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Spain 

1. Introduction 

Advances in sensor technologies and data storage have led to the development of portable 
systems that can measure aspects of human behaviour in everyday life. Measuring the 
progressive change in physical activity in people with different types of diseases in real 
conditions means that rehabilitation, training and physical education programmes can 
accordingly adapt. Monitoring activities has been acknowledged as an integral part of 
optimum healthcare. [2]. There are multiple disciplines in which activity is monitored, such 
as medicine, physiotherapy, behavioural sciences, psychophysiology and ergonomy. 

Parallel development in techniques for measuring movement and mass storage means that 
is possible to measure physical activity in real conditions. Daily physical activity is defined 
as the total voluntary movement produced by the musculoskeletal system during daily 
functioning, [3]: measuring movement with sensors is related to measuring body movement 
or specific parts of the body depending on the location of the sensor. 

Different configurations of monitors of physical activity have been primarily applied on 

rehabilitation programmes of different types of pathologies. To configure pulmonary 

rehabilitation in people with chronic pulmonary diseases the application of activity 

monitors that help with daily activity and physical activity have been researched. The 

development and application of such systems involves measuring movement, and 

methodological, practical and analytical aspects. A review presented by Steele, [91], 

describes different monitoring systems of daily activity and exercise with movement sensors 

in people with pulmonary diseases, by analysing the different sensor technologies used in 

commercial devices. Among the clinical uses, observation processes are included which are 

of interest to obtain variables like improved exercise and increased daily activity. Functional 

capacity, self-sufficiency for movement, quantification of gait and measuring physical 

capacity by calculating energy consumption over time are the principal variables of interest 

that have been calculated with systems that use movement sensors, [8], located on the waist, 

ankle and wrist of subjects. 

As well as the energy consumption associated with any type of physical activity (both static 
and dynamic), the estimate of variables related to gait and lower-limb movements, such as 
the number of steps or distance covered, are measurements that have also been shown to be 
valid and have been obtained with high reliability in versions of pedometers available 
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commercially, like the Digiwalker pedometer, which measures wrist vertical accelerations, 
or the Caltrac system, [3], which uses uniaxial accelerometers located on the hip and 
estimates energy consumption depending on the age, height and gender of the user. It has 
been observed that estimates with these devices may vary according to: 

- the velocity and frequency of the movement or activity; 
- the location and degree of freedom of the sensors; 
- the calibration equations applied. 

The quantification of activity is a method to measure physical activity that may help as a 
motivation tool. Advanced monitors of physical activity aim to establish the type of activity 
according to the data captured using portable systems to measure movement. In the 
literature we find portable systems that classify movement into different applications. It is 
important to mention the recent exploration of applying accelerometers on body segments 
to study activities. The concept of an activity monitor based on ambulatory measurement of 
posture and movement, albeit not new, is mentioned in relatively few cases in the literature. 

Recognising activities from signals of accelerometers mounted on the torso has been 
researched in, [7], whereby a model of multiple classes was proposed by combining Markov 
chains and Gaussian models from characteristics extracted from the analysis with the fast 
Fourier transform (FFT). In a study analysing different accelerometer orientations on the 
sternum, to recognise activities and postures, [7], the viability of discriminating dynamic 
and static activities with methods for processing signals to extract characteristics was 
confirmed. 

In the literature we found, [49], the combination of accelerometers with gyroscopes 
integrated into a portable device on the waist of subjects and a proposal to analyse the 
morphology of the signals from/ of the two types of transducers and the application of 
thresholds to discriminate specific activities. The classification method proposed identifies 
the level of velocity of movements in categories according to fuzzy rules. Another system 
for monitoring activities, presented by Groeneveld, [9], proposes training a neuronal 
network to classify movement data. 

Among the classification methods applied to identify activities we find Bayes classifiers, 
hidden Markov chains, decision trees, Gaussian models and frequency component analysis. 
Generally, a problem found in obtaining a model to classify multiple activities (classes) is 
the high probability of overadjusting the data to the group of training data with the 
resulting loss of expected generality. It is important to note that the quantitative comparison 
of the validity of systems for monitoring activities is a complex task and not always 
attainable given the differences between the classification, adjustment and application 
criteria of the different methods proposed. However, it is possible to do qualitative 
comparisons, knowing the methodology applied to obtain the results of a system and the 
behaviour of different methods to discriminate specific activities. 

