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1. Introduction  

Age related macular degeneration (AMD) is the leading cause of severe visual loss in adults 
older than 60 years (1, 2). It is estimated that approximately 30% of adults older than 75 
years have some sign of AMD and around 10% develop advanced stages of the disease. 
More than 1.6 million people in the United States currently have one or both eyes affected 
by an advanced stage of AMD and it is estimated that there are another 7 million 
individuals “at risk” (1). Due to rapid aging of the population in many developed countries, 
this number is expected to double by the year of 2020 (1, 3). Although neovascular AMD 
only accounts for about 10–20% of the overall AMD incidence, this subtype is responsible 
for 90% of cases of severe vision loss (20/200 or worse) (4, 5). 

Neovascular AMD is characterized by the presence of choroidal neovascularization (CNV) 
and is associated with retinal pigment epithelium detachment (PED), retinal pigment 
epithelium (RPE) tears, fibrovascular disciform scarring, and vitreous hemorrhage(4).  

Choroidal neovascularization is an intricate process controlled by myriad angiogenic agents 

such as growth factors, cytokines, and extracellular matrix (ECM) components. Several 

growth factors have been implicated in pathologic vessel formation in ocular diseases, such 

as age-related macular degeneration, including fibroblast growth factor (FGF), platelet-

derived growth factor (PEDF), tumor necrosis factor (TNF-┙) and vascular endothelial 

growth factor (VEGF)(6). Additionally, it is hypothesized that an inflammatory process is 

behind the pathogenesis of AMD. It was found that extracellular depositions of diffuse basal 

laminar and linear deposits (BLD) between the cytoplasmic and basement membrane of the 

RPE are significantly associated with CNV formation (4, 5, 7). Histological studies of these 

BLDs proved the presence of complement complexes C3, C5b-9, MMP- 2, MMP-9, and 

vitronectin (8). Further support of this hypothesis came from genetic studies where 
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mutations/polymorphisms were found in genes coding for the alternative complement 

pathway regulator (Factor H and Factor H related proteins) and complement pathway 

proteins (complement component C2, factor B, and toll-like receptor 4). 

Several focal treatments have been proposed and extensively studied to prevent the severe 
visual loss in neovascular AMD patients including laser photocoagulation (9), 
photodynamic therapy (PDT) (10) and the combination of PDT with intraocular injections of 
triamcinolone acetonide. Despite anatomical success, there is a low chance for visual 
improvement when these treatments are used.  In recent years, research has provided new 
insights into the pathogenesis of macular disease. Today less destructive treatments directly 
targeting CNV and its pathogenic cascade have become available (8, 11). Antibodies against 
VEGF uniquely offer a significant chance of increase in visual acuity to patients affected by 
neovascular AMD. 

Currently, inhibition of VEGF-A is the first choice of therapy for neovascular AMD, which 

not only stabilizes, but also improves visual acuity. The most effective preparations, 

bevacizumab (Avastin, Genentech Inc, South San Francisco, California) or ranibizumab 

(Lucentis, Genentech Inc), are recombinant monoclonal antibodies (Fab) that neutralize all 

biologically active forms of VEGF (12). Two Phase III clinical trials (MARINA and 

ANCHOR) studied ranibizumab for the treatment of CNV associated with neovascular 

AMD (13-15). In both of these studies, ranibizumab was administered every 4 weeks (fixed 

schedule) for up to two years without monthly imaging. Both trials demonstrated 

prevention of substantial vision loss (lost < 15 letters) in more than 90% of subjects.  

Additionally, approximately 30% to 40% of the subjects experienced substantial visual 

acuity gains (gain > 15 letters). Though these dramatic results have revolutionized the 

treatment of neovascular AMD, the monthly treatment schedule used in the clinical trials 

has a number of drawbacks including the high number of injections and the lack of 

efficiency in some patients who do not respond to anti-VEGF therapy (12). 

Therefore it is important to continue the study of the CNV physiopathology in order to find 
new molecules involved in the angiogenesis. In this way it will be possible to develop new 
drugs to reduce the treatment frequency and to treat patients that don’t respond to anti-
VEGF therapy. 

