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1. Introduction

Studying of various aspects of laser field influence on physical processes is one of the most
topical problems of modern applied and fundamental physics. Scientific interest is due to
numerous unknown before phenomena, which are caused by laser radiation application and
make enable coming to the main point of atomic and molecular structure of matter. These
phenomena are of great importance over such fields of physics as holography, fiberglass
optics, telecommunications, material authority, biophysics, plasma physics, nuclear fusion
and so on. The lasers which generate radiation within the range from deep infrared to
ultraviolet one and even the soft X-rays region with intensities up to 1022 W/cm2 inclusive
are made accessible at present. The sources of laser radiation had been put into practice of
modern experiment widespread owing to its unique properties. The laser physics progress
is generally concentrated on ever shorter and more powerful laser pulses production and on
application of the lasts into various fields of scientific studies. New experimental conditions
require continual improvements in computations and development of model of external field
description.

Influence of laser field on kinematics and cross-sections of various quantum electrodynamics
(QED) processes of the both first and second orders in the fine structure constant has
been an object of study over a long period of time already. The characteristic feature
of electrodynamics processes of the second order in the fine-structure constant in a laser
field is associated with the possibility of their nonresonant and resonant modes. At this
rate resonant cross-sections of scattering of particles may exceed the corresponding ones
in external field absence in several orders of magnitude. Resonant character relates to the
fact that lower-order processes, such as spontaneous emission or one-photon production and
annihilation of electron-positron pairs, are allowed in the field of a light wave. Therefore,
within a certain range of energy and momentum values a particle in an intermediate state may
fall within the mass shell. Then the considered higher-order process effectively decomposes
into two consecutive lower-order processes. Occurrence of resonances in a laser field is one of
the fundamental problems of QED in strong fields.

Theoretical study of QED processes in an external laser field basis on solutions of the Dirac’s
equation for an electron in the field of a plane electromagnetic wave namely the Volkov
functions (Volkov (1935)). Also one has to use the Green function of an intermediate particle in
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a plane wave field when studying processes of the second order in the fine structure constant.
The analytical expression of the Green function was obtained (Schwinger (1951); Brown &
Kibble (1964)).

Several of significant reviews are already devoted to studying of QED processes in the field
of a plane monochromatic wave. The review Nikishov & Ritus (1979) is to be mentioned as
one of the earliest works, in which first order processes in the field of a plane electromagnetic
wave are studied generally. Processes of an electron scattered by an atom and a multiphoton
ionization were considered in Ehlotzky et al. (1998). Theoretical studies of resonant and
coherent effects of QED in light field were systematized in the monograph Roshchupkin &
Voroshilo (2008) and several QED processes in strong field were reviewed by Ehlotzky et al.
(2009).

Detailed consideration of resonant processes in the field of a plane monochromatic wave
was fulfilled by Roshchupkin (1996). It is necessary to emphasize, that, when the resonance
conditions are satisfied, the amplitude of process of particles scattering in the field of a plane
monochromatic wave becomes infinite nominally. The infinity is eliminated by introducing
of radiative corrections into Green’s function of an intermediate particle according to the
Breit–Wigner prescription under consideration as usual. The resonant peak altitude is
determined by the lifetime of a particle in the intermediate state (Oleinik (1967)).

Since 1996 experiments of verification of QED in strong fields had been started at SLAC
National Accelerator Laboratory (Bula et al. (1996); Burke et al. (1997)) along with theoretical
study. The earliest results were related to studying of photon emission by an electron
in a collision with laser pulse and photoproduction of electron–positron pairs by a
gamma-quantum in the field of a laser. Verification of QED in strong pulsed fields is also
expected in the frame of the wide-ranging FAIR project (Darmstadt, Germany). Within the
FAIR project the laser facility PHELIX was developed and constructed. It enables to get laser
pulses with power up to petawatt range. The earliest experiments at this laser facility have
been put into practice (Bagnoud et al. (2009)).

The present paper reviews studies of a number of resonant processes in the field of an intense
pulsed laser. The earliest studies on spontaneous bremsstrahlung of an electron in a collision
with a laser pulse and photoproduction of electron–positron pairs by a high–energy photon in
the pulsed field were performed by Narozhniy & Fofanov (1996). Second order processes in
the pulsed fields which allow resonances were analytically studied for the case of moderately
strong field (Lebed’ & Roshchupkin (2010); Padusenko & Roshchupkin (2010); Lebed’ &
Roshchupkin (2011); Voroshilo et al. (2011)). These works were performed in recent several
years therefore the systematization and generalization of them is definitely significant. It
is important to underline that resonant divergences in amplitudes of studied processes are
eliminated in a consistent manner due to account of a pulsed character of the external field in
mentioned works.

Amplitude of a field strength of intense ultra short laser pulses changes greatly in space and
time. Thus, description of the external field as a plane monochromatic wave becomes the
problematic one. The external field is modeled usually as a plane quasi-monochromatic wave
for description of interaction of particles with a pulsed laser field when the characteristic
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Resonant Effects of Quantum Electrodynamics in the Pulsed Light Field 3

number of the external field oscillations in an electromagnetic pulse N is large:

N =
ωτ

2π
≫ 1, (1)

where ω is the characteristic frequency of wave field oscillation, τ is the characteristic pulse
duration. Quantity τ can approach a value of even tens of femtoseconds for fields within
the optical range of frequency, thus the condition (1) is satisfied for the majority of modern
intense pulsed lasers. Fields are named the quasi-monochromatic ones when the condition (1)
is satisfied.

Hereinafter we consider the external electromagnetic pulse as a plane electromagnetic
elliptically polarized wave propagating along z-axis with the four-potential (Narozhniy &
Fofanov (1996))

A (ϕ) = g
( ϕ

ωτ

)

· cF0

ω

(

ex cos ϕ + δey sin ϕ
)

, ϕ = (kx) = ωt − kx, (2)

where ϕ is the wave phase; c is the velocity of light in vacuum, F0 is the strength of a wave
electric field in a pulse peak, k = (ω/c, k) is the wave four-vector; δ is the wave ellipticity
parameter (δ = 0 corresponds to the linear polarization case, δ = ±1 corresponds to the
circular polarization case); ex = (0, ex), ey =

(

0, ey
)

are the wave polarization four-vectors
meeting the standard conditions: e2

x = e2
y = −1, (exk) =

(

eyk
)

= 0. The function g (ϕ/ωτ)
is the envelope function of the external wave four-potential that allows to take into account
the pulsed character of a laser field. Generally it is chosen to be equal to unity in the center
of a pulse and to decrease exponentially when |ϕ| ≫ ωτ. Thus, in this case it is possible to
consider the parameter τ as the laser pulse characteristic duration.

Nonlinear effects in the processes of interaction of particles with the field of wave are
governed by the classical relativistic-invariant parameter

η0 =
eF0λ̄

mc2 . (3)

Its value equals to the ratio of work done by the field at the wavelength to the particle rest
energy. The parameter (3) is one of the most important characteristics of the external field
and means the velocity of particle oscillation in the field of a wave in the case η0 ≪ 1.
Multiphoton processes occurring when particles interact in a light field are characterized also
by the Bunkin–Fedorov quantum parameter (Bunkin & Fedorov (1966))

γ0 = η0
mvc

h̄ω
. (4)

In the Eqs. (3), (4) e and m are the electron charge and mass, respectively; λ̄ = c/ω is the
characteristic wavelength, v is the particle velocity. The multiphoton parameters (3), (4) vary
considerably with external field intensity. Thus, within the range of optical frequencies (ω ∼
1015 s−1) the classical parameter η0 ∼ 1 when F0 ∼ 1010 ÷ 1011 V/cm, and γ0 ∼ 1 when
F0 ∼

(

105 ÷ 106) (c/v) V/cm. Consequently, we study all the processes within the range of
moderately strong field when the considered parameters obey the following conditions:

η0 ≪ 1, γ0 � 1. (5)
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The relativistic system of units, where h̄ = c = 1 and the standard metric for 4-vectors (ab) =
a0b0 − ab will be used throughout this paper.

2. Resonant spontaneous bremstrahlung of an electron scattered by a nucleus in

the field of a pulsed light wave

We consider in this section the problem of spontaneous bremsstrahlung (SB) of an electron
scattered by a nucleus in the external field of a pulsed light wave (see Fig. 1). Studying
of SB when an electron is scattered by a nucleus or by an atom in presence of an external
electromagnetic field has had a long-standing interest. Analytic expressions for the radiation
spectrum of SB in a plane monochromatic wave in the nonrelativistic case have been derived
by Karapetian & Fedorov (1978) for any atomic potential field in the Born approximation and
by Zhou & Rosenberg (1993) for a short-range potential in the low-frequency approximation.
Resonant SB of a nonrelativistic electron scattered by a nucleus in a plane-wave field was
studied by Lebedev (1972). Borisov et al. (1980) considered resonant SB, which accompanies
collisions of ultrarelativistic electrons for the case of large transferred momenta. In the general
relativistic case the problem of electron-nucleus SB in the field of a plane monochromatic wave
was studied by Roshchupkin (1985). It should be noted that the theory of SB in presence of
an external field is also developed in Lötstedt et al. (2007); Schnez et al. (2007). They contain
important numeric calculations for the case of a strong field. Nonresonant SB in a pulsed field
was considered by Lebed’ & Roshchupkin (2009). Resonant SB of an electron scattered by a
nucleus in the field of a pulsed light wave was studied in the general relativistic case (Lebed’
& Roshchupkin (2010)).

                          (a)                                                                (b) 

ipfp

Ze

q

k

iq

ipfp

Ze

q

k

fq

Fig. 1. Feynman diagrams of electron-nucleus SB in the field of a pulsed light wave.
Incoming and outgoing double lines correspond to the Volkov functions of an electron in
initial and final states; inner lines designate the Green function of an electron in a pulsed
field. Wavy lines correspond to four-momenta of spontaneous photon and “pseudophoton”
of nucleus recoil.

2.1 Amplitude of resonant spontaneous bremsstrahlung

The process of electron-nucleus SB in a pulsed light field (2) in the Born approximation on
interaction of an electron with a nucleus, which corresponds to the transition of an electron
from an initial state with the four-momentum pi = (Ei, pi) into a final state with the

four-momentum p f =
(

E f , p f

)

, is described by two Feynman diagrams (Fig. 1).
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The S-matrix element is given by

S f i = −ie2
∫

d4x1d4x2ψ̄ f (x2 |A )
[

γ̃0 A0 (|x2|) G (x2x1 |A ) Â′ (x1, k′) +

+Â′ (x2, k′) G (x2x1 |A ) γ̃0 A0 (|x1|)
]

ψi (x1 |A ) .
(6)

Here, ψi (x1|A) and ψ̄ f (x2|A) are wave functions of an electron in initial and final states in
the field (2), and G (x2x1 |A ) is the Green function of an intermediate electron in the field
of a pulsed light wave (2). Hereafter, expressions with hats above mean scalar products

of corresponding four-vectors with the Dirac γ̃-matrices. In the amplitude (6) A0

(∣

∣

∣
xj

∣

∣

∣

)

is

the Coulomb potential of a nucleus, and A′
µ

(

xj, k′
)

is the four-potential of a spontaneously

radiated photon. They have the following forms

A0

(∣

∣

∣
xj

∣

∣

∣

)

=
Ze
∣

∣

∣
xj

∣

∣

∣

, (7)

A′
µ

(

xj, k′
)

=

√

2π

ω′ ε∗µ exp
(

ik′xj

)

, j = 1, 2. (8)

Here, ε∗µ and k′ = (ω′, k′) are the polarization four-vector and the four-momentum of a
spontaneous photon, k′xj = ω′tj − k′xj.