The most relevant studies found to date in the literature pose discriminating activities with 
portable sensors of movement mounted directly on the torso or waist. Only pedometers, as 
monitoring methods offering specific information, have been applied to the lower limb and 
configured as commercial systems to count steps or estimate energy output. Instruments 
available in the market to monitor activities from wrist motion (Motionlogger, Ambulatory 
Monitoring, Inc.) enable long-term data logging and objective detection of sleep, 
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hyperactivity or daytime activity levels. Other devices attached to the lower limb are 
capable of measuring important motion variables and foot pressures for analysis of walking 
features, e.g. WalkinSense, Tomorrow Options. To date, we have not found any study on 
monitoring physical activities in users with ambulatory gait aids in the literature. We 
present the concept and experimental study of monitoring activities with lower-limb 
exoskeletons below. 

2. Exoskeleton activity monitor (EAM) 

Traditional techniques to analyse gait (video- and force-platform-based systems) restrict 

mobility and do not represent very natural conditions due to spatial limitations. In a 

preliminary study, [1], where a multidisciplinary group of experts involved in the 

manufacture, prescription and evaluation of lower-limb orthoses was considered, the 

necessary guidelines were defined to include devices to monitor users with lower-limb 

functional compensation systems both in the laboratory and in real-world conditions, so that 

new objective information might be obtained that could be used by physiotherapists, 

orthopaedic specialists and physiologists. 

The exoskeleton activity monitor (EAM) approach presented is based on these requirements 

and fits into a context of clinical application as a tool to analyse the daily activity of subjects 

in a clinic or rehabilitation centre and the functioning of the gait aid system in an 

orthopaedic workshop. The portable gait compensation system is equipped with the activity 

monitor that captures lower-limb movement. In the application scenario, the subject 

develops one or several activities freely with the system that captures biomechanical data. 

Later in the clinic or rehabilitation centre the session data related to the subject information 

(data bases with anthropometrical, historical, statistical data, etc), are downloaded into a 

base platform where they are processed and presented to assess the daily activity and keep a 

track record of system use. Figure 4.1 shows a diagram of this concept of monitoring 

subjects with lower-limb exoskeletons or orthoses. 

 

Fig. 4.1. Diagram of the context of monitoring physical activities with a lower-limb 
exoskeleton activity monitor (EAM). 
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2.1 Objectives 

The monitor aims to offer information on the exoskeleton by monitoring a set of activities or 
categories. Accordingly, we also consider the following subset of activities: 

- Sitting 
- Standing 
- Walking on level ground 
- Walking (going up/down) ramps of approximately 5 degrees 
- Going up or down stairs 
- Other or not known 

2.2 Ambulatory platform 

The entire system includes hardware, methods for recognising activities and the 
positioning of sensors on the lower limb. The ambulatory unit that controls the 
exoskeleton contains two 8-bit AVR microcontrollers, which manage acquisition (up to 16 
analogue channels), wireless communication and data storage on SD (Secure Digital) card 
removable flash memory. The autonomy of the activity monitor must be such that 
measurements can be taken for one whole day. The prototype that we have developed is 
fed by a 900-mAh lithium-ion battery that offers 4 hours of autonomy in continuous use. 
The storage capacity of this prototype is conditioned by the storage capacity of the SD 
flash card and the capacity of the battery used. The Atmega32L microcontroller manages 
the data writing and reading, updates an initialisation file containing the session record, 
the times (given by a real-time clock) and the sensor gains according to prior calibration. 
The sensors used in the monitor are a uniaxial accelerometer on the foot, gyroscopes on 
the foot and leg (to measure rotations on the sagittal plane) and an angular position 
sensor on the knee. 