2. Animal models of choroidal neovascularization 

The development of animal models of CNV has paralleled and contributed to the 
understanding of the biology of this condition. In addition, these models have also been 
developed in order to test new treatments. 

a. Laser induced models of CNV 

The first CNV model was developed in primates (16), and coworkers later developed a rat 
model of CNV in 1989 (17). Those authors created argon laser photocoagulation spots (647 
nm, 100 mm, 50e100 mW, 0.1 s) through a dilated pupil with a coverslip over the cornea. 
The created spots break the Bruch’s membrane, with a central bubble formation with or 
without intraretinal or choroidal hemorrhage. There was fluorescein angiographic evidence 
of CNV in 24% of the created lesions. Examination of enucleated eyes by light and electron 
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microscopy showed pathologic evidence of CNV in 60% of the lesions. Frank and coworkers 
also developed a rat model of CNV in 1989 (18). Also, a diode laser may be used to create 
the CNV (532 nm, 100 mm 50e100 mW, 0.1 s) and this model has been used to assess aging 
as it relates to CNV formation. 

b. Surgically induced models of CNV 

Subretinal and/or choroidal neovascularization has been immunologically and 
mechanically induced in rat and mouse models, primarily by injection of synthetic peptides, 
viral vectors containing VEGF, cells and inert synthetic materials (19-21). 

c. Transgenic and knockout mouse models of CNV 

Although there are several transgenic mouse models AMD (22), only a relatively few of the 
models spontaneously develop CNV. It has become apparent that overexpression of VEGF 
by the retina or RPE is not enough to elicit CNV in these models and there is a central role of 
compromised Bruch’s membrane in the development of CNV (22). The advantages of these 
models are the ability to study various biologic components of CNV by comparing with 
controls and cross breeding experiments. Disadvantages relate to the length of time for the 
CNV to develop, the relatively small percentages of eyes that develop CNV and the small 
size of the CNV.  

3. Retina cytotoxicity assays for new drugs 

a. “In vitro” assays 

Toxicity is a complex event in vivo, where there may be direct cellular damage, physiological 
effects, inflammatory effects and other systemic effects. Currently, it is difficult to monitor 
systemic and physiological effects in vitro, so most assays determine effects at cellular level, 
or cytotoxicity (23). 

New drugs have to go through extensive cytotoxicity testing before they are released for the 
use (24, 25). Today there is a continuous search for methods to determine the toxicity by 
using in vitro tests, trying to reduce the number of experiments involving animals (26). 
Important live-cell functions, including apoptosis, cell adhesion, cell migration and cell 
proliferation, can be monitored with various in vitro tests by using colorimetric and 
fluorescence assays (27, 28). The most frequently used cell lines are: human retinal pigment 
epithelial cells (ARPE-19), rat neurosensory retinal cells (R28), rat retinal ganglion cells 
(RGC-5)(29, 30), the immortalized Muller cell line (MIO-M1) (31) and human umbilical vein 
endothelial cells (HUVEC) and rabbit aorta endothelial cells (6, 32, 33). 

Many of these processes lead to changes in intracellular and membrane components that can 
be followed with appropriately responsiveness by indicators that could be detected by 
microscopy, flow cytometry or with a microplate reader. Because cytotoxicity could not be 
easily defined in terms of a single physiological or morphological parameter, it is often 
desirable to combine several different measures, such as enzymatic activity, membrane 
permeability or oxidation–reduction potential. The most common assay to determine the 
cytotoxicity is the viability assay. The viability is principally used to measure the proportion of 
viable (life and function) cells after a drug exposure. Most tests verify the cell membrane 
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integrity by dye exclusion, as Naphtalene Black and Trypan Blue as well as by dye uptake as 
fluorescein diacetate and propidium iodide (PI) (34, 35). In the first one viable cells are 
impermeable to the dye, and the analysis is performed by light microscopy. In the second test 
viable cells uptake diacetyl fluorescein and hydrolyze (esterase) in fluorescein that fluoresce in 
green, and the nucleus of the non-viable cells are stained by the PI that fluoresce in red, the 
analysis could be performed both by fluorescence microscopy and flow cytometry (36).  

Cell viability also can also be measured by MTT reduction (37) using a microtitration assay 
in 96 multiwell plates. The reduction of tetrazolium salt (yellow) is reduced in metabolically 
active cells to form insoluble purple formazan crystals. Other assays include acidotropic 
stain using acridine orange that concentrates in acidic organelles in a pH-dependent 
manner. Under fluorescence microscope it is possible to see the metachromatic green or red 
fluorescence of acridine orange to assess cell viability (38).  

Besides viability the apoptosis research is a powerful tool for drug toxicity screening. 

Apoptosis is the programmed cell death and is characterized morphologically by 

compaction of the nuclear chromatin, cell-permeability and production of apoptotic bodies. 