The SB amplitude of an electron scattered by a nucleus in the field of a moderately strong
pulsed wave (6) in the general relativistic case was derived early (Lebed’ & Roshchupkin
(2009)). This amplitude may be presented in the following form

S f i =
∞

∑
l=−∞

Sl , (9)

where Sl is the process partial amplitude with emission or absorption of |l| laser-wave
photons, that is

Sl = −i
Ze3√π

√

2ω′E f Ei

ū f

[

Bli (γ̃0, ε̂∗) + Bl f (ε̂
∗, γ̃0)

]

ui. (10)

Here, the functions Bli (γ̃0, ε̂∗) and Bl f (ε̂
∗, γ̃0) correspond to the diagrams of electron-nucleus

SB in Fig. 1; ui, ū f are the Dirac bispinors.

Let us consider the diagram (a):

Bli (γ̃0, ε̂∗) =
∞

∑
r=−∞

2ωτ2

q2 + q0 (q0 − 2qz)

∞
∫

−∞

dξ
Λl+r (ξ)

[

q̂i + m + ξ k̂
]

Λ−r (ξ)

q2
i − m2 + 2ξ (kqi) + i0

, (11)

where the four-vector q = (q0, q) is the transferred four-momentum, qi is the four-momentum
of an intermediate electron for the diagram (a) (Fig. 1)

⎧

⎨

⎩

q = p f − pi + k′ + lk,
qi = pi − k′ + rk,
q f = p f + k′ + (l + r) k;

(12)
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q f is the four-momentum of an intermediate electron for the diagram (b) (Fig. 1). The integral
functions Λl+r, Λ−r are specified as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Λl+r (ξ) = γ̃0

∞
∫

−∞

dφ · Ll+r (φ) · exp {iq0τφ − i (ξωτ) φ},

Λ−r (ξ) =
∞
∫

−∞

dφ′ · F−r (φ′) · exp {i (ξωτ) φ′}.
(13)

The integration variables in Eqs. (13):

φ =
ϕ

ωτ
, φ′ =

ϕ′

ωτ
. (14)

The integral functions F−r (φ′), Ll+r (φ) in Eqs. (13) are stepless depended on the integration
variables (14), and are determined as

F−r (φ′) = ε̂∗ · L−r
(

χqi pi , γqi pi (φ
′) , βqi pi (φ

′)
)

+
+ (e+b) · g (φ′) L−r+1

(

χqi pi , γqi pi (φ
′) , βqi pi (φ

′)
)

,
(15)

where

b =
1
4

η0m

(

ε̂∗ k̂γ̃

(kpi)
+

γ̃k̂ε̂∗

(kqi)

)

, (16)

e+ = ex + iδey, (17)

L−r
(

χqi pi , γqi pi (φ
′) , βqi pi (φ

′)
)

=

=
1

2π

2π
∫

0

dϕ exp
{

i
[

γqi pi

(

φ′) sin
(

ϕ − χqi pi

)

+ βqi pi

(

φ′) sin 2ϕ + rϕ
]}

.
(18)

The arguments of functions (18) are defined by the expressions

tan χqi pi = δ

(

eyQqi pi

)

(

exQqi pi

) , Qqi pi =
qi

(kqi)
− pi

(kpi)
, (19)

γqi pi

(

φ′) = η0g
(

φ′) · m

√

(

exQqi pi

)2
+ δ2

(

eyQqi pi

)2, (20)

βqi pi

(

φ′) =
1
8

(

1 − δ2
)

η2
0 g2 (φ′)m2

[

1
(kqi)

− 1
(kpi)

]

. (21)

Expressions for integral functions Ll+r (φ) ≡ Ll+r

(

χp f qi , γp f qi (φ) , βp f qi (φ)
)

may be easily

obtained from the appropriate expressions (18)-(21) after following replacements of indices
and four-momenta: −r → l + r, qi → p f , pi → qi.

Functions Ln (χ, γ, β) determine probabilities of multiphoton processes produced by the
presence of a strong external field. Note that properties of these functions were studied by
Roshchupkin et al. (2000) in detail. Thus, they may be represented as series in integer-order
Bessel functions, i.e.

Ln (χ, γ, β) = exp (−inχ)
∞

∑
s=−∞

exp (2isχ) · Jn−2s (γ) · Js (β). (22)

112 Quantum Optics and Laser Experiments

www.intechopen.com



Resonant Effects of Quantum Electrodynamics in the Pulsed Light Field 7

The form of integral functions (18) is considerably simplified for the case of a circular
polarization of an external light wave:

L−r
(

χqi pi , γqi pi

(

φ′) , 0
)

= exp
(

irχqi pi

)

· J−r
(

γqi pi

(

φ′)) . (23)

It is obvious from Eqs. (11), (13) that the essential range of the integration variable ξ is
determined by the condition

|ξ| � 1
ωτ

≪ 1. (24)

In view of quick oscillation of the integrand under |ξ| ≫ (ωτ)−1 the integrals in Eqs. (13)
are small. Note that the expression of the amplitude Bl f (ε̂

∗, γ̃0) may be easily obtained from
Eqs. (11), (13)-(21), if the replacements qi → q f , γ̃0 ↔ ε̂∗ will be performed.

We emphasize, that dependence of the integrand denominator in Eq. (11) on the integration
variable expresses consequence of accounting of the field pulsed character. The similar
correction is absent in the monochromatic wave case, thus the resonant infinity in the
amplitude of SB of an electron scattered by a nucleus in a light field occurs.

2.2 Resonance conditions

Fulfillment of the energy-momentum conservation law for components of a process of the
second order caused a phenomenon when a virtual intermediate particle becomes real –
that is, on-shell. Thus, the resonant divergence occurs in the process’s amplitude. The
energy-momentum conservation law for QED processes in a pulsed light field does not fulfill
strictly. This peculiarity is inessential when nonresonant processes are studied. On the
contrary, the energy-momentum nonconservation in the case of resonant SB of an electron
scattered by a nucleus in a pulsed light field results following resonance conditions

q2
j − m2 �

(

kqj

)

ωτ
, j = i, f . (25)

(it follows from consideration of Eqs. (11), (24)). Therefore, the four-momentum of an
intermediate electron occurs near the mass shell.

It is convenient to set down expressions which determine qi, f and q (12) in following form for
the both amplitudes (a) and (b) (Fig. 1), respectively

{

pi + rk = qi + k′,
q = p f − qi + (l + r) k;

(26)

{

q f + rk = p f + k′,
q = q f − p f + (l + r) k.

(27)

Eqs. (26)-(27) represent the four-momentum conservation laws for the diagrams’ vertices.
These laws are fulfilled for only the values r > 0 under the conditions (25).

It is easy to ascertain that if a spontaneous photon propagates in the same direction as a
photon of an external field, the conditions (25) cannot be satisfied simultaneously with the
conservation laws (26) or (27) because the transit amplitude equals zero in this case. Therefore,
resonances occur only when these photons propagate nonparallel to each other.

113Resonant Effects of Quantum Electrodynamics in the Pulsed Light Field
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Taking Eq. (25) into account, we can use Eqs. (26), (27) for a moderately strong field (5) to find
the frequency of a spontaneous photon in the resonance (the resonant frequency) for the both
direct and exchange amplitudes (Figs. 1(a) and 1(b), respectively). Within zeroth order with
respect to the small parameter (ωτ)−1 the resonant frequency is specified:

ω′
res ≡ ω′

j = rωj
1

1 ± dj
, j = i, f , (28)

where the signs “+” and “–” correspond to index values i and f , respectively,

ωj = ω ·
κj

κ′j
, dj = r

(

nn′) · ω

κ′j
, (29)

κj = Ej − npj, κ′j = Ej − n′pj, (30)

n =
k

ω
= (1, n) , n′ =

k′

ω
=
(

1, n′) . (31)

It is obvious from Eq. (29), that within a rather broad range of electron energies and scattering
angles we have dj ≪ 1 (except an ultrarelativistic electron with the energy ∼ m2/ω, moving
within a narrow cone close to the direction of the momentum of a spontaneous photon).
Therefore, resonances are mainly observed when the frequency of a spontaneous photon is
multiple to ωj (29).

Eqs. (28)-(31) for the resonant frequency imply that we may separate four characteristic
domains of the frequency ωj: the nonrelativistic case, ωj

∼= ω; the limiting case of
ultrarelativistic energies, when an electron moves within a narrow cone related to a photon
of an external field ωj ≪ ω; an ultrarelativistic electron moves within a narrow cone with a
spontaneous photon, ωj ≫ ω; otherwise, ωj ∼ ω. Here, we consider resonant frequencies in
detail.

The four-momentum conservation law (26) and the function F−r explicit form (15) result that
this function represents the amplitude of such process: an electron with the four-momentum
pi absorbs r photons of the external wave and emits a photon with four-momentum k′. This
process was considered by Nikishov & Ritus (1979) in the case of a plane monochromatic
wave, and by Narozhniy & Fofanov (1996) in the case of a pulsed light wave. The
expression for the transferred four-momentum q (see the second equality in Eq. (26)) shows

that the quantity Ll+r

(

χp f qi , γp f qi (φ) , βp f qi (φ)
)

defines the amplitude of scattering of an

intermediate electron with the four-momentum qi by a nucleus in the field of a light wave
with absorption or emission of |l + r| wave photons. In the nonrelativistic limiting case this
process was studied by Bunkin & Fedorov (1966). Denisov & Fedorov (1967) considered this
process in the general relativistic case. The process when an electron scattered by a nucleus in
a pulsed light wave was studied by Lebed’ & Roshchupkin (2008).

Consequently, if the interference between the direct and the exchange amplitudes is
absent, the process of resonant electron-nucleus SB in the field of a light wave effectively
decomposes into two consecutive processes of the first order: emission of a photon with the
four-momentum k′ by an electron in a pulsed light wave and scattering of an electron by a
nucleus in a pulsed light wave (see Fig. 2).

114 Quantum Optics and Laser Experiments
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fp

Ze

q

ip

k

2 2

iq m

Fig. 2. Resonant electron-nucleus SB in the field of a pulsed light wave.

The difference for the other diagram (Fig. 1(b)) is concluded in the both replacement of the
intermediate electron four-momentum (qi → q f ) and interchange of sequence of first order
processes. Thus, an electron is scattered by a nucleus with absorption or emission of r wave
photons, and then it spontaneously emits a photon with the four-momentum k′ with |l + r|
wave photons absorption.

As it was pointed above, the integral functions (18) are determined by the integer-order Bessel
functions (23) for the case of a circularly polarizated external wave. It is not difficult to verify
that for given type polarization under the resonance conditions the arguments of the Bessel
functions (20) may be represented as

γqi pi

(

φ′) = 2r · η0g
(

φ′) ·
√

u

ur
·
(

1 − u

ur

)

. (32)

Here, u, ur are the relativistic invariant parameters

u =
(kk′)
(kqi)

, ur = 2r · (kpi)

m2 . (33)

Equations (32)-(33) imply
γqi pi

(

φ′) ∼ η0 ≪ 1. (34)

Consequently, within the range of fields specified by Eq. (5) the first resonance, that is, the
resonance with r = 1, provides the main contribution to the resonant cross section, when
the Bessel function has the largest value. This implies that the Compton scattering of a light
wave by an initial electron is mainly due to absorption of one photon of an external field.