The monitoring system in offline mode continually measures and stores the sensor 

configuration signals at a frequency of 33 Hz, with an 8-bit resolution. The attachment of 

the inertial sensor boxes to the exoskeleton structure reduces to a great extent the 

appearance of artefacts because of relative vibrations or movements between the sensor 

and the segment in question. The ambulatory measurement unit is attached to the 

subject's waist. The vector of input variables of/from the activity monitor describes 

movement in relation to the state of the lower limb is defined in accordance with the 

following expression: 

 u(t) = {ay foot (t), ω foot (t), ω leg (t), θ  knee (t)}  (4.1) 

From the conclusions of the analysis of movement in 3D, we assume that in the subset of 

activities of interest, the components resulting from movements outside the sagittal plane 

and changes in direction of movement are low and their effect is negligible on the results of 

the identification methods that we propose below 

3. Methodology 

The processing method concept is based on processing a posteriori the lower-limb 
movement signals to extract the discriminating characteristics that make it possible to group 
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them into a number of known categories, where univocal transitions between the different 
activities are not assumed. The data processing consists of several stages: (1) filtering; (2) 
extracting characteristics to detect static activities, cyclical activities and to analyse the 
energy of the time series for which two methods are proposed; and (3) discriminating a 
subset of categories. 

- Signals 
- Standardisation 
- Filtering 

 

Fig. 4.2. Activity monitor schema. 

3.1 Signal acquisition and filtering 

The inertial sensors are located on the foot and leg. The accelerometer gives an output equal 
to zero when its measurement axis is perpendicular to the gravity acceleration axis. The 
gyroscopes give a signal equal to zero in static conditions and a voltage proportional to their 
rate velocity. The angle of the knee estimated from the position sensor measurement on the 
exoskeleton joint may vary between approximately 0 to 100 degrees during the set of 
activities. Signal acquisition is done with an 8-bit resolution AD converter, at a sampling 
frequency of 33Hz, values that were established by a compromise between resolution, 
autonomy and computation time (a sampling frequency sufficient for gait at natural velocity 
and corresponding to the maximum rate of writing in SD format for our data package 
structure). The signals are filtered initially using a first-order, low-pass filter with a cutoff 
frequency of 30 Hz. 

3.2 Detecting static activity 

In static conditions, constant acceleration on the sensor depending on the inclination φfoot 
of the segment, in relation to the axis of the force of gravity g, can be calculated via the 
cosine, according to the expression 
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 Ai = −g cos(φfoot ) + n  (4.2) 

where n is white noise. 

On the other hand, during static activities the gyroscope signals will be equal to zero. 
These conditions can be used to determine whether the activity is dynamic or static. In the 
literature we find the application of this principle proposed by Veltink, [9 7 ], establishing 
the attachment of accelerometers on the trunk (middle sternum) as the methodology for 
discrimination. The method that we propose for the EAM to detect the nature of the 
activity from measuring lower-limb segment movement consists of: i) low-pass filtering of 
the accelerometer signal on the foot segment with a cutoff frequency of 0.2Hz, ii) 
demodulation of the signal (absolute value) and application of a second-order, low-pass, 
Butterworth filter with a cutoff frequency of 0.1 Hz to obtain the signal envelope and 
weight it (by multiplication) with the velocity magnitude (filtered with a low-pass filter of 
0.2 Hz) of the foot rotation, iii) application of a threshold to the resulting signal. Once the 
detection of the static activity has been generated it is possible to discriminate directly 
between the sitting and standing categories, by applying a threshold to the knee flexion 
angle. 

3.3 Detecting periods of cyclical activity 

Earlier studies have indicated the viability of separating the activities of body segments into 

cycles using accelerometers mounted on the human torso [5]. We propose a method using 

accelerometers and gyroscopes on the lower limb. By estimating the intervals corresponding 

to dynamic activities (gait on level ground, going up and down ramps, going up and down 

stairs) we pose the possibility of detecting cyclical activities with a combined technique of: a) 

identifying high-sensitivity heel or foot contact, considering different support types (such as 

flat support on stairs, initial support after point drag, etc.) and detecting minimums of the 

time series of foot angular velocity and b) signal oversampling in fixed width time 

windows, between periods of dynamic activity greater or equal to a window width that 

defines the detector time resolution. Below this threshold the dynamic activities will be 

considered in the indeterminate category and could correspond to activities not considered 

in the subset of categories or to transitions between these activities. 

3.4 Extracting characteristics 

From the input signals at each instant of time measured, methods are applied to 
discriminate rotation intervals (RIs) from the segments and intervals of cyclical dynamic 
activity. Likewise, methods are proposed to extract signals representing dynamic movement 
characteristics, for which two discriminating indices (EAF and PFT) and the frequency 
contents (FC signal) are proposed. We describe the procedures to obtain each of the 
characterisation signals used in the activity monitor below. 