The characteristic observed in apoptotic cells is the fragmentation of the chromatin, 

degradation of the nuclear envelope and nuclear blebbing, resulting in the formation of 

micronuclei. A different assay frequently used is the APO-BrdU TUNEL (Terminal 

Deoxynucleotide Transferase dUTP Nick End Labeling) where DNA strands of apoptotic 

cells are labeled with BrdUTP, once incorporated into the DNA, BrdU can be detected by an 

anti‑BrdU antibody conjugated with a enzyme or a fluorescent probe using 

immunohistochemistry or immunofluorescence (39).   

Annexin V is a protein that binds phosphatidylserine located at the cell surface and used to 
detect apoptotic cells. In apoptotic cells phosphatidylserine is exposed to the outer of the 
plasma membrane being detected by the annexin V conjugated with a fluorophor. 
Fluorescent cells could be observed in fluorescence microscope or flow cytometer (33, 40).   

b. “In vivo” assays 

Retinal toxicity can be evaluated by intravitreal injections of drugs in rats, mice, rabbits and 

non-human primates. The safety and efficacy of intravitreal drugs can be analyzed in 

choroidal neovascularization (CNV) in the laser-induced rat model (6, 41). The investigation 

of toxicity in animal models using the standard tools of light microscopy (LM) and 

histopathological analysis makes critical benchmarks for the study of development of the 

angioproliferative disease. In this way is possible to observe the functional and 

morphological alteration results of drug toxicity in vivo.  

Microscopic studies using light, electron or confocal microscopy are common methods used 
for retinal biocompatibility studies. For microscopy analysis, it is essential to know the 
normal retina morphology of the animal species analyzed. Histological studies, using light 
or electron microscopies could be descriptive or analytical.  

Clinical evaluation is also an important method to evaluate the retinal toxicity of new drugs. 
The occurrence of a transient or permanent toxic reaction can be documented by the retinal 
appearance, function or histological findings in experimental eyes (42). Ocular examinations 
include slitlamp for anterior segment and detailed dilated fundus examinations (42, 43). 

www.intechopen.com



 
AMD Experimental Treatments 

 

87 

Electrophysiological testing is an effective and objective method to assess the status of the 
visual pathways. The electroretinogram (ERG) is obtained by recording, through a contact 
lens electrode on the cornea, the electrical potential generated by the retina in response to a 
brief stimulus (flash or flicker) of light. ERG is one of the most important examinations for 
retinal biocompatibility in experimental models, since it is a functional and objective test. In 
animals, behavioral assessment of visual function is a difficult parameter to be evaluated. 
Currently, the basis of retinal evaluation for pharmacological and toxicological effects of 
intravitreally-administered drugs in animals consists of ERG associated with histopathology 
by light and electron microscopy (44, 45). Toxicity testing can be obtained in rodent as well 
as non-rodent species for extrapolation to humans for determining risk and safety (46). 

4. Therapeutic Monoclonal Antibodies 

Monoclonal antibodies (mAbs) can be used therapeutically due to the binding to molecular 
targets with high specificity. In ophthalmology, therapeutic mAbs have been introduced 
recently to treat inflammatory and angiogenic diseases. The rationale for mAb application in 
ophthalmology also is based on a recent understanding of the molecular biology of various 
ocular diseases (12). 

a. Monoclonal Antibody anti-tumor necrosis alpha 

Recent evidences have shown that the cytokine TNF-α participates actively in the 
pathogenesis of inflammatory, edematous, neovascular and neurodegenerative ocular, and 
extra ocular diseases. In addition, the central pathogenic role of TNF in medicine is 

supported by the clinical efficacy of TNF-α antagonists such as infliximab in randomized 
controlled trials for various diseases including rheumatoid arthritis (RA) and Crohn’s 

disease (47). Furthermore, although TNF-α is barely detectable in the serum of healthy 
humans at levels of 10 fg/ml, in patients with systemic inflammatory or neoplastic diseases, 
the levels increase markedly to 50 pg/ml (48).  

Consecutive studies have described the role of infliximab in the treatment of ocular 
inflammation. Single or multiple infusions of infliximab at concentrations of 3–10 mg/kg 
within a 2- to 36-month period have been efficacious in preventing ocular attacks, 
decreasing relapses, diminishing concomitant corticosteroid use, and controlling disease 
activity in patients with idiopathic uveitis or uveitis associated with juvenile arthritis, 
ankylosing spondylitis, Behcet’s disease, sarcoidosis, or Crohn’s disease (12). 