However, the argument of the Bessel function Jl+r

(

γp f qi (φ)
)

is of the order of magnitude:

γp f qi (φ) ∼ γ0 � 1. Thus, scattering of an intermediate electron by a nucleus in a pulsed wave
field under these conditions is generally a multiphoton process.

Interference of the resonant amplitudes (which correspond to direct and exchange diagrams)
implies the equality of their resonant frequencies, i.e. ω′

i = ω′
f . Within the field range specified

by Eq. (5) the condition of interference between direct and exchange resonant amplitudes is
written as:

(

v f − vi

)

(

n − n′)+
(

v f × vi

)

(

n′ × n
)

=
(

n′n
)

·
rω ·

(

κi + κ f

)

EiE f
. (35)
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Here, vj = pj/Ej is the electron velocity before (j = i) and after (j = f ) scattering. The
quantity involved in the right-hand side of Eq. (35) is small compared with the unity.
Therefore, this equality is satisfied when directions of motion of photons (a spontaneous
photon and a photon of an external field) or electrons (before and after scattering) are close to
each other. It follows from Eq. (35) and from the fact that resonances vanish, when direction of
spontaneous photon motion is close to direction of external field photon motion, that resonant
amplitudes, which correspond to the processes shown on Figs. 1(a) and 1(b), interfere when
an electron is scattered on the small angles, i.e.

θ = ∠
(

vi,v f

)

∼ (1 − nvi) · (ω/|vi| Ei) ≪ 1. (36)

Hereinafter, we consider the resonance of one diagram. We assume that the spontaneous
photon frequency is equal

ω′ ≈ ω′
res = ω′

i . (37)

2.3 Amplitude integration

Let us study the process of resonant SB of an electron scattered by a nucleus in a pulsed light
field at the expense of only one photon absorption, i.e. r = 1. The condition (24) allows to
simplify the integration in Eq. (11)

∞
∫

−∞

dξ
exp {iξωτ (φ′ − φ)}

q2
i − m2 + 2ξ (kqi) + i0

=
exp {−2iβ (φ′ − φ)}

2 (kqi)
iπ
(

sgn
(

φ′ − φ
)

− 1
)

. (38)

Eq. (38) contains the relevant parameter, which determines resonant electron-nucleus SB in
the field of a pulsed light wave:

β =
q2

i − m2

4 (kqi)
ωτ. (39)

As it can be seen from Eq. (39), values of the parameter β are defined by process
kinematics and external pulsed-wave properties. This parameter specifies how closely the
four-momentum of an intermediate electron coincides with the value on the mass shell under
resonance conditions for electron-nucleus SB in the field of a pulsed light wave.

The subsequent analysis will be performed for the particular form of the envelope function of
the pulsed light wave four-potential. We choose the Gaussian function:

g
( ϕ

ωτ

)

= exp

{

−
(

2ϕ

ωτ

)2
}

= exp
{

− (2φ)2
}

. (40)

Under the condition (34) the function F−r (φ′) (15) in the amplitude may be expanded in
the Taylor series. We may keep only linear terms with respect to the parameter η0. For the
envelope function (40), after simple computation we obtain the amplitude of resonant SB of
an electron scattered by a nucleus in a pulsed light field:

Bli (γ̃0, ε̂∗) =
2π · γ̃0 (q̂i + m) F̂

q2 + q0 (q0 − 2qz)
· −iωτ

√
π

4 (kqi)
exp{− β2

4
} · I (q0, β) , (41)
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F̂ = −1
2

exp{iχqi pi} · γqi pi (0) · ε̂∗ + (e+b) . (42)

I (q0, β) = τ

∞
∫

−∞

dφ · Jl+1 (φ) exp {i (q0τ + 2β) φ}
(

erf
(

2φ +
iβ

2

)

+ 1
)

. (43)

Here, the function erf (2φ + iβ/2) is the error function.

2.4 Cross-section of spontaneous bremsstrahlung

Let us calculate the differential probability during the entire time of electron-nucleus SB in
a pulsed light field from the amplitude, Eqs. (9)-(10), (41)-(43) in standard manner (see
Berestetskii et al. (1982)) for the spontaneous photon frequency (37):

dw =
∞

∑
l=−∞

dwl , (44)

dwl =
Z2e6π

2ω′E f Ei
·
∣

∣

∣
ū f Bliui

∣

∣

∣

2
·

d3 p f d3k′

T (2π)6 . (45)

Here, T is some comparatively large (T � τ) interval of the observation time. The
energy-momentum conservation law for SB of an electron scattered by a nucleus in a pulsed
light field does not fulfill strictly, however, under the condition (1) the essential range of
integration is converged. Energies of a final electron are negligibly differ from the values,
which are specified by the strict energy conservation law. We exclude small scattering angles
from the consideration:

θ = ∠
(

pi,p f

)

≫
√

ω

|pi| (ωτ)
≪ 1. (46)

The differential cross section of SB of an electron scattered by a nucleus in the field of a pulsed
light wave is obtained by means of division of the probability per unit time per a flux density
of scattered particles vi = |pi| /Ei. Thus, we derive

dσ =
∞

∑
l=−∞

dσl , (47)

where dσl is the partial cross section of a process with a spontaneous photon in the frequency
interval dω′ within the solid angle dΩ′, and a final electron within the solid angle dΩ f with
emission (l > 0) or absorption (l < 0) of wave photons. It may be written in the form

dσl

dω′dΩ′dΩ f
=

Z2e6ω′π (ωτ)2

(2π)2 q4

∣

∣

∣p f

∣

∣

∣

|pi|
exp{−β2/2}

64 (kqi)
2 ×

×
∣

∣

∣
ū f Miui

∣

∣

∣

2
· τ

T

T/2τ
∫

−T/2τ

dφ · J2
l+1 (φ)

∣

∣

∣

∣

erf
(

2φ +
iβ

2

)

+ 1

∣

∣

∣

∣

2

,

(48)

Mi = γ̃0 (q̂i + m) F̂. (49)
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It is taken into account that d3 p f =
∣

∣

∣
p f

∣

∣

∣
E f dE f dΩ f and d3k′ = ω′2dω′dΩ′. It is important

to note that the main contribution into the sum (47) is given by the processes with emission
(absorption) of |l| � γ0 number of wave photons within the range of a moderately strong field

for electron relativistic energies
(

Ei, f � m
)

. Therefore, the energy contribution of stimulated

photons may be neglected (|l|ω/Ei, f � η0m/Ei, f ≪ 1) in Eq. (12). Thus, it is easy to sum over
all possible partial processes of electron scattering by a nucleus (47).

If polarization effects are not of interest, then averaging over polarizations of an initial electron
and summation over polarizations of a final electron and a spontaneous photon are to be
done. Performing the relevant procedures of averaging and summation, we derive the general
relativistic expression for the resonant differential cross section of electron-nucleus SB in a
pulsed light field in the case of electron large-angle scattering (46)

dσres

dΩ′ =
1

π2 · Eiκ
2
i |qi| u

(nn′)2 |pi| (1 + u)
· Pres · dσsdW(1). (50)

Here,

dσs = 2Z2r2
e

∣

∣

∣
p f

∣

∣

∣
m2

|qi| q4

(

m2 + E f qi0 + p f qi

)

dΩ f (51)

is the differential cross section of scattering of an intermediate electron with the
four-momentum qi by a nucleus in a wave field; re is the classical electron radius.

dW(1) =
αη2

0m2

4Ei

{

2 +
u2

1 + u
− 4u

u1

(

1 − u

u1

)}

· du

(1 + u)2 (52)

is the probability that an electron with the four-momentum pi absorbs one photon from an
external field and emits a photon with the four-momentum k′. The function Pres in Eq. (50)
has the form

Pres =
π (ωτ)2

64 (kqi)
2 · P

β
res, (53)

P
β
res = exp{−β2/2} · 1

2ρ

ρ
∫

−ρ

dφ ·
∣

∣

∣

∣

erf
(

φ +
iβ

2

)

+ 1

∣

∣

∣

∣

2

, (54)

ρ = T/τ. (55)

Here, the parameter ρ is the relation between the observation time and the pulse duration,
its value is determined by conditions of the concrete experiment. Thus, if an external field
is represented as electromagnetic pulses abiding one by one, then the parameter ρ assumes
sense of the ratio of a distance between the nearest-neighbor pulses to the characteristic pulse
duration. Dependence of the function Pres (53) on the parameter β (39) defines magnitude and
shape of the resonant peak in the cross section of an electron-nucleus SB process in a pulsed
light field (see Fig. 7).
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Fig. 3. Shape of the first resonant peak in the cross section of electron-nucleus SB in a pulsed
light field (ρ = 3). The dashed line represents the Gaussian function: exp(−β2/2).

2.4.1 Resonant width

In the frame of subsequent analysis we are to estimate the magnitude of the resonant width.
For this purpose we consider the case when the four-momentum of an intermediate photon
occurs near the mass shell:

β =

(

q2
i − m2)

4 (kqi)
ωτ ≪ 1. (56)

Thus, we can easily write

Pres ≈
π

4
· (a1/a2)
(

q2
i − m2

)2
+ 4m2Γ2

τ

, (57)

where the width Γτ , caused by the pulsed character of an external wave, is equal to:

Γτ =
2√
a2

(kqi)

m

1
ωτ

, (58)

and the coefficients a1 and a2 are specified by

a1 =
1

2ρ

ρ
∫

−ρ

(erf (φ) + 1)2 dφ, (59)

a2 =
1
2
− 1

4
√

πa1ρ

⎛

⎝

√
2erf

(√
2ρ
)

+

ρ
∫

−ρ

φ exp
(

−φ2
)

(erf (φ) + 1) dφ

⎞

⎠ . (60)

It is important to underline that the relationship for the function (53) under the condition (56)
turns into the standard resonant expression (57), which is usually used in the Breit-Wigner
prescription. It is convenient to represent the resonant peak profile Pres in the form (57) to
compare obtained results with corresponding ones for the case of a monochromatic wave.
Note, that in the monochromatic wave case the resonant infinity in the cross section is
eliminated by radiative corrections introducing into the Green function. The Breit-Wigner
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broadening prescription is concluded in addition of the imaginary part of the electron mass,
that is m → m − iΓR. Here, the radiation width is specified

ΓR =
1
3

αη2
0

σc (qi)

σT
· (kqi)

m
, (61)

where σc (qi) is the total cross section of the Compton scattering of an external field photon
by an intermediate electron with the four-momentum qi (it is the most probable way out of an
electron from an intermediate state), σT is the cross section of the Thomson scattering.

The resonant width (58) providing by finite time of particle-field interaction is so-called transit
width. In real experiments the transit width value is generally determined by geometry of an
experiment and linear sizes of space where a particle interacts with an external field. It can
be seen from Eq. (58) that the transit width is specified by the pulse duration and process
kinematics. Influence of the pulse duration on the resonant behavior of the electron-nucleus
SB cross section was discussed by Schnez et al. (2007). The electromagnetic pulse duration has
to be longer than the lifetime of an intermediate electron state. Otherwise, an electron will not
have enough time to interact with a wave. Thus,

τ �
1

ΓR
. (62)

Requirements (62), (58) implies that values of the quantity ωτ have to satisfy the following
condition:

ωτ �
1

αη2
0

ωm

(kqi)
. (63)

Comparison of the resonance widths for the pulse duration values (63) implies that Γτ ∼ ΓR

within a sufficiently broad range of electron energies and scattering angles. Consequently, the
both radiation and transit widths have to be simultaneously considered in resonant SB study.
An exception is the case of ultrarelativistic energies when

1

αη2
0

ωm

(kqi)
� ωτ ≪ 1

αη2
0

. (64)

In this case Γτ ≫ ΓR and the expressions for the resonant differential cross section of
electron-nucleus SB in a pulsed field (50)-(52), (57)-(60) are correct without radiation width
accounting.