3.4.1 Frequency response 

The inertial sensor signals are passed through a finite impulse response (FIR) digital filter 
designed to pass frequencies in the 0.3-2 Hz band, (limits in the 0.1-3 Hz band) generating 
FC signals, with the frequency content in the oscillatory bandwidth of interest, whose 
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instantaneous amplitude is related to the signal frequency content of linear acceleration and 
rotation velocities. 

 

Fig. 4.3. Band pass filter magnitude and phase response to extract signal frequency 
characteristic from segment movement. 

3.4.2 Segment rotation interval 

Signal frequency characterisation corresponding to leg rotation velocity, ωleg, is rectified. 
Two consecutive zero-pass instants, which correspond to the changes in gyration direction 
of the segment, define the intervals. Throughout these intervals a numerical integration is 
applied obtaining, 

  (4.3) 

which are defined as the rotation intervals of the dataset. Two methods (indices) to 
characterise the signals for clustering into activities are proposed below. 

3.4.3 RLM index 

We define the rotational and longitudinal movement (RLM) index as the characteristic for 
classifying the cyclical activity between the subset of categories. The RLM index is 
calculated from the signal resulting from the composition of acceleration filtered signals at Y 
on the foot, a y foot , and angular velocities of the foot, ωfoot , and  leg, ωleg. For each 
sample k of the period n of cyclical activity of duration s, the RLM index is calculated using 
the signal composition integral. 
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 RLM (k, n) = {a y foot[k] ∗ ωfoot [k] ∗ ωleg [k]} k=s k=0     (4.4) 

Accordingly, an RLM value is defined for each dynamic activity interval. This index is directly 
related to the mean amplitude of the acceleration and angular velocity signals and is an 
indication of the quantity of combined movement (rotational and longitudinal) of the two 
segments, required for the activity. We propose calculating the integral over the composed 
signal because rotational and longitudinal movements are thereby considered at each instant 
of time. The possibility of grouping data from the RLM mean value calculated at each period 
of cyclical activity is considered by obtaining specific thresholds for separating categories. 

   

3.4.4 Frequency vs. time: PFT index 

Analysis of the signal power spectrum over time is a characteristic which, similarly to the 
RLM index, can be used to define a metric for classifying activities. The calculation on the 
pre-defined signal composition is done with the FFT of a specific number of samples, with 
an H-size Hamming window and number of overlapping samples ns. As a criterion for 
analyser design, we select the ns value from which we calculate the size of the window 
using the expression 

 H = ((ns ∗ (K − 1 ))/ K) + 1 (4.5) 

where K is the total number of samples of the composed signal. We thus obtain the frequency 
component matrix in M frequency [f, t] of 1024 × (K − ns) elements. The mean and standard 
deviation of the frequency components obtained at each instant are measured from the total 
signal power for each sample. An abrupt change in the content of M [f] between consecutive 
samples, can be detected by tracking the deviation from a reference value at each instant. We 
define the PFT index as the area under the curve from the result the standard deviation σM, 
for each period n of cyclical activity. The logarithmic function was used to change the base to 
adapt the range of the output of the matrix M elements and define tresholds. 

4. Experimental methods 

4.1 Subjects 

A group of experiments were conducted with 3 subjects with no mobility problems 
(numbered 1, 2 and 3), with ages ranging between 25 and 35 years, stature between 1.70 and 
1.88 m and weighing between 60 and 70 kg. The passive version of the exoskeleton was 
attached to the subjects. The exoskeleton was equipped with the monitoring system to 
evaluate the activity monitor: detecting static periods, cyclical activities and discriminating 
the total set of activities. 

4.2 Protocol 

The group of experiments were developed following a specific protocol that determined a 
sequence of activities that included repetitions of the categories selected in a circuit: cyclical 
and non-cyclical dynamic activity (ramps, stairs, gait on level ground), and static activity 
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(standing, sitting). The circuit defined the trajectory of the subject, adopting his preferred 
velocity of movement and for the static activities fixed intervals of time were defined. In 
order to divide the movements into activities a posteriori, either assisted direct observation 
with a chronometer or observation of a video afterwards was used. The sensors were 
calibrated statically prior to each trial and signal unbalances were corrected to guarantee 
that the measurement conditions were identical. All the signals corresponding to each trial 
were stored in files in the mass storage device of the exoskeleton ambulatory measuring 
system. The data processing methods that the activity monitor applied were programmed in 
the base platform of the system. 

