

Indvai 1.63 8.25 0.26 2.01 3.86 -0.4 -0.07 16.14 30.85 

Kploga 1.4 2.31 0.3 2.32 7.66 -0.12 0.5 10.67 22.88 

Mattarh 1.21 9.17 2.02 2.2 3.59 -0.52 -0.07 1.53 19.1 

Mohdsae 3.09 1.47 0.3 -0.65 4.43 -0.08 0.13 1.81 7.31 

Mohsed 5.78 9.95 0.75 1.36 6.63 -0.02 0.1 21.87 40.48 

Ramial 8.95 3.53 0.18 0.92 11.73 0.3 0.1 8.69 24.65 

Sekarm 2.15 5.19 0.25 0.02 3.29 -0.05 0.3 9.88 18.38 

Average 
2.72 
±2.36 

6.36 
±3.87 

0.71 
±0.75 

1.61 
±1.19 

6.17 
±2.76 

-0.12 
±0.25 

6.0E-02
±0.18 

10.36 
±7.45 

25.277 
±9.88 

Table 3.  Results of Indices for normal subject group.      

           

Name I1sp(D) I1,st(D) I1,db(D) I2(D) I3(D) I4(D) I5(D) I6(D) DAN-IID 

Ahmedn 3.54 7.09 0.19 -0.06 2.83 -0.08 -0.57 1.88 12.58 

Altmoh 2.07 4.95 0.31 -0.32 2.47 -0.57 -0.57 5.40 13.95 

Aminaha 1.34 2.11 0.70 -0.28 2.94 -0.57 -0.57 1.08 7.69 

Bakmh 4.25 2.45 0.52 -0.35 1.66 -0.57 -0.57 25.00 30.42 

Elmamol 0.51 0.49 0.44 -0.41 2.25 -0.57 -0.57 -0.47 3.44 

Fikria 3.57 12.72 0.16 0.78 1.51 -0.57 -0.57 16.89 33.2 

Ghyarh 3.78 7.75 1.56 -0.36 2.81 -0.52 -0.57 0.20 13.05 

Humoya 3.58 3.78 0.68 2.80 3.68 -0.35 -0.57 4.59 16.45 

Kmilmo 2.84 5.30 0.59 0.11 2.38 -0.30 -0.57 1.15 10.4 

Krshpr 0.85 0.59 0.13 -0.36 1.86 -0.57 -0.57 20.42 23.78 

Kurubrl 1.55 1.74 3.08 0.03 1.44 -0.57 -0.57 3.78 11.21 

Mahabs 1.54 5.78 1.06 0.51 6.91 -0.57 -0.57 1.28 16.68 

Mohdosb 4.39 1.92 0.32 -0.76 2.01 0.03 0.01 1.32 4.77 

Mohikat 2.41 0.55 0.29 -0.29 1.87 -0.57 -0.23 13.25 16.47 

Muisdr 0.86 1.08 3.30 -0.30 2.98 -0.10 -0.57 0.34 8.07 

Nasah 2.59 26.95 1.19 1.83 2.09 -0.32 0.57 0.44 32.25 

Naya 0.75 3.51 3.92 -0.71 1.36 -0.57 -0.57 -0.58 8.64 

Salmm 0.35 1.89 0.54 -0.30 0.78 -0.57 -0.57 -0.59 3.43 

Average 2.26 

±1.36 

5.03 

±6.31 

1.05 

±1.17 

8.66E-

02±0.9

2.43 

±1.32

0.43 

±0.2 

-.455 

±0.29

5.29 

±7.94 

14.804 

±9.43 

Table 4. Results of Indices for diabetic subject group. 
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Name I1,sp(H) I1,st(H) I1,db(H) I2(H) I3(H) I4(H) I5(H) I6(H) DAN-

IID 

Aminase 0.45 0.74 0.99 -0.81 1.45 -0.57 -0.57 1.74 5.25 

Hamamak 6.22 1.73 0.52 -0.63 1.77 -0.57 -0.57 13.10 17.63 

Mayara 2.03 3.80 1.00 0.52 2.90 -0.23 -0.08 5.53 14.06 

Mdshr 1.33 1.05 0.11 0.21 3.41 -0.57 -0.05 9.62 15.02 

Mohmust 2.14 2.45 1.34 0.10 2.22 -0.57 -0.28 0.69 7.63 

Omarsh 2.95 2.60 0.22 -0.49 2.17 -0.20 -0.02 1.79 6.51 

Shamsa 0.66 1.10 2.57 -0.16 1.78 -0.57 -0.57 0.25 6.68 

Tamebr 2.79 7.10 2.09 2.50 1.58 -0.57 -0.15 9.60 23.59 

Average 2.32 

±1.82 

2.57 

±2.09 

1.1 

±0.87 

0.155 

±1.05 

2.16 

±0.68

-0.48 

±0.16

-.28 

±0.24

5.29 

±4.93 

12.046  

±10.85 

 

Table 5.  Results of Indices for ischemic heart disease subject group. 