Regarding ocular neovascularization, one patient with Behcet’s disease with uveitis and 
retinal neovascularization treated with systemic infliximab had regression of new vessels 
after 8 months. A series of patients receiving 5 mg/kg of infliximab infusions for 
inflammatory arthritis had remarkable regression of CNV due to AMD (49, 50). The 
preventive and therapeutic effects of infliximab and etanercept have been studied in a rat 
model of laser-induced CNV as reported previously by other reports and by our research 
group (6, 51). In the study by Olson et al., both anti-TNF agents given prophylactically 
decreased the size and leakage of CNV lesions in these animal models, although in one 
study only etanercept induced reduction of CNV (52). We performed intravitreal injection of 

escalating doses of infliximab from 10 to 320 µg in rats after laser-induced CNV. At lower 
doses, infliximab promoted significant reduction of neovascular complex. However, at 
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higher doses, it induced no effect compared to the control group. These results suggested 
that either the pro-angiogenic effect of anti-TNF mAb might occur only at higher doses or 
that in a lower dose some antiangiogenic indirect effect may be seen. Clinical studies have 

shown a marked elevation in vitreous levels of TNF-α in patients with PDR (53, 54). 
Experimental studies in a rat RD (retinal detachment) model showed that anti-TNF agents 
might reduce leukocyte adhesion, blood–retina barrier breakdown, and endothelial injury. 

The association between TNF-α and pathologic intraocular neovascularization may be 

explained by direct transmembrane-TNF stimulation of blood vessel growth, or TNF-α-
induced expression of isoform VEGF-C, which may protect retinal endothelial cells from 
apoptosis (55). 

b. Monoclonal Antibody anti-platelet derived growth factor 

Vascular endothelial cells release PDGF-B, which in turn induce recruitment, proliferation, 
and survival of pericytes, glial cells, and RPE cells (56). Newly established pericytes along 
with retinal cells provide survival signals for endothelial cells, and more importantly, 
pericytes may promote the scarring process following CNV (57). Mural cell recruitment to 
the growing endothelial tube is regulated by PDGF-B signaling; interference with this 
pathway causes disruption of endothelial cell–mural cell interactions and loss of mural cells. 
Therefore, antagonists of PDGFs with or without VEGF antagonists may reduce scarring 
and neovascularization. Moreover, inhibition of both VEGF-A and PDGF-B signaling may 
be more effective than blocking VEGF-A alone in causing vessel regression in multiple 
models of neovascular growth (58-60). A clinical trial phase 1 is evaluating the safety of a 
monoclonal antibody anti PDGF injected intravitreously for the treatment of neovascular 
AMD (E10030- Ophthotech Corporation, clinical trial NCT00569140) (61). 

c. Monoclonal Antibody anti-integrin α5β1  

Components of the ECM play an important role in angiogenesis and CNV formation by 
helping to facilitate endothelial cell migration. Integrins are heterodimeric transmembrane 
proteins, composed of alpha and beta subunits, which interact with the ECM. Both ┙v┚3 and 
┙5┚1 integrins have been shown to play a role in angiogenesis and their expression is 
upregulated in activated vascular endothelial cells (62). Inhibition of ┙5┚1 integrin may be 
of particular interest for the treatment of neovascular AMD because of its expression in RPE, 
macrophages, and fibroblasts in addition to endothelial cells. Wang et al. demonstrated that 
an integrin ┙5┚1 inhibitor (ATN-161) was able to inhibit CNV leakage and 
neovascularization in a laser induced CNV model (63). 

d. Monoclonal Antibody anti-basic fibroblast growth factor (b-FGF) 

FGFs are a family of heparin-binding growth factors involved in wound healing and 
embryonic development. The basic-FGF form, also referred to as b-FGF, may be a more 
potent angiogenic factor than VEGF or PDGF (64). In the eye, FGF is localized within the 
lacrimal gland, retina, lens, photoreceptors, aqueous humor, vitreous, and corneal 
epithelium. In both retina and RPE cells, FGF induces changes in cellular proliferation and 
in vivo angiogenesis. Most uveal melanoma cell lines express FGF subtypes including b-FGF 
to various extents, and increased FGF expression along with other growth factors was 
reported in an animal model of retinal detachment (65, 66). 
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An anti-FGF mAb (no registered brand name to date, BioWa, Princeton, NJ, USA) was 
developed recently for future application on the treatment of various cancers. Although no 
study has reported if that anti- FGF agent is useful in ocular pharmacology, some potential 
indications for the application of anti-FGF mAb based on FGF function can be proposed as 
adjuvant chemotherapy for ocular melanoma, in conjunction with other mAbs such as anti-
TNF to treat PVR associated with rhegmatogenous retinal detachment, and to reduce the 
chance of PCO after cataract surgery (12, 67). More investigation should unravel the 
usefulness of anti-FGF mAbs in PCO or PVR, because so far the absence of a cause–effect 
relationship has not been settled. In addition, other mediators may play a more important 
role than FGF in these entities. 