It should be pointed that we excluded other causes of the resonant peak widening from
consideration. Thus, we assume that the Doppler broadening of the resonance (the real
electron bunch is not monochromatic) and broadening caused by collisions of electrons are
negligible.

2.4.2 Range of relativistic energies

In this section we consider the range of electron relativistic energies: Ei � m. Here we
eliminate the case when ultrarelativistic electrons are moving within a narrow cone with a
spontaneous photon or an external field photon from consideration. Then |di| ≪ 1 (it follows
from Eq. (29)). Therefore, the resonant frequency ω′

i (28) in this case is of the order of the
external field frequency. Depending on the spontaneous photon emission angle with respect
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to direction of the initial electron momentum the resonant frequency falls within the interval:

ω · κi

Ei + |pi|
≤ ω′

i ≤ ω · κi

Ei − |pi|
. (65)

This frequency reaches its minimum and maximum when a spontaneous photon is emitted
along direction of the initial electron motion and in opposite direction, respectively.

The invariant parameters (33) assume the form

ur = 2r · ωκi

m2 , u ∼=
(

nn′) · ω′

κi
≪ 1. (66)

Taking the radiation width into account, we may represent the resonant denominator (57) as

(

q2
i − (m − iΓR)

2
)2

+ (2mΓτ)
2 =

(

2ω′ |pi|
)2 ·

[

(

cos θ′i − cos θ′res

)2
+ C2

τ

]

. (67)

Here we introduced the notations

θ′i, f = ∠
(

k′, pi, f

)

, θi, f = ∠
(

k, pi, f

)

, (68)

cos θ′res =
Ei − (ω/ω′) · κi

|pi|
, Cτ =

mΓτ

√

1 + µ2
τ

ω′ |pi|
, (69)

µτ =
ΓR

Γτ
=

√
a2

6
αη2

0ωτ. (70)

For the resonant angles that are not too close to zero and π we can expand cos θ′i in Eq. (67)
into the Taylor series near the resonant angle θ′res with an accuracy up to the term of the first
order with respect to t = θ′i − θ′res. The solid angle which corresponds to spontaneous photon
emission is written as dΩ′ = sin θ′resdϕdt. Then the resonant cross section (50) assumes the
following form

dσres =
1

4π2 · dϕ · d (t/y)

1 + (t/y)2 · Eiκi

(nn′) |pi| Γτ

√

1 + µ2
τm

· dW(1)dσS (qi) . (71)

Here, y = mΓτ (1 + µτ)/(ω′ |pi| sin θ′res) ∼ (ωτ)−1 ≪ 1. Since the resonance angular width is
very small, we may integrate the expression (71) with respect to the azimuthal angle dϕ, and
with respect to d (t/y) within the limits from zero to +∞ (we extend the integration limits to
infinity because of integral fast convergence). Finally, we derive

dσres =
Eiκi

2 (nn′)m |pi| Γτ

√

1 + µ2
τ

· dW(1)dσS (qi) , (72)

where

dW(1) = αη2
0
(

nn′) m2

2Eiκi

{

1 − 2u

u1
·
(

1 − u

u1

)}

dω′. (73)

Derived expressions (72)-(73) for the resonant cross section are valid within the range of field
intensities (5) when an electron scatters into the large angles θ ≫ ω/|pi|. Spontaneous
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photon frequency and emission angle with respect to the initial electron momentum are
unambiguously related to each other by Eq. (69), where the spontaneous photon frequency is
chosen from the interval (65).

Note, that the conventional cross section dσ∗ of electron-nucleus bremsstrahlung (in external
field absence) may be factorized as a product of the cross section dσS (pi) of electron-nucleus
elastic scattering (see (51)) and the probability dWγ of photon emission

dσ∗ = dσS · dWγ, (74)

dWγ =
α

4π2 ·
{

q2 −
(

n′q
)2 · m2

κ′iκ
′
f

}

· dω′

ω′κ′iκ
′
f

· dΩ′, q = p f − pi. (75)

Let us calculate the ratio of the resonant cross section (72) to the conventional cross section
of electron-nucleus bremsstrahlung (74) (in absence of an external field). At that we take into
account the resonant relation (69) between spontaneous photon frequency and emission angle

Rres =
dσres

dσ∗
/

dΩ′ = f1 · π2η2
0

ωτ
√

1 + µ2
τ

(

m

|pi|

)2

, (76)

where the function f1 ∼ 1 and has a rather cumbersome form:

f1 =

√
a2κ′f

2 |pi|
1 − (nn′) m2

κiκ
′
i

(

1 − (nn′) m2

2κiκ
′
i

)

4 sin2
(

θ
2

)

−
(

cos θ′f − cos θ′i
)2

m2

κ′
i κ

′
f

. (77)

Let us choose for calculation the laser field characteristic according to SLAC experiments (Bula
et al. (1996)): laser-wave frequency, ω = 2.35 eV; laser pulsewidth, τ = 1.5 ps; field strength
in a pulse peak, F0 = 6 · 109 V/cm; ratio between observation time and laser pulse width,
ρ = 5. Fig. 4 displays the ratio of the resonant differential cross-section of electron-nucleus SB
to the cross section of bremsstrahlung in absence of an external field (76) as a function of the
electron velocity.

Eq. (76) and Fig. 4 show that within the range of electron relativistic energies the resonant
differential cross section of electron-nucleus SB, when the scattered electron ejection angle is
detected simultaneously with the spontaneous photon emission angle, may be five orders of
magnitude greater than the corresponding cross section in external field absence. Within the
range of electron ultrarelativistic energies this ratio decreases drastically: Rres ∼ (m/Ei)

2 → 0.

The ratio (76) as a function of the spontaneous photon azimuthal angle is of interest from a
perspective of experimental testing of obtained results. In the actual experiment usually the
radiation detection over the azimuthal angle is technically implemented significantly easier
than over the polar angle. Fig. 5 displays lg Rres (76) as a function of the spontaneous photon
azimuthal angle.

Fig. 5 shows that the ratio (76) may change its order of magnitude with the azimuthal angle
value. This dependence is characterized by presence of two maxima in distribution over the
azimuthal angle. Thus, when the final electron azimuthal angle coincides with the initial
electron angle (it is scattering in the plane of the vectors (k, pi)) the maxima in distribution
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Fig. 4. Ratio Rres (76) as a function of the initial velocity for electron momentum preset
orientations in initial (θi = 163◦, ϕi = 0◦) and final (θ f = 150◦,ϕ f = 0◦) states and
spontaneous photon fixed orientation: solid line, θ′ = 120◦, ϕ′ = 10◦; dashed line, θ′ = 120◦,
ϕ′ = 60◦.

Fig. 5. Ratio Rres (76) as a function of the azimuthal angle of a spontaneous photon for
electron momentum preset orientations in initial and final states and the spontaneous photon
fixed polar angle: θi = 163◦, θ f = 150◦, θ′ = 120◦. Solid line, ϕi = ϕ f = 90◦; dashed line,
ϕi = 90◦, ϕ f = 320◦.

correspond to spontaneous photons emission just within this plane (solid line). In the case
when a final electron scatters in another way the peak position in distribution over the
azimuthal angle is specified by both initial and final azimuthal angles. The value of the ratio
of the resonant differential cross section of electron-nucleus SB to the ordinary bremsstrahlung
cross section as a function of the azimuthal angle may be changed in two orders of magnitude.
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2.4.3 Range of nonrelativistic electron energies

In this section we assume that initial and final electron energies are small in comparison with
the light speed: Zα ≪ vi, f ≪ 1. It follows from Eqs. (28)-(31) that resonant frequencies for
nonrelativistic electrons are given by

ω′
i, f = rω

(

1 + vi, f

(

n′ − n
)

)

∼= rω. (78)

Thus, resonances occur when the spontaneous photon frequency is multiple to the external
field frequency. The condition of interference between direct and exchange resonant
amplitudes (35) is written as

(

v f − vi

)

(

n − n′) = 2r ·
(

nn′) · ω

m
≪ 1, (79)

and, consequently, interference appears when an electron scatters into the small angels θ ∼
ω/mvi ≪ 1.

The resonant cross section in the case when a nonrelativistic electron scatters into the large
angles is obtained from Eq. (50):

dσres =
1

2 (nn′) viΓτ

√

1 + µ2
τ

dW(1)dσs, (80)

where

dW(1) =
1
2

αη2 (nn′) ·
{

1 − 2u

u1
·
(

1 − u

u1

)}

dω′, (81)

u

u1
=
(

nn′) ω′

2ω
,

dσs = (2Z)2 r2
e

∣

∣

∣p f

∣

∣

∣

|qi|
m4

q4 dΩ f . (82)

The resonant frequency of a spontaneous photon depends on the emission angle of this photon
with respect to the initial electron momentum and lies within a narrow interval:

ω
(

1 − 2vi cos2 (θi/2)
)

≤ ω′
res ≤ ω

(

1 + 2vi sin2 (θi/2)
)

. (83)

The transit width Γτ (58) and the radiation width ΓR (61) in the nonrelativistic limit are given
by

Γτ =
2√
a2

1
τ

, ΓR =
1
3

αη2ω. (84)

We may write the ratio of the resonant cross section (50) to the corresponding conventional
nonrelativistic cross section of electron-nucleus bremsstrahlung as

Rres = f2 · π2η2
0

ωτ
√

1 + µ2
τ

v−3
i , (85)
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where the function f2 ∼ 1 and has the form

f2 =

√
a2

2
1 − (1/2) sin2 θ′

4 sin2 (θ/2)−
(

cos θ′f − cos θ′i
)2 . (86)

Fig. 6. Dependence of Rres (85) on the polar angle of a spontaneous photon for a
nonrelativistic electron with the initial velocity vi = 0.1. Orientations of the electron
momentum in initial (θi = 163◦, ϕi = 90◦) and final (θ f = 150◦, ϕ f = 320◦) states are fixed.
The azimuthal angle, corresponding to emission of a spontaneous photon, is (solid line)
ϕ′ = 60◦, (dashed line) ϕ′ = 160◦, and (dash-dotted line) ϕ′ = 270◦.

Fig. 6 shows the dependence of quantity Rres (85) on the polar angle of spontaneous photon
emission for a nonrelativistic electron with the initial velocity vi = 0.1. Fig. 6 shows that for
the case of electron kinetic energies of several kiloelectronvolts the resonant differential SB
cross section may be 5–6 orders of magnitude greater than the corresponding cross section of
bremsstrahlung in external field absence when the angle of spontaneous photon emission is
detected simultaneously with the ejection angle of an electron scattered into the large angle.