4.3 Detecting static activity 

To detect static activities, a threshold equal to 0.05 was applied to the filtered and rectified 
signal. The threshold applied to the knee angle to detect sitting activity was 30 degrees. 

4.4 Detecting periods of cyclical activity 

Signal frequency oversampling was 100 Hz. The detector time resolution was defined by 
applying a window width to discriminate cyclical activities equal to 1.5 seconds. The 
sensitivity of the method for detecting minimums (section 5.3.1.3) was adjusted to obtain 
errors less or equal to 1%. 

4.5 Discriminating dynamic and static activities 

From the inertial sensor signals with the impulse response filter (IRF) (with limits in the 0.1-
3 Hz band) the FC signals were generated for each subject assay. From the leg angular 
velocity rectified signal the RIs were found in the datasets. 

 

Fig. 4.4. Example of extracting dynamic characteristic signals during foot transitions (static 
condition) to gait on level ground. The signal measured ωleg is used to calculate FC and RI. 
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The grouping thresholds of the satisfactory RLMs in the classification in our studies are: i) gait 
on level ground: RLM > 25; ii) going up/down stairs: RLM < 8; iii) going up/down ramps: 10 
< RLM < 20. Calculation of the power spectrum was developed over time with an FFT of 2048 
samples, on the composed signals, with an overlapping ns equal to 81, applying the equation 
4.5 for each assay with its specific number of samples K. For the grouping of the PTFs 
(equation 4.6) we define the following thresholds in our studies: i) gait on level ground: PTF > 
6; ii) going up/down stairs: PTF < 3.3; iii) going up/down ramps: 3.5 < PTF < 5. 

5. Results 

Figure 4.5 shows an example of the results of the activity monitor in the experiment with 
one of the subjects. These results show the discrimination of static and dynamic activity, the 
identification of Intervals of cyclical activity and the RLM and PFT indices. Based on video 
observation, situations were established where the monitor detected dynamic activities, 
either cyclical or indeterminate activities. This example represents the dynamic 
characteristic signals obtained and calculated from the methods proposed and the 
identification response of dynamic activities with the two grouping methods presented for a 
circuit with all the activities. 

 

Fig. 4.5. Example of the EAM method results for subject 1 corresponding to a circuit of 
activities with the exoskeleton. Input signals to the monitor (a), signal N to extract the RLM 
index based on thresholding (b), instantaneuos frequency components over time and average 
during periods of activity (c) to calculate the PFT index (d) and EAM outputs (e) calculated 
based on RLM (red) and PFT (black). The detector presents the classification in categories 
(ESC: stairs; RAMP: slopes; MAR: walking; IND: undetermined; EST: standing; SIT: sitting). 
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5.1 Detecting static activity 

The results of detecting static activity based on the time invariant state of the foot 

accelerometer and gyroscope signals show the viability of detecting the static condition 

irrespective of type — sitting or standing— in the set of categories. Figure 4.6 shows an 

example of detecting static activity with the resulting filtered and rectified signal, obtained 

from the two sensor signals, in the transition between the two static activities. The 

configuration of the detector depends primarily on the threshold value applied to the 

resulting signal. The cutoff frequency value of the filter and its order are also configuration 

variables that define the attenuation level of the resulting signal. In our studies we conclude 

a second-order, Butterworth filter with a cutoff frequency of 0.1Hz and a resulting signal 

threshold equal to 0.2 as adequate values for the design of the static activity detector with 

the exoskeleton. 

 

Fig. 4.6. Example of the static activity detector functioning when sitting down and standing 
up. The degree of knee flexion, foot gyration acceleration and velocity filtered signals ayfoot 
and ωfoot, the signal from demodulation, calculation of envelope and weighting. 