 
 

Index 
Normal 

(N) 

Diabetic 

(D) 

Diabetic + IHD 

(H) 

  Mean Sd Mean Sd Mean Sd 

I1 (supine) 2.719 2.357 2.266 1.356 2.32 1.821 

I1 (standing) 6.361 3.864 5.036 6.312 0.155 1.49 

I1 (deep breathing) 0.715 0.755 1.053 1.166 1.107 0.869 

I2 (orthostatic stress) 1.614 1.185 0.085 0.908 0.155 1.049 

I3 (sympatho-vagal integrity) 6.195 2.736 2.435 1.323 2.16 0.681 

I4 (sym HRVPS freq shift  

by standing) 
-0.121 0.257 -0.439 0.203 -0.481 0.165 

I5sup (sym HRVPS freq shift  

in sup)  
0.06 0.185 -0.519 0.152 -0.286 0.248 

I6 ( resp stress index)  10.366 7.447 5.261 7.969 5.29 4.92 

       

  9.88 14.804 9.43  12.046   

DAN-IID 25.277     6.57 

 

Table 6. Descriptive Statistics of indices of the three groups. 

Diagnostically significant indices 

In order to demonstrate the effectiveness of the diagnostic indices (I1 to I6) to distinguish the 

three groups, the diagnostically significant indices are calculated using Mann Whitney 

Wilicoxon Rank test (Non-Parametric Tests), and the p values(<0.05)are tabulated in Table 7 

below[Desai, K.D et al., 2011].         
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       Index Significance Between Two Groups P-value(<0.05) 

I1 (standing) N & H 0.0109 

I2 N & H 0.0253 

I3 N & H 0.0004 

I4 N & H 0.0025 

I5 N & H 0.0083 

I2 N & D 0.0020 

I3 N & D 0.0000 

I4 N & D 0.0015 

I5 N & D 0.0000 

I6 N & D 0.0422 

I5 H & D 0.0105 

Table 7. Diagnostically Significant Indices. 

5.3 Physiological relevance of the computed indices  
The computed indices reflect the sympatho-vagal interactions that modulate cardiovascular 
function. The low-frequency component (in the 0.04Hz to 0.15Hz range) of the HRV power 
spectrum (F2 peak) is an indicator of sympathetic modulation, and the high frequency 
component (in the 0.15Hz to 0.4Hz range) in the HRV power spectrum (F3 peak) is a marker 
of vagal modulation. 
The index I1 (= P2/P3) represents relative sympathetic-to-vagal balance, I1 is found to be 
reduced to a very low value, from 6.361 to 0.155 in standing position in the case of diabetics 
with ischemic heart disease. This indicates that diabetics with ischemic heart disease are not 
able to withstand orthostatic stress or load. Patients recovering from an acute myocardial 
infarction can be expected to have an increased I1 index during early convalescence, and a 
return to a normal value by 6 to 12 months 
The orthostatic stress index I2 shows significant reduction from a normal value of 1.614 to 
0.085 in diabetics, and, to 0.155 in diabetics with ischemic heart disease. A similar trend is 
noted for the sympatho-vagal integrity index I3, showing reduction in the index value from 
a normal value of 6.19 to 2.43 in the case of diabetics, and to 2.16 in diabetics with ischemic 
heart disease. This is indicative of damage to the sympathetic and parasympathetic systems 
controlling the SA node pacing activity 
The sympathetic HRVRS frequency-shift Index in standing position (I4sd) and Sympathetic 
HRVPS frequency-shift Index in supine position (I5sup) are found to be decreased in diabetics 
as well as in diabetics with ischemic heart disease patients, compared to the normal subject 
group. This is indicative of the increased delay (of more than 10 seconds) in case of diabetics 
as well as diabetics with ischemic heart disease, due to demyelination of their nervous 
control system controlling the heart rate. 
The Respiratory Stress Index I6 denotes the effectiveness of vagal control on heart rate 
variation, and is found to be considerably reduced from a normal value of 10.36 to 5.26 in 
diabetics, and to 5.29 in diabetics with ischemic heart disease. 
Thus the indices derived from the HRV power spectrum represent non-invasive signatures 
of the balance between sympathetic and parasympathetic components of the autonomic 
nervous system.  These indices are shown to characterize diabetic autonomic neuropathy 
state, and to hence distinguish diabetics and diabetics with ischemic heart disease.  
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Integrated index composed of power-spectral indices  

We have shown how well the HRVPS indices differentiate normal subjects from diabetics 

and diabetics with ischemic heart disease.   

We now compute the values of this integrated Index (DAN-IID) for normal subjects (in 

Table 3), diabetic subjects (in Table 4), and diabetic patients with ischemic heart disease (in 

Table 5) .  From these Index values, we compute its mean values and standard deviations, 

for normals, diabetics, and diabetics with ischemic heart disease (IHD).  These values are 

tabulated in Table 6.  It can be clearly seen, from this Table 6, that our integrated Index can 

be employed to effectively differentiate and diagnose diabetic subjects and diabetics with 

IHD.  The Index can also be employed to assess the efficacy of diabetic medication and 

insulin administration.   