2.4.4 Range of ultrarelativistic energies of electrons moving within a narrow cone with a

photon from the wave

In this section we consider an ultrarelativistic electron that moves (in initial or final states)
within the narrow cone related to an external field photon. Therefore, the quantities κi, f (30)
in Eqs. (28)-(31) may be written as

κi, f =
(

1 + δ2
i, f

)

· m2/2Ei, f , δi, f = θi, f · Ei, f /m. (87)

Taking these relations into account and using Eqs. (28)-(31) we find that the resonant
frequencies are much less than the external field frequency. They are given by:

ω′
i, f = rωi, f , ωi, f =

(

1 + δ2
i, f

)

2 (nn′)
·
(

m

Ei, f

)2

· ω ≪ ω. (88)
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From Eq. (88) follows that the condition of interference between direct and exchange resonant
amplitudes implies that δi = δ f and θi

∼= θ f , that is, initial and final electrons form the
equal angles with the external field photon momentum and are located on different sides
of this photon momentum. Also, it can be seen from (35) that θi ∼ ωm2/E3

i ≪ 1. When an
ultrarelativistic initial electron moves within the narrow cone with an external field photon
and scatters into the large angle θi ≫ ωm2/E3

i the resonant cross section is derived from
Eq. (50) under the condition (87):

dσres =

(

1 + δ2
i

)

m

4 (nn′) EiΓτ

√

1 + µ2
τ

· dW(1) · dσS (qi) . (89)

Here, the spontaneous photon resonant frequency is given by Eq. (88) with value r = 1, and
the angle of spontaneous photon emission is not close to direction of initial electron motion.
Ratio of the resonant cross section (89) to the conventional cross section of electron-nucleus
bremsstrahlung may be derived from Eq. (76) with respect to Eq. (87):

Rres = f3 · π2η2
0

ωτ
√

1 + µ2
τ

(

m

Ei

)2

, (90)

where the function f3 ∼ 1 and has a rather cumbersome form.

It may be easily estimated that for the pulsed field parameters ω = 2.35 eV, τ = 1.5 ps,
F0 = 6 · 109 V/cm, ρ = 5 and the electron energy Ei = 5 MeV the resonant cross section is
of the order of the ordinary cross section when the angle of spontaneous photon emission is
detected simultaneously with the ejection angle of an electron scattered on the large angle.

2.4.5 Range of ultrarelativistic energies of electrons moving within a narrow cone with a

spontaneous photon

We suppose that an ultrarelativistic electron (an initial or a final one) moves within the narrow
cone with a spontaneous photon. Then the quantities κ′i, f (30) may be written in an analogous
to Eq. (87) form, where

δi, f → δ′i, f = θ′i, f · Ei, f /m. (91)

Here, depending on the electron energy we may deal with one of two possible situations.
It is provided that m ≪ Ei, f ≪ m2/ω, than resonant frequencies fall within the interval
ω ≪ ω′

i, f ≪ Ei, f and are given by

ω′
i, f = rωi, f , ωi, f =

2 (nn′)
(

1 + δ′2i, f

) ·
(

Ei, f

m

)2

· ω. (92)

It was demonstrated by Roshchupkin (1985) that resonances do not occur for energies Ei, f ≫
m2/ω. It is obviously that direct and exchange resonant amplitudes may interfere with each
other only when initial and final electrons move within the narrow cone with a spontaneous
photon, so δ′i = δ′f .
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When an ultrarelativistic initial electron moves within the narrow cone with a spontaneous
photon and scatters on the large angle θ ≫ ω/Ei we may use Eqs. (50)-(52) to find the
resonant cross section. In this case, it is convenient to represent the resonant denominator
in the following form

(

q2
i − (m − iΓR)

2
)2

+ (2mΓτ)
2 = m4

[

(

x − δ′i
2
)2

+ y2
]

· u2

(1 + u)2 , (93)

where

x =
u1

u
+

(1 + u) Γ2
τ

(

1 + µ2
τ

)

u · m2 − 1, y =
2 (1 + u) Γτ

√

1 + µ2
τ

u · m
. (94)

Here, the invariant parameters u, u1 are given by

u ∼= ω′

Ei − ω′ , u1 = 2
(

nn′) · ωEi

m2 . (95)

Now Eqs. (50)-(52), (93) are to be taken into account, the solid angle is to be written as dΩ′ =
(

m2/2E2
i

)

dϕdδ′i
2, and integration should be performed with respect to the azimuthal angle,

and δ′i
2 within the limits from zero to +∞. Thus, we derive the following expression for the

resonant cross section:

dσres = Υ (xy) · qi0

mΓτ

√

1 + µ2
τ

· dW(1) · dσS (qi) . (96)

Here,

Υ (xy) =
1
π

∞
∫

0

dδ′i
2

(

x − δ′i
2
)2

+ y2
=

1
2
+

1
π

arctg

(

x

y

)

(97)

is a smoothed step function. In regions far from the resonance |u1 − u| ≫ 2 (1 + u) (Γτ/m)
and at the resonance point u1 = u this function takes the following limiting values:

Υ (xy) =

⎧

⎨

⎩

1, if u < u1,
0.5, if u = u1,
y · u/π (u − u1) , if u > u1.

(98)

The probability is given by

dW(1) = αη2 · m2

4Ei
·
{

2 +
u2

1 + u
− 4u

u1

(

1 − u

u1

)}

· du

(1 + u)2 . (99)

We consider ratio of the resonant cross section (96) to the conventional cross section of
electron-nucleus bremsstrahlung in the case when an ultrarelativistic electron moves within
the narrow cone with a photon producted in bremsstrahlung and scatters on the large angles.
Using the results obtained by Baier et al. (1973) we may write the following expression:

Rres =
dσ

(1)
res

dσa
= Υ (xy) · Ei

mΓτ

√

1 + µ2
τ

· dW(1)

dWpi (k
′)

. (100)
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Here, dWpi (k
′) is the probability that an electron with the four-momentum pi emits a photon

with the four-momentum k′. For electron energies m ≪ Ei ≪ m2/ω the expression (100) may
be written as

Rres =

√
a2

8
π

η2
0ωτ

√

1 + µ2
τ

· 1
ln (Ei/m)

. (101)

If the considered process characteristics satisfy the conditions (64), than the parameter µτ ≪ 1
(70) and the resonant shape is specified by the laser pulse duration. Eq. (101) implies, when
the ultrarelativistic electron energy grows, the resonant cross section decreases drastically.

3. Resonant photoproduction of an electron-positron pair on a nucleus in the field

of a pulsed light wave

The most general computations of the resonant Coulomb electron-positron pair
photoproduction (CPP) on a nucleus in the field of an electromagnetic plane wave was
performed by Roshchupkin (1983). Borisov et al. (1981) studied the resonant CPP in the
special case of ultrarelativistic electron and positron energies where the incident photon and
the wave photon fly toward each other. The work of Lötstedt et al. (2008) in which resonant
cross sections were calculated for strong external fields should also be noted. The resonant
CPP in the pulsed light wave was studied in detail in the work of Lebed’ & Roshchupkin
(2011).

We consider the photoproduction of an electron-positron pair on a nucleus in a pulsed light
field (2). The interaction of an electron and positron with a nucleus is considered in the first
order of the perturbation theory (the Born approximation). Note that CPP is a crossed channel
of bremsstrahlung due to electron scattering by a nucleus. Spontaneous bremsstrahlung of an
electron scattered by a nucleus in a pulsed light field was studied early. In consideration of
the known calculation procedure we may obtain the amplitude of CPP process on a nucleus
in the field of a moderately strong pulsed wave from the expressions (9)-(18) by the following
replacement:

p− → p f , p+ → −pi, ki → −k′, (102)

where p−, p+, ki are the four-momenta of an electron, a positron and an initial photon,
respectively. For CPP on a nucleus q = (q0, q) is the four-vector is the transferred momentum,
q− and q+ are the four-momenta of an intermediate electron and an intermediate positron
(for the diagrams on Fig. 7 (a) and (b), respectively). These quantities are expressed by the
relationships:

⎧

⎨

⎩

q = p− + p+ − ki + lk,
q− = ki + rk − p+,
q+ = ki + rk − p−.

(103)

3.1 Resonance conditions

Let us consider the resonances that occur when an intermediate particle reaches the mass
shell. The conditions of resonant CPP on a nucleus in a pulsed light field is determined by the
relationship

q2
± − m2 <∼

(kq±)
ωτ

. (104)
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Fig. 7. Photoproduction of an electron–positron pair on a nucleus in a pulsed light wave.

Consequently, the four-momentum of an intermediate particle appears near the mass surface
under the resonant conditions.

It is convenient to write Eqs. (103), which define the four-momenta q and q±, for amplitudes
(a) and (b) in Fig. 7, respectively, as

{

ki + rk = q− + p+,
q = p− − q− + (l + r) k;

(105)

{

ki + rk = p− + q+,
q = p+ − q+ + (l + r) k.

(106)

Eqs. (105)-(106) represent the four-momentum conservation laws for the diagrams vertices
(Fig. 7) that, in view of the condition (104), hold only for r > 0.

Taking into account the condition (104) we will obtain the initial photon frequency ωres
i for

which a resonance can be observed (the resonant frequency) from the Eq. (105). Within the
zeroth order with respect to the small parameter (ωτ)−1 for the diagrams (a) and (b) (see
Fig. 7), we obtain

ωres
i = ω±

i ≡ rω · (np∓)
(niq±)

, (107)

n = k/ω = (1, n) , ni = ki/ωi = (1, ni) . (108)

Within the region of moderately strong fields (5) the energy conservation law (q0 ≈ 0) may be
written as

ωi ≈ E− + E+. (109)

Therefore, it follows from Eq. (107) that within the moderately strong fields region resonances
are possible only for ultrarelativistic positron p+ (diagram (a), Fig. 7) and electron p−
(diagram (b), Fig. 7), if they move within a narrow cone with the incident γ-ray photon ki. In
this case resonant frequencies (107) take the form

ω±
i =

E±
1 − W±/E±

, W± =
m2

rω
·

(

1 + δ2
i±
)

2 (nni)
, (110)

where
δi± = θi± · (E±/m) , θi± = ∠ (ki, p±) ≪ 1. (111)
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Hence the resonances are possible only for the electron (positron) energies above some
threshold value W±: E± > W± ∼ m2/ω.

Using Eqs. (110) it is easy to obtain the positron energy at resonance:

E+ =
1
2

⎧

⎨

⎩

1 ±
√

1 − ωth
i

ωi

⎫

⎬

⎭

· ωi, (112)

where ωth
i is the threshold frequency of an incident γ-ray photon,

ωth
i =

2m2

ω (1 − cos θi)
, θi = ∠ (k, ki) . (113)

As we see from Eq. (113), the threshold energy of an initial photon appreciably depends on
its orientation relative to wave propagation direction. Thus, the threshold energy is minimal
when an incident photon propagates towards the wave. In the opposite case, when an initial
photon moves parallel to external field photons, no resonances are observed. Note that the
electron energy can be obtained from Eq. (112) by reversing the sign in front of the square
root. It follows from Eq. (112), that the energies of produced electron and positron near the
threshold (ωi − ωth

i ≪ ωth
i ) are equal E+ = E− ∼= ωth

i /2. If, alternatively, the frequency
of an incident γ-ray photon is great (ωi ≫ ωth

i ) then electron and positron energies differ
considerably (E+ = ωi − ωth

i /4 ≈ ωi, E− ≈ ωth
i /4).

The condition of interference of resonant amplitudes, that is ω+
i = ω−

i , assumes the form

(np−) (niq−) = (np+) (niq+) . (114)

Using the energy conservation law (109) and Eq. (110) we derive that the interference of
resonant amplitudes appears when an electron p− and a positron p+ propagate within a
narrow cone with an incident γ-ray photon ki, with δi− = δi+ and θi− ∼ ω/E−.