It is concluded that by combining the two inertial sensor signals, the static activities of the 

other activities can be clearly grouped. This fact is verified in the analysis on the plane of the 

mean values of the (FC) signals generated from the two sensor signals in the foot segment 

(see figure 4.10). The activity not identified as static in the dataset is labelled in this stage of 

the monitor as dynamic activity. 
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5.2 Detecting periods of cyclical activity 

The method proposed and applied to the experimental dataset can identify the cyclical 
dynamic activities establishing the starting and finishing times of dynamic activity and 
determining roughly periodical contacts of the lower limb with the ground during this 
interval. 

5.3 Discriminating dynamic activities 

To detect minimums of the foot angular velocity signals, we consider a minimum point if it 

corresponds to the greatest value in a window with a width equal to a tenth of the sampling 

period and if this corresponds to an increase in velocity greater than 50 degrees/s, 

compared with the previous sample. The configuration of the width of the detector window 

must correspond to a criterion defined according to the application context. The 

instantaneous amplitude of the FC signals is used as a characteristic to apply the grouping 

indices of dynamic activity proposed.  

Figure 4.7 shows the mean values and standard deviations of the FC signals calculated 
from the foot accelerometer and the leg and foot uniaxial gyroscope tangential signals in 
the entire periods of dynamic activity. A significant separation can be concluded between 
subjects for mean values of gait activity on level ground from the foot angular velocity 
sensor, as information for discrimination. For the FC of ωfoot with the Wilcoxon non-
parametric signed rank test, [12], a mean probability of equality p in the data medians 
compared with the other activities equal to 0.1 was concluded. For FC of ωleg, p was 
found equal to 0.2. The separation between the gait on sloping ground and stairs for the 
three subjects with foot gyration velocity showed a statistical distinction for the amplitude 
of the FC signals, with a p equal to 0.2 obtained using the Wilcoxon signed rank  
test. 

No significant differences were found in the mean FCs of going up and down stairs and 
ramps, compared with gait on level ground. The activities labelled as indeterminate 
(transitions between cyclical static and dynamic activities) showed a significant statistical 
separation with the FCs of the three signals, greater for the FC calculated from the foot 
rotation velocity. The differences between subjects for cylical gait signals, fundamentally 
due to the velocity assumed by each subject, make it possible to apply just one threshold to 
distinguish gait from the other activities. However, the standard deviations of the FC mean 
values of foot gyration velocity are statistically significant, so it is better to calculate the RLM 
discriminating index. Figure 4.8 shows the mean values and the standard deviations of the 
FC signals calculated from the foot accelerometer and the leg and foot uniaxial gyroscope 
tangential signals, averaged from individual periods (rotation intervals (RIs) in periods of 
cyclical activity. Using the mean value of the FCs of all the cycles of a cyclical activity, the 
distinction of gait activity on stairs with regard to gait on sloping ground using the 
gyroscope on the foot is significant, with p equal to 0.12, for all subjects. The mean standard 
deviation for each subject of the FCs of foot tangential acceleration in independent cycles of 
cyclical activity is greater for all subjects when the values for the entire periods of cyclical 
activity are considered, as can be observed in figure 4.10 with the grouping of activities. The 
conclusion is that it is best to use the mean values of the cyclical periods for calculating the 
RLM index. 
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Fig. 4.7. Mean values (± standard deviation) of the FC signals calculated from the foot 
accelerometer and foot and leg uniaxial gyroscope tangential signals of the periods of indete-
rminate, cyclical activity /cyclical and indterminate activity (MAR: gait, RAM: gait on sloping 
ground, ESC: stairs IND: indeterminate), for the three subjects (S1 blue, S2 red and S3 green). 

 

Fig. 4.8. Mean values (± standard deviation) of the FC signals calculated from the foot 
accelerometer and the foot and leg uniaxial gyroscope tangential signals of the total of 
individual cycles (rotation intervals, RIs) for each cyclical activity (MAR: gait, RAM: gait on 
sloping ground, ESC: stairs), for the three subjects (S1 blue, S2 red and S3 green). 

5.4 RLM index vs. PFT index 

The detection of dynamic activities was calculated with the RLM cyclical activity index 
(equation 4.4) and the PFT index based on the FFT with the thresholds found experimentally 
(shown in section 4.4.5). The dependency of the activity monitor response on the 
configuration of these thresholds must be researched according to the type of application 
and the subset of categories to be discriminated. Figure 4.9 compares the mean values of the 
RLM and PFT indices calculated for the three subjects. The detection errors were calculated 
by correlating the output signals using the two methods with the reference signal obtained 
from observation. The PFT indices vary to a greater extent than the RLMs for the standard 
deviations. 