We next make a distribution plot of this Integrated Index for normals, diabetics, and 

diabetics with IHD, in Figure 12. This plot graphically illustrates how well this integrated 

Index separates normal subjects, diabetic patients, and diabetic patients with ischemic heart 

disease[Desai, K.D et al., 2011].   
 

 

Fig. 12. Variation of DAN-IID for (N) normal subjects, (D) diabetic patients, and (H) 
diabetics with IHD.  It can be noted that this DAN-IID clearly separates diabetics and 
diabetics with IHD from normal subjects. 
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6. Activity-based dynamic insulin infusion system 

In section 3, we have introduced the glucose-insulin regulatory system and applied it to 
model the OGTT. We came up with our novel DBI, by means of which we can even detect 
supposedly normal subjects who are at risk of becoming diabetic.  Now, we continue on the 
trail of this glucose-insulin regulatory system, by presenting its application to illustrate how 
for a diabetic patient the glucose level keeps going up after meal, and how it is regulated by 
automated infusion of insulin.  
Herein, we demonstrate the operation of a Glucose activity-based Dynamic Insulin infusion 
(or release) system. The current insulin infusion systems are based on the diabetic patient’s 
known activities history, in order to estimate the required insulin amount. These techniques 
do not allow the patients to deviate too much from their normal daily activities [Naylor et 
al., 1996].  Hence, our approach focuses on regular sampling of the diabetic patients’ blood 
glucose concentration through a sensor, to compute the required amount of insulin to be 
released into the blood stream.   
The amount of insulin infused to bring the blood glucose concentration down is regulated 
by a Closed-loop PD (Proportional-Derivative) Control system algorithm (Fig. 13).  The 
closed loop system continuously monitors the blood glucose concentration at 0.5 h interval. 
Once the system detects that the blood glucose concentration exceeds a predetermined 
threshold e.g. 120mg/dl [International Diabetes Federation], the system is alarmed and 
‘calculates’ the amount of insulin required [Loh, 2004] to bring the blood glucose 
concentration below the threshold. 
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Computer 
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Insulin Release 
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Blood Pool 
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Fig. 13. Block diagram of the Glucose Regulating Insulin Release (GRIR) system: The glucose 
sensor monitors the existing blood glucose level. The error between the glucose sensor level 
and the computed expected blood glucose concentration is fed into the Closed-loop PD 
(Proportional-Derivative) Control system, and its algorithm computes the amount of insulin 
(x) to be released.  Accordingly, the required amount of insulin is released into the blood. 
This now readjusts the blood glucose level, which is again monitored by the sensor. 

Then, Fig. 14 shows the results of the application of the Insulin Infusion Release system of 
Fig 13.  The diabetic subject D18’s unaided glucose clinical data is fed into the system. On 
the Y axis, we have plotted blood-glucose concentration above the patient’s glucose 
concentration of 120 mg/dl (or 1.2 g/l) at time 0 after meal.  The insulin is released at 0.5 
hour, 1 hour and 1.5 hours after meal.  In figure 16, it is seen, how following insulin 
infusion, the blood glucose comes down.  Once the blood glucose concentration drops below 
the threshold, the controller will stop releasing insulin into the blood stream. 
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Fig. 14. The subject’s unaided blood glucose concentration at time 0 is above 120mg/dl. The 
system is alarmed and samples the blood glucose concentration at 0.5h (170 mg/dl). The 
system sends a bolus of insulin 10mU/dl into the blood stream. The system keeps 
monitoring the resulting blood glucose concentration at 1.0h and 1.5 hour intervals, and 
infuses computed insulin bolus into the blood stream to bring the blood glucose 
concentration below the threshold value. 

Thus, we have demonstrated the capability of the activity based adaptive dynamic real-time 
insulin release system.  This system is able to protect the users from hyperglycemia. 

7. Conclusion 

This chapter is framed to provide useful insights into: (i) the mechanisms of diabetes; (ii) 
how the bioengineering analysis of the glucose regulatory system can be employed to 
diagnose diabetic patients and subjects at risk of becoming diabetic, based on an integrated 
index composed of parameters of the governing differential equation to simulate blood 
glucose concentration data of OGTT; (iii) parameters of time-and frequency-domain 
measures of HRV can be employed to differentiate diabetic subjects from normal subjects; 
(iii) processing of retinal digital fundus images to characterize retinopathy, and analysis of 
plantar pressure distribution images of normal subjects, and subjects with diabetes type II 
without and with neuropathy, (iv) diagnosis of diabetic autonomic neuropathy by means of 
a novel intregrated index composed of parameters of heartrate variability power-spectrum 
plots; (v)  how we can apply the glucose-insulin regulatory system to illustrate how for a 
diabetic patient the glucose level keeps going up after meal, and how it is can be regulated 
by automated infusion of insulin.  
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