Below, we will consider the resonance of one diagram. We will assume that the initial photon
frequency is

ωi ≈ ωres
i = ω−

i . (115)

3.2 Resonant amplitude

The amplitude of CPP on a nucleus in a pulsed light field under resonance conditions (107)
has the form

S(±) =
∞

∑
l=−∞

S
(±)
l , (116)

where S
(±)
l is the partial amplitude, which corresponds to processes with emission (l > 0) or

absorption (l < 0) of laser-wave |l| photons

S
(±)
l = −i

Ze3√π√
2ωiE−E+

ū− [Bl− (γ̃0, ε̂i) + Bl+ (ε̂i, γ̃0)] u+. (117)
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Here, the functions Bl− (γ̃0, ε̂i) and Bl+ (ε̂i, γ̃0) correspond to the CPP diagrams in Figs. 7(a)
and 7(b), respectively

Bl− (γ̃0, ε̂i) =
∞

∑
r=−∞

2ωτ2

q2 + q0 (q0 − 2qz)
· iπ

2 (kq−)
×

×
∞
∫

−∞

dφLl+r (φ) exp {i (q0τ + 2β) φ} ·γ̃0 (q̂− + m)×

×
∞
∫

−∞

dφ′F−r
(

φ′) exp
{

−2iβφ′} (sgn
(

φ′ − φ
)

− 1
)

,

(118)

β =
q2
− − m2

4 (kq−)
ωτ. (119)

Here, functions F−r (φ′) and Ll+r (φ) are defined by relations (15)-(21) with the replacement
(102).

With allowance of the four-momentum conservation law (that is the first Eq. in (105)), the
matrix function F−r

(

χq−p+ , γq−p+ (φ′) , βq−p+ (φ′)
)

(15) under resonance conditions defines
the amplitude of the production of an electron-positron pair with the four-momenta q− and
p+ by a photon with the four-momentum ki in a pulsed light field through r wave photons
absorption. This process was considered by Nikishov & Ritus (1979) in the case of a plane
monochromatic wave, and by Narozhny & Fofanov (1997) in the case of a pulsed light
wave. With allowance of the transferred four-momentum q (see the second equality in (105))
the quantity Ll+r

(

χp−q− , γp−q− (φ) , βp−q− (φ)
)

γ̃0 defines the amplitude of scattering of an
intermediate electron with the four-momentum q− by a nucleus in a pulsed light field with
absorption or emission of |l + r| photons of the wave (Lebed’ & Roshchupkin (2008)).

Consequently, if the interference between direct and exchange amplitudes is absent, the
process of resonant CPP on a nucleus in a pulsed light field effectively decomposes into
two consecutive processes of the first order. The distinction for the diagram (b) on Fig. 7
is concluded in replacement of the four-momentum of an intermediate electron q− → −q+
and change of sequence of first order processes.

Integral functions (18) are determined by the integer-order Bessel functions (23) for the case
of a circularly polarized external wave. For circular polarization of a wave under resonance
conditions the arguments of the Bessel functions (20) for CPP on a nucleus may be represented
as

γq−p+

(

φ′) = 2r · η0g
(

φ′) · 1 + z+
z+zr

√

z+zr − (1 + z+)
2, (120)

where the invariant parameters z+ and zr are defined by

z+ =
(kp+)

(kq−)
≈ E+

ωi − E+
, zr = 2r · (kki)

m2 . (121)

It was expected for this part of the amplitude that the Bunkin-Fedorov quantum parameter
becomes a classical one under resonance conditions (see Eqs. (32)-(33)).

γq−p+

(

φ′) ∼ η0 ≪ 1. (122)
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Consequently within the field range, specified by Eq. (5), the first resonance, that is, the
resonance with r = 1, provides the main contribution to the resonant cross section, when
the Bessel function has the largest value. This implies that the single-photon production of an
electron–positron pair in a pulsed field proceeds mainly through absorption of one external
field photon. However, the argument of the Bessel function Jl+r

(

γp−q− (φ)
)

is of the order
of a magnitude γp−q− (ϕ) ∼ γ0 � 1, i.e. it saves the quantum nature. Thus, scattering of
an intermediate electron by a nucleus in the field of a moderately strong pulsed wave is a
multiquantum process.

We perform the subsequent analysis for the case of wave circularly polarization (δ = ±1) at
expense of one wave photon absorption, i.e. r = 1. In view of the envelope function (40), after
simple manipulations we obtain the amplitude (118) in the form

Bl− (γ̃0, ε̂i) =
2π · γ̃0 (q̂− + m) F̂

q2 + q0 (q0 − 2qz)
· −iωτ2√π

4 (kq−)
exp{− β2

4
} · I (q0, β) , (123)

F̂ = −1
2

exp{iχq−p+} · γq−p+ (0) · ε̂i +
((

ex + iδey
)

b
)

, (124)

I (q0, β) =

∞
∫

−∞

dφ · Jl+1 (φ) exp {i (q0τ + 2β) φ}
(

erf
(

2φ +
iβ

2

)

+ 1
)

. (125)

Here, erf (2φ + iβ/2) is the error function.

3.3 Resonant cross section

The differential cross section of CPP on a nucleus in a pulsed light field may be easily obtained
by standard mode (Berestetskii et al. (1982)) from the amplitude, Eqs. (116)-(117), (123)-(125)

dσ(±) =
∞

∑
l=−∞

dσ
(±)
l , (126)

where dσ
(±)
l is the partial cross section of CPP on a nucleus in a pulsed light field with

emission (l > 0) or absorption (l < 0) of |l| wave photons.

Under resonance conditions and for ultrarelativistic electron and positron energies, the energy
contribution from external pulsed field photons may be neglected. Therefore, the resonant
cross section (126) may be summed over all possible partial processes. Thus, the differential
cross section of CPP on a nucleus in a pulsed light field with the positron energy in the interval
[E+, E+ + dE+] within the solid angle [Ω+, Ω+ + dΩ+] and the final electron within the solid
angle [Ω−, Ω− + dΩ−] assumes the form

dσ
(±)
1res

dE+dΩ+dΩ−
=

Z2e6

(2π)2
|p−| |p+|

ωiq
4 |ū−M−u+|2 · Pres, (127)

M− = γ̃0 (q̂− + m) F̂. (128)

In Eq. (127) the function Pres is defined by the expression (53), where the replacement
qi → q− has to be performed. We don’t take polarization effects into consideration. After
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performing of corresponding averaging and summation procedures and considering that
dΩ+ =

(

m2/2E2
+

)

dδ2
i+dϕaz we derive

dσ
(±)
1res =

1
2π2 · m2ωi

z+
· Pres · dσs (q−) dW

(1)
pairdδ2

i+dϕaz. (129)

Here,

dσs (q−) = 2Z2r2
e
|p−|m2

|q−| q4

(

m2 + E−q0− + p−q−
)

dΩ− (130)

is the differential cross section of scattering of an intermediate electron with the
four-momentum q− by a nucleus, and

dW
(1)
pair = α

η2
0m2

4ωi

{

4 (1 + z+)
2

z+z1

(

1 − (1 + z+)
2

z+z1

)

− 2 +
(1 + z+)

2

z+

}

· dz+

(1 + z+)
2 (131)

is the probability of production of an electron-positron pair with the four-momenta q− and
p+ by the an incident photon with the four-momentum ki at the expense of one wave photon
absorption. We can perform integration in Eq. (129) over the azimuthal angle dϕaz and dδ2

i+.
At that replacement dδ2

i+ → dβ is to be carried out. The parameter β (119) under resonance
conditions assumes the form

β =
ωτ

2

[

1 − (1 + z+)
2

z+z1

(

1 + δ2
i+

)

]

. (132)

We derive consequently

dσ
(±)
1res =

√

π

2
· ωτ

2
· ωi

m2z1
· dσs (q−) dW

(1)
pair. (133)

Within the kinematical region of resonance, CPP on a nucleus in external field absence was
investigated by Baier et al. (1973). It was concluded that amplitudes (a) and (b) (see Fig. 7)
have poles within different regions of pair emission angles, therefore, they do not interfere.
At that, the cross section is factorized, i.e.

dσpair = dWki
(p+, q−) · dσS (q−) , (134)

where q− = ki − p+; dWki
(p+, q−) is the probability of production of an electron-positron pair

(p+q−) by an incident γ-ray photon with the four-momentum ki. We express the resonant
cross section (133) in terms of ordinary one (134),

Rres =
dσ

(±)
1res

dσpair
=

ωi

4mΓτ (1 + z+)
·

dW
(1)
pair

dWki
(p+, q−)

. (135)

The transit width Γτ of the resonance was introduced here. It has the form

Γτ =

√

2
π

· 1
ωτ

· (kq−)
m

. (136)
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It is obvious from Eq. (136) that the transit width is specified by the pulsed field frequency and
duration as well as by the particle energy and process kinematics. We underline that when
CPP on a nucleus in the field of a plane monochromatic wave is studied the divergence in the
differential cross section is eliminated by introducing of radiative corrections into the Green
function of an intermediate particle according to the Breit-Wigner prescription as usual. It is
concluded in addition of the imaginary part of the electron or positron mass: m → m − iΓR.
Here, the radiation width of resonance ΓR is introduced phenomenologically. It has the form

ΓR =
1
3

αη2
0 ·

σc (q−)
σT

· (kq−)
m

, (137)

where σc (q−) is the total cross section of the Compton scattering of an external field photon
by an intermediate electron with the four-momentum q− (it is the most probable channel
of an electron escape from an intermediate state), and σT is the Thompson cross section.
Comparison of resonant widths (136) and (137) ascertains that the transit width exceeds the
radiation one if laser pulse parameters satisfy the condition

ωτ <
3

αη2
0
· σc (q−)

σT
. (138)

Moderately strong fields of optical frequencies and the picosecond range of widths meet
the inequality (138). The titanium-sapphire laser (Ti:Sapphire) or the solid-state laser based
on aluminum-yttrium garnet Y2Al5O12 with neodymium Nd admixtures (Nd:YAG) can
be used as sources of such pulsed fields. Titanium-sapphire lasers have a broad lasing
band (700-1100 nm) and a wide range of pulse duration (10 ps –10 fs) due to various
choices of pulse compression. The PICAR picosecond Nd:YAG laser (designed at the
International Educational-Scientific Laser Center of the Moscow State University named by
M.V. Lomonosov) appropriate field characteristics to be achieved through the combined action
of active-passive mode locking and a negative feedback (Gorbunkov et al. (2005)).

Ratio of cross-sections (135) is simplified considerably in the logarithmic approximation:

Rres =
π

8

√

π

2
·η2

0ωτ ·
[

ln
E+

m

]−1

. (139)

Let us estimate the ratio of the cross sections (139) for PICAR picosecond Nd:YAG laser with
additional amplifiers with parameters η0 ≈ 0.1, λ = 1064 nm (ω = 1.17 eV), τ = 25 ps. An
incident γ-ray photon with an energy near the threshold value (113) ωi = 5 · 105m = 255 GeV
propagates towards the pulsed laser wave. We obtain the following ratio of cross-sections:
Rres ≈ 40. Consequently, the resonant cross-section of CPP on a nucleus in a pulsed light field
may exceed the corresponding one in external field absence by an order of magnitude.