5. Angiostatic compounds 

a. Heparin mimetics 

Choroidal neovascularization is a complex process controlled by numerous angiogenic 
agents such as growth factors, cytokines and ECM components, including 
glycosaminoglycans (GAGs) (68, 69). GAGs can interact with a diverse range of proteins 
leading to various biological activities, including angiogenesis (69). Among the sulfated 
GAGs, heparin and heparan sulfate (HS) have been involved in the modulation of the 
neovascularization that takes place in different physiological and pathological conditions 
(70-73). This modulation occurs through the interaction of GAGs with angiogenic growth 

factors, such as VEGF, FGF, TGF-β, IFN-γ and TNF-α. This property of GAGs to bind and 
modulate angiogenic growth factors provides a strong reason for studying and designing 
new synthetic GAG analogs, or discovering GAG-like natural compounds, endowed with 
angiostatic properties. Sulfated oligosaccharides, which are structural mimics of HS or 
heparin, are potential drug candidates because these compounds may interfere with the role 
HS plays in the process of angiogenesis. Heparin is known for its anticoagulant activity, but 
it also has a strong anti-inflammatory effect also (74, 75).  

Recently, we have shown that a heparinoid isolated from marine shrimp presenting 
negligible anticoagulant and hemorrhagic activities was able to reduce over 60% the 
neovascularization areas in the laser induced CNV after intravitreal injection. Also this 
compound is capable of reducing acute inflammatory processes in an animal model (76). 

Studies using intravitreal injection of PI88 (phosphomannopentaose sulfate) showed that 
this compound is capable to reduce the neovascularization area in laser induced 

experimental CNV in 50% (77). Intravitreal injection of heparin also can reduce the size of 

the CNV, but the hemorrhagic complications are imminent (33, 78).  

The pharmacological and biochemical properties of the heparinoids point to these 
compounds as compelling drug candidates for treating neovascular AMD. 

b. Blockage of complement cascade 

Immunological factors are involved not only in the pathogenesis of AMD, but also in its 
treatment of this disease. Genetic polymorphisms in different complement proteins can 
increase the risk for developing AMD (e.g., lack of factor H in patients with Y402H 
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mutations) (79). There are three pathways of complement activation and all of them activate 
a final common pathway (C3). Lipofucsin and basal lipid deposits between Bruch's 
membrane and the retinal pigment epithelium (RPE) cell layer may act as a stimulus for the 
local activation of the complement system. This may lead to a further growth of the deposits 
due to the strong chemotactic activity of complement activation products with an influx of 
inflammatory cells (80). Furthermore these activated RPE cells release angiogenic stimuli 
leading to choroidal neovascularization (81).  

Several agents that modulate different parts of the complement system are in clinical trials. 
In general, these agents work either by replacing a defective complement component as 
factor H, that is the central soluble activation inhibitor of the alternative complement 
pathway, or by blocking the complement pathway C3, the POT-4 (79, 82).  

c. Kinase inhibitors 

Another approach to inhibit angiogenic growth factors as VEGF is through inhibition of the 
downstream signaling pathways targeting the tyrosine kinases. Several inhibitors were 
tested and a case in point is the intravitreally administered Vatalanib, a VEGF receptor 
inhibitor that binds to the intracellular kinase domain (83). Other kinases inhibitors 
currently in development include pazopanib, sorafenib, motesanib, TG100801, as well as 
AG013736 (84-86).  

Sorafenib is an orally active multikinase inhibitor that inhibits the serine/threonine kinases 
activity of the VEGF receptor.  The CNV area in sorafenib-treated rats was significantly 
reduced in a dose-dependent manner (85). Sorafenib is in phase III trials for renal-cell 
carcinoma patients. 