The variation in the RLM index for the subjects and repeated activities of going up/down 
stairs is significant and the detection mean error of this activity with this method is 8%. The 
detection mean error for the three subjects walking on sloping ground (RAM) with the RLM 
index was 10%, whereas for the detection with the PFT index the mean error was 18%. The 
detection of cyclical gait with the two methods did not reflect any significant differences 
statistically, with an overall mean error of 1.5%, a fact that was verified by separating the 
gait mean values from the other activities.  
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It is observed that the detections classified as indeterminate occur during the transitions 
between dynamic and static activity in 90% of the cases, as a result of overlapping between 
values of the indices discriminating activity on sloping ground and static activity. The 
overall viability for detecting activity in this study with the EAM is 4.2 %. 

 
 
 

 
 

Fig. 4.9. Mean values (± Standard deviation) of the resulting PFT and RLM indices for 
discriminating dynamic activities (EST: static, MAR: gait, RAM: gait on sloping ground, 
ESC: stairs, IND: indeterminate), calculated for all the set of tests with the three subjects (S1 
blue, S2 red and S3 green). 

 
 
 

 
 
 

Fig. 4.10. Mean values on the plane of FC signals calculated from the foot accelerometer 
tangential signal vs. the foot gyroscope tangential signal, for periods of dynamic and static 
activity detected in the set of tests (EST : static, M AR : gait, RA M : gait on sloping ground, 
ESC: stairs, IND : indeterminate), for the three subjects (S1 blue, S2 red and S3 green). 
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Table 4.1. Mean values and standard deviations of the RLM and PFT indices from all the set 
of repetitions, grouped into dynamic activities.  

6. Discussion and conclusions 

The discrimination of dynamic activities in the EAM groups characteristics with signal 
thresholds that describe morphological characteristics of the signals and the frequency content 
of lower-limb movements. It has been proven that sensitivity to differences between subjects is 
acceptable with this method, which does not require an initial reference measurement of each 
subject to configure the monitor. Nevertheless, a large scale study including a larger number of 
subjects will be required in order to test the robustness of the proposed method. In this study 
we have considered a set of five categories with a low classification mean error in a small 
group of healthy subjects. The capacity of the monitor to detect gait on sloping ground was 
lower, probably due to different strategies adopted by the subjects with the exoskeleton. The 
width of the detector window of the cyclical activity obtained in this study is satisfactory for 
the experimentation proposed to evaluate the activity monitor. Analysis of the standard 
deviation of the mean values of the two indices proposed showed a better functioning of the 
monitor with the proposed RLM discriminating index in the overall results, although it was 
more sensitive to subject differences. Moreover, the computational efficiency of applying this 
method, compared with the PFT, resulting from applying the FFT, is improved, with a ratio of 
1 to 20, in processing time. 

The capacity of the configuration of inertial measurement units in the exoskeleton segments 
and the knee angle precision sensor to distinguish movements and postures was confirmed. 
The transition between sitting down and standing up with the method proposed showed 
excellent functioning. The potential of this method in different applications for other types 
of portable technical aids (standing frames, walking frames, wheelchairs) is high. 

www.intechopen.com



 
Human Machine Interaction – Getting Closer 

 

186 

It is important to highlight that the applicability of these methods to pathological cases 
considers that the gait compensation system approximates pathological patterns to normal 
patterns and, therefore, it is considered that the applicability is for general use. Adapting 
classification methods to particular cases, such as for patients who require a permanent joint 
block will necessitate adjusting the activity monitor subsystems. We take the study of 
pathological cases as a field of future work which will depend on the viability of the 
application during prolonged use of the compensation system (adaptations in the medium 
and long term). 

With the system it is possible to quantify the number of knee flexions attained with the 
compensation system, depending on the time used and in relation to the dynamic activity. 
Thus, detector functioning and sensitivity to cyclical dynamic activities can be studied 
considering cyclical activities in different conditions where abrupt changes in trajectory or 
activity may occur. We highlight the need to analyse multiple aspects relative to the validity 
of the methods in different conditions and in the application of exoskeletons and orthoses in 
the daily life of subjects with muscular weakness. 
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