4. Resonant scattering of a lepton by a lepton in the pulsed light field

Study of various processes of leptons scattering in an external electromagnetic fields is one of
the fundamental directions of QED. Cross sections of basic scattering processes in the external
field absence were obtained in the middle of the twentieth century. Thus, the scattering of
an electron by an electron was considered by Möller (1932), the scattering of an electron by
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a positron - Bhabha (1938), the scattering of an electron by a muon - by Bhabha (1938) and
Massey & Corben (1939). The detailed consideration of nonresonant scattering of an electron
by a muon in a pulsed light field was performed by Padusenko et al. (2009).

We underline that the Bunkin–Fedorov quantum parameter γ0 (4) is the main one which
determines multiphoton processes in leptons nonresonant scattering. However in the case
of leptons resonant scattering the influence of the quantum parameter γ0 does not appear (it
becomes a classical one due to resonance conditions and possess the values in order to η0),
thus the classical parameter η0 (3) determines multiphoton processes. Therefore study of
lepton by a lepton resonant scattering is carried out within the intensity range (5), that is
within the framework of the first order of the perturbation theory with respect to an external
laser field.

The electron mass me is considerably less than the muon one mµ (me ≪ mµ), therefore the
corresponding classical parameters (3) satisfy the following condition as well

η0µ ≪ η0e. (140)

The classical parameters η0µ and η0e are defined by Eqs. (3), where replacements m → mµ

and m → me are to be performed. Hereinafter we consider resonances for direct Feynman
diagrams of scattering type exceptionally (Fig. 8). Exchange diagrams for identical leptons
and annihilation diagrams of scattering of a lepton by an antilepton are outside of attention.
Such a problem statement is possible due to fact that resonances for direct diagrams of
scattering type and resonances for exchange (annihilation) diagrams within the intensity
range (5) occur within essentially different nonoverlapping kinematical regions (Roshchupkin
& Voroshilo (2008)). For direct scattering amplitude within the fields range (5) the process of
lepton by a lepton resonant scattering occurs when leptons scatter forwards into the small
angles in the frame of the reference related to the center of inertia of initial particles and
effectively decomposes into two processes of the first order similar to the Compton scattering
of a wave by a lepton.

The S-matrix element for a direct amplitude (see Fig. 8) is given by

S = ie2
∫

d4x1d4x2Dµµ′ (x1 − x2)×
×
[

ψ̄p′1
(x1 |A ) γ̃µψp1 (x1 |A )

] [

ψ̄p′2
(x2 |A ) γ̃µ′

ψp2 (x2 |A )
]

.
(141)

Here, Dµµ′ (x1 − x2) is the Green function of an intermediate free photon; ψpj (x |A ) and
ψ̄p′j

(x |A ) are the wave functions of initial and final leptons in the field of a pulsed light

wave (2), respectively (j = 1, 2).

The amplitude of scattering of a lepton l1 (with the mass m1 and the four-momentum p1)
by a lepton l2 (with the mass m2 and the four-momentum p2) in a pulsed light field may be
represented as a sum of partial components with emission (l > 0) and absorption (l < 0) |l|
wave photons:

S =
∞

∑
l=−∞

Sl , (142)

Sl =
(2π)4 ie2

2
√

E1E2E′
1E′

2

δ (qx) δ
(

qy
)

δ (q0 − qz) Dls. (143)
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Fig. 8. The Feynman diagram of direct amplitude of scattering of a lepton l1 by a lepton l2 in
the field of a pulsed light wave. External incoming and outgoing double lines correspond to
the wave functions of leptons in initial and final states in the field of a plane wave (the
Volkov functions), and an inner dashed line corresponds to a Green function of a free photon.

Here, the arguments of delta-functions are the four-vector q = (q0, q) components

q = p′1 + p′2 − p1 − p2 + lk. (144)

The function Dls in Eq. (143) has the form

Dls =
∞

∑
s=−∞

∞
∫

−∞

(

ūp′1
Λν

l−s (ζ) up1

) (

ūp′2
Λsν (ζ) up2

)

q′21 + 2ζ (kq′1) + i0
dζ. (145)

Here, q′1 is the four-vector of an intermediate photon

q′1 = p′2 − p2 + sk = p1 − p′1 + (l − s) k, (146)

and functions Λν
l−s

(ζ), Λsν (ζ) are represented by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Λν
l−s (ζ) = τ

∞
∫

−∞

dφ1 · Gν
l−s

(φ1) · exp
{

i
q0 + qz

2
τφ1

}

· exp {−i (ζωτ) φ1} ,

Λsν (ζ) = τ
∞
∫

−∞

dφ2 · Gsν (φ2) · exp {i (ζωτ) φ2} .

(147)

Functions Gν
l−s (φ1) in Eq. (147) have the form

Gν
l−s (φ1) = aνLl−s (φ1) + η01 (φ1)

m1

4ωκ1
γ̃ν k̂ [ε̂−Ll−s+1 (φ1) + ε̂+Ll−s−1 (φ1)] +

+η01 (φ1)
m1

4ωκ′1
[ε̂−Ll−s+1 (φ1) + ε̂+Ll−s−1 (φ1)] k̂γ̃ν+

+
(

1 − δ2
)

η2
01 (φ1)

m2
1

8ω2κ1κ′1
kν k̂ [(Ll−s+2 (φ1) + Ll−s+2 (φ1))],

(148)

aν = γ̃ν +
(

1 + δ2
)

η2
01 (φ1)

m2
1

4ω2κ1κ′1
kν k̂, (149)

η0j

(

φj

)

= η0j · g
(

φj

)

. (150)
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Here, ε̂± is the compression of four-vectors ε± = ex ± iδey with the Dirac’s γ̃ν-matrices.
The expression for the function Gsν (ϕ2) is ensued from Eqs. (148)-(149) by following indices
replacement: 1 → 2, l − s → s, l − s ± 1 → s ± 1, l − s ± 2 → s ± 2 and by the index ν omission
also. By means of κj and κ′j in functions Gν

l−s (φ1) and Gsν (ϕ2) the following expressions are
denoted

{

κj = Ej − npj,
κ′j = E′

j − np′
j.

(151)

Here, n is the unit vector along the direction of external wave propagation

n =
k

|k| . (152)

There are the integral functions Ll−s (φ1), Ls (φ2) which determine probability of emission
and absorption of external wave photons in Eqs. for Gν

l−s (φ1), Gsν (φ2). They have the form

Ln

(

φj

)

≡ Ln

(

χj, γ0j

(

φj

)

, β j

(

φj

))

=

= 1
2π

2π
∫

0
dϕ′

j exp
{

i
[

γ0j

(

φj

)

sin
(

ϕ′
j − χj

)

+ β j

(

φj

)

sin 2ϕ′
j − nϕ′

j

]} (153)

(j = 1 for n = l − s, j = 2 for n = s) with the arguments

γ0j

(

φj

)

= η0j

(

φj

)

·
mj

ω

√

(

exgj

)2
+ δ2

(

eygj

)2
, (154)

tgχj = δ

(

eygj

)

(

exgj

) , gj =
p′j
κ′j

−
pj

κj
, (155)

β j

(

φj

)

=
(

1 − δ2
)

η2
j

(

φj

) m2
j

8ω

[

1
κ′j

− 1
κj

]

. (156)

Before performing of integration of the function Dls (145) over the variable ζ we remind
that the subject of studying is the resonant character of amplitude behavior caused by quasi
discrete structure: charged particle + plane electromagnetic wave. It is obvious that the
resonant character of lepton-lepton scattering occurs when the denominator of the function
Dls approaches zero. We should underline that the possibility of lepton-lepton resonant
scattering in a pulsed light field is provided by the both energy (with accuracy q0 � 1/τ ≪ ω)
and momentum conservation laws fulfillment. Thus, the squared four-momentum of an
intermediate photon q′1 vanishes. It implies that the considered particle falls within the mass
shell, i.e. an intermediate virtual photon becomes a real one. In this case the correction to
the intermediate photon squared four-momentum in the denominator of the expression (145)
is caused by the external field pulsed character and is essential through integration of the
function Dls (145) over the variable ζ. Hence, the following correlation is valid

q′21 �

(

kq′1
)

ωτ
. (157)
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The condition (157) determines such a kinematical region, which is accepted to name the
resonant one. In the case of external field modeling as a plane monochromatic wave there is
the intermediate particle squared four-momentum alone in a process amplitude denominator.
Therefore, when a denominator is equal zero the resonant divergence occurs. It is eliminated
by radiative corrections introducing into the Green function according the Breit–Wigner
prescription. But now there is an addition in a denominator, caused by the laser wave pulsed
character. Thus, the divergence in the process amplitude disappears.

Finally, the function Dls (145) assumes the form:

Dls =
∞

∑
s=−∞

iπωτ2
(

kq′1
)

(

ūp′µ ∆ν
l−supµ

) (

ūp′e ∆sνupe

)

, (158)

where integral functions ∆ν
l−s, ∆sν are defined by following expressions

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∆ν
l−s =

∞
∫

−∞

dφ1 · Gν
l−s (φ1) · exp

{

i

(

q0 + qz

2
τ + 2βτ

)

φ1

}

,

∆sν =
∞
∫

−∞

dφ2 · Gsν (φ2) · exp {−2iβτφ2} (sgn (φ1 − φ2)− 1) ;

(159)

βτ ≡ q′21
4
(

kq′1
)ωτ. (160)

Here βτ is the relevant parameter which is defined by the both resonant scattering kinematics
and external pulsed wave characteristics.

4.1 Resonance conditions

In this section we analyze in detail the case when an intermediate photon falls within the mass
shell. Inner line discontinuity at the Feynman diagram appears and the studying process is
effectively decomposes into two consecutive processes of the first order: a lepton l1 with the
four-momentum p1 emits a real photon with the four-momentum q′1 at the expense of external
wave photons absorption, then a real photon is absorbed by a lepton l2 with external wave
photons emission or vice versa.

Generally speaking owing to condition (157) the squared four-momentum of an intermediate
photon is founded within the very narrow region near zero. We will show below that this
region depends on initial four-momenta of scattered particles and their scattering angles.
However, the given region has to be taken into consideration in the denominator of the
resonant amplitude exceptionally (145). Thus, the four-momentum conservation laws for
resonant diagram vertexes may be written as two equalities:

p1 + |s| k = p′1 + q′1, (161)

p2 + q′1 = p′2 + s′ · k. (162)

The equality (161) expresses the four-momentum conservation law in the process when an
intermediate real photon is emitted by a lepton l1 at the expense of |s| external wave photons
absorption. The equality (162) corresponds to the four-momentum conservation law in the
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process when an intermediate real photon is absorbed by a lepton l2 with s′ = |s|+ l external
wave photons emission.