6. Small interference RNA (siRNA) 

RNA interference is a technology that allows the silencing of genes in animals using 
therapeutic double-stranded RNA molecules. siRNA molecules induce gene silencing by 
binding to complementary target RNA molecules in association with the nucleolytic 
cytoplasmic protein complex known as the RNA-induced silencing complex (87). 
Nowadays, siRNA is being designed to reduce the production of angiogenic molecules 
providing potent therapies for ocular neovascularization in patients with AMD. siRNA can 
be injected into the vitreous cavity or at the subretinal space to treat choroidal 
neovascularization. This delivery produces local silencing of a gene with small chance for a 
systemic effect on the same gene (88, 89).  

The targeted genes for CNV treatment are mostly VEGF and VEGF receptors (90-92). The 
silencing of hypoxia inducible factor-1alpha (HIF-1alpha), that regulates the VEGF 
expression in hypoxic conditions of ocular angiogenesis is also under investigation to treat 
CNV (93). siRNA targeting the TGF-β, involved in fibrotic scars, seems to be another great 
potential to treat AMD (94). Furthermore genes associated to photoreceptors degeneration 
(apoptosis mediators) c-Jun, and Bax are being tested for futures therapies (95).   

A phase I study to investigate the safety, tolerability, pharmacokinetics of a single 
intravitreous injection of Sirna-027 (siRNA-mediated VEGF silencing) in 26 patients with 
choroidal neovascularization was completed, and stabilization or improvement in visual 
acuity and foveal thickness was observed (90). 
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7. Gene therapy 

Gene-based therapy is defined as the introduction, using a vector, of nucleic acids into cells 

with the objective of changing gene expression to prevent or reverse a pathological process 

(96). Pro- and antiangiogenic factors regulate the pathogenesis of the ocular 

neovascularization. Gene transfer to increase expression of endogenous antiangiogenic 

proteins has the potential to provide long-term stability in patients with AMD (97). There 

are two routes of administration of viral vectors: intravitreous injection and subretinal 

injection. The main vectors used for gene transfer are adenovirus, adeno-associated virus 

(AAV) and lentivirus (96). 

Genes encoding antiangiogenic proteins are genetically inserted in viral vectors. The viral 

vectors infect animal cells and the overexpression of the antiangiogenic protein can be 

detected. Pigment epithelium-derived factor (PEDF) is a serine proteinase inhibitor from 

cultured retinal pigmented epithelial cells, which posses a combination of neurotrophic, 

antitumoral and antiangiogenic activities. Intravitreous or subretinal injection of adenoviral 

vector expressing human PEDF suppressed the development of retinal neovascularization 

(98). In the rat CNV model, the gene transfer of PEDF using ultrasound-mediated 

microbubbles was able to inhibit effectively the CNV (99). 

The secreted extracellular domain of VEGF receptor-1, sFlt-1, a soluble form of the Flt-1 

VEGF receptor has been used effectively in recombinant adenovirus (Ad)- and recombinant 

adeno-associated virus (AAV)-mediated antiangiogenic gene therapy to inhibit angiogenesis 

in CNV animal models (100, 101). The expression of sFlt-1 was associated with the long-term 

regression of neovascular vessels in mice and monkey (102).  

Endostatin is C-terminal fragment derived from collagen XVIII that inhibits tumor 

angiogenesis (103). Systemic injection of adenoviral vectors containing a sequence coding for 

murine endostatin, and the mice injected had the serum levels of endostatin raised up to 10-

fold and had nearly complete prevention of CNV (104). Subconjunctival injection of 

recombinant adeno-associated viral vector expressing human angiostatin reduced alkali 

burn-induced corneal angiogenesis (105).  

Intravitreal adenovirus-mediated gene transfer of 15-Lipoxygenase-1, an oxidizing enzyme 

producing reactive lipid hydroperoxides, efficiently inhibited VEGF induced 

neovascularization and pathological changes in rabbit eyes (106).  

8. Conclusions 

The treatment of AMD up to 2000 was limited to vessel destructive procedures that did not 

improve the visual acuity. The development and testing of therapeutic agents that prevent 

or delay the progression of AMD is urgently needed, from the standpoint of patient care 

and quality of life, as well as cost savings. The development of new therapies targeting the 

angiogenic components of CNV could have a significant impact on the health and quality of 

life of AMD patients. Moreover combination therapy will possibly replace monotherapy as 

the treatment of choice in order to reduce the frequency of treatment and prevent the late-

stage complications of neovascular AMD.  
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