Remind that integral functions (153) are determined by the integer-order Bessel functions for
the case of a circularly polarizated external wave. It is not difficult to verify that for this
polarization under the resonance conditions (157) the arguments of the Bessel functions (154)
may be represented as

γ0j

(

φj

)

= 2s′ · η0j

(

φj

)

√

u

us′
·
(

1 − u

us′

)

. (163)

u ≡

(

kpj

)

(

kp′j
) − 1 =

κj

κ′j
− 1, us′ ≡ 2s′ ·

ωκj

m2
j

. (164)

It was expected, that for processes of resonant lepton-lepton scattering the influence of the
Bunkin-Fedorov quantum parameter does not reveal, in opposite the nonresonant case. Since
γ0e ∼ η0e ≪ 1 (see Eq. (163)), then the most probable case when a lepton l1 absorbs and a
lepton l2 emits equally the only one external wave photon is realized, i.e.:

s′ = |s| = 1, l = s + s′ = 0. (165)

The region of resonant scattering is to be defined. We use the frame of reference related to
a center of initial particles inertia, that is p1 + p2 = 0. In this frame the particle relative
momentum p = p1 = −p2 and after scattering changes only the direction: |p′| = |p|. We
introduce also the unit vectors along the directions of initial and final momenta n f and ni

n f =
p′

|p′| , ni =
p

|p| . (166)

With expressions (157) consideration it is easy to verify that in view of chosen direction of
intermediate photon motion the resonance occurs if leptons scatter into the small angles in
the frame of reference related to a center of inertia:

θ = ∠
(

n f , ni

)

= θres = 2
ω

|p| sin θi ≪ 1, (167)

where θi = ∠ (n, ni) is the angle between the directions of wave propagation and the initial
relative momentum p.

Meanwhile the resonance for exchange (annihilation) amplitude occurs in the essentially
different kinematical region (see Roshchupkin & Voroshilo (2008)).

Thus, we expand the Bessel functions (148) as series in order of γ0j ∼ η0j ≪ 1 and keep the
summands proportional to the first order of the parameter η0j. Under the condition (165) we
obtain:

Gν
l−s (φ1) = g (φ1) · Gν

1 , (168)

Gsν (φ2) = g (φ2) · G1ν. (169)
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where the matrices Gν
1 and G1ν have the following form

Gν
1 = (−1)

γ01

2
exp (iχ1) γ̃ν +

η01m1

2ωκ1

[

kν ε̂− − εν
− k̂
]

+
η01m1

4ω

(

1
κ′1

− 1
κ1

)

ε̂− k̂γ̃ν, (170)

G1ν =
γ02

2
exp (−iχ2) γ̃ν +

η02m2

2ωκ2

[

kν ε̂+ − ε+ν k̂
]

+
η02m2

4ω

(

1
κ′2

− 1
κ2

)

ε̂+ k̂γ̃ν. (171)

The resonant region of scattering angles in the frame of reference related to a center of inertia
is determined as

|θ − θres| �
θres

ωτ
≪ θres, (172)

and expressions for the parameter βτ (160) assumes the form

βτ =
1
2

ωτ

(

1 − θ

θres

)

� 1. (173)

Finally, the resonant amplitude of a lepton l1 scattered by a lepton l2 in the field of a pulsed
electromagnetic moderately strong wave of a circularly polarization in the frame of reference
related to a center of inertia takes the form

S = S0 · Υτ , (174)

where

S0 =
iπ3/2e2 M̂

p2
√

E1E2E′
1E′

2

δ
(

P′
x

)

δ
(

P′
y

)

δ
(

E′ − E − P′
z

)

, (175)

M̂ =
(

ūp′1
Gν

1 up1

) (

ūp′2
G1νup2

)

. (176)

The function Υτ in Eq. (174) is represented by

Υτ =
ωτ

θ · θres
exp{− β2

τ

4
} · Iτ (q+τ) . (177)

Here, Iτ (q+) is the integral function:

Iτ (q+τ) = τ

∞
∫

−∞

dφ · g (φ) · exp
{

i

(

q0 + qz

2
τ + 2βτ

)

φ

}

·
[

erf
(

2φ +
iβτ

2

)

+ 1
]

. (178)

In Eqs. (177) and (178) the parameter βτ is determined by the expression (173). We underline,
that presence of three delta-functions in the resonant amplitude (174)-(178) is considered as
realizing of three following conservation laws:

P′
x = 0, P′

y = 0, E′ − E = P′
z, (179)

where P′ =
(

P′
x, P′

y, P′
z

)

is the momentum of the inertia center after scattering, E and E′ are

particle total energies before and after scattering, correspondingly.
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4.2 Resonant cross-section

In view of finite duration of an external pulsed light field there is a sense to define the
differential probability over all the observation time T in the process of scattering of a lepton
l1 by a lepton l2. Thus,

dW = |S|2 d3 p′

(2π)3
d3P′

(2π)3 . (180)

Using the expressions for the amplitude (174)-(178) and performing uncomplicated
computations we obtain the differential probability per time unit and per volume unit:

dW

T
= dw =

e4

2 (2π)3 p4E1E2E′
1E′

2T
· (ωτ)2

θ2θ2
res

·
∣

∣

∣

(

ūp′1
Gν

1 up1

) (

ūp′2
G1νup2

)∣

∣

∣

2
×

× exp
(

−β2
τ

/

2
)

· |Iτ (q+τ)|2 δ
(

P′
x

)

δ
(

P′
y

)

δ
(

q0 − P′
z

)

d3 p′d3P′.
(181)

The differential cross section we obtain from Eq. (181) by division by a density of the scattered
particles flux j = |p|/E. The integration of the differential cross section over d3P′ should be
performed via the delta-functions. We present d3 p′ as

d3 p′ = E′
1E′

2

∣

∣p′∣
∣ dΩ′ dE′

E′ , (182)

where dΩ′ is the elementary solid angle of particles scattering, and introduce a new
integration dimensionless variable: dE′ → dξ (ξ = q0/ω, E′ = ξω + E, dE′ = ωdξ). After
simple transformations we derive

dσl1 l2
res

dΩ′ =
e4E

2p4E1E2
· ω (ωτ)2

θ2θ2
res

·
∣

∣

∣

(

ūp′1
Gν

1 up1

) (

ūp′2
G1νup2

)∣

∣

∣

2
exp

(

−β2
τ/2

)

· H. (183)

Here, the function H has the form

H =

∞
∫

−∞

dξ
|Iτ (ξωτ)|2

ξω + E
= τ2

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

dξdφdφ′

ξω + E
g (φ) exp {i (ξωτ + 2βτ) φ}×

×
(

erf
(

2φ +
iβτ

2

)

+ 1
)

g
(

φ′) exp
{

−i (ξωτ + 2βτ) φ′}
(

erf
(

2φ′ − iβτ

2

)

+ 1
)

.

(184)

The differential cross section of resonant scattering of nonpolarized leptons in the field of a
pulsed light wave into the elementary solid angle may be represented as

dσl1 l2
res

dΩ′ = r2
e

4πm2
e m2

1m2
2

p4E1E2
η2

01η2
02 · f0 · fres. (185)

Here, the function f0 is determined by

f0 =

[

2d f ih f i |p| (E1 + E2)

(E1− |p| cos θi) (E2+ |p| cos θi)

]2

+

[

2 +
d2

f i

(

E1E2 + p2)

(E1− |p| cos θi) (E2+ |p| cos θi)

]

×

×
[

2 +
d2

f i

(

E1E2 + p2)+ 4d f ih f i |p| (E1 + E2)

(E1 − |p| cos θi) (E2 + |p| cos θi)

]

.

(186)
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The following designations are used in Eq. (186)

h f i = (exni) cos χ f i + δ
(

eyni

)

sin χ f i, (187)

d f i = 2
(

nτf i

)

√

(

exτf i

)2
+
(

eyτf i

)2
, (188)

tgχ f i = δ

(

ey · τf i

)

(

ex · τf i

) , (189)

τf i =
n f − ni
∣

∣

∣
n f − ni

∣

∣

∣

. (190)

The function fres in Eq. (185) has the form

fres =

(

ωτ

θ2
res

)2

· f (ρ, βτ) , (191)

f (ρ, βτ) = exp
(

−β2
τ/2

)

· 1
ρ

ρ
∫

−ρ

dφg2 (φ)

∣

∣

∣

∣

erf
(

φ +
iβτ

2

)

+ 1

∣

∣

∣

∣

2

. (192)

We underline that the dependence of the function fres on the parameter βτ (173) determines
resonant peak magnitude and shape. It is easy to notice that when leptons scatter into the
resonant angle θ ≃ θres than the parameter βτ becomes equal zero (see Eq. (173)). At that
the function fres (191) possesses the finite value as opposed to the plane monochromatic wave
case when fres → ∞ is correct.

The significant issue is the influence of the pulse finite duration on the cross section resonant
behavior. The pulse duration has to exceed the time required for the Compton scattering of an
external field photon by each of leptons l1 and l2. If this condition is not satisfied than particles
do not have time to interact with a wave under the resonance conditions. Consequently, the
following correlation for the pulse duration is valid:

ωτ �
1

αη2
0j

Ej

κj
. (193)

Thus, experimental treatment of resonant scattering of a lepton by a lepton may be verified
in the fields created by picosecond pulsed lasers which generate the radiation within the
optical frequencies range. Such scientific facilities are employed in SLAC National Accelerator
Laboratory (Bula et al. (1996); Burke et al. (1997)) research centers and also in the frame of the
FAIR project (Bagnoud et al. (2009)).

We can integrate the differential cross section (185) within the narrow range of scattering
angles near the resonance (172). Under the resonance conditions the vector τf i (190) may
be represented as

τf i ≈
1

θres

(

n f − ni

)

, (194)
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and
(

niτf i

)

≃ 0. We perform the integration over the parameter βτ (173) (instead the

scattering angle θ ), and finally derive

dσl1 l2
res

dϕ f
= 16πr2

e η2
01η2

02
m2

e m2
1m2

2

E1E2 |p|4
(ωτ)

θ2
res

· f0 · F (ρ) , (195)

where function F (ρ) is determined by

F (ρ) =

∞
∫

−∞

dβτ · f (ρ, βτ) . (196)

Here, the function f (ρ, βτ) is specified by Eq. (192). The limits of the integration in Eq. (196)
are extended over the infinity owing to the integral quick convergence (though the values of
the parameter βτ � 1 within the resonant region).

Fig. 9. The dependence or the differential cross-section of scattering of an electron by an
electron (an electron by a positron) in a pulsed light field (195) (in units of respective
cross-sections in an external field absence) on the initial polar angle when an azimuthal angle
is fixed ϕi = π/4 and value of the parameter ρ = 2. The external laser wave frequency
amounts to the value ω = 2.35 eV, the pulse duration is equal to τ = 1.5 ps, the field strength
in a pulse peak F0 = 6 · 109 V/cm. The cases of particles relative velocities V = 0.2 (solid
line), V = 0.6 (dotted line), and V = 0.9 (dash-dotted line) are represented.

Let us consider the ratio of the derived resonant differential cross section (195) to the
differential cross section of scattering of the same leptons in an external field absence for such
processes: scattering of an electron by an electron, scattering of an electron by a positron,
scattering of an electron by a muon. Figs. 9, 10 show the dependencies of the considered ratio
on the initial polar angle θi. We should underline that under scattering of both an electron by
an electron and an electron by a positron within the small angles range (172) the respective
cross-sections coincide each with other.

In accordance with the Figs. 9, 10 we consider that within the broad range of particles
velocities the resonant cross sections of scattering of an electron by an electron (an electron by
a positron, an electron by a muon) in a pulsed light field exceed the corresponding differential
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Fig. 10. The dependence of the differential cross-section of scattering of an electron by muon
in a pulsed light field (195) (in units of respective cross-sections in an external field absence)
on the initial polar angle when an azimuthal angle is fixed ϕi = π/4 and the value of the
parameter ρ = 2. The cases of particles relative velocities V = 0.2 (solid line), V = 0.6 (dotted
line) and V = 0.9 (dash-dotted Line) are represented.

cross sections in an external field absence within the whole polar angles range. Hereby, the
greatest exceeding appears for the case of particles small relative velocities (V = 0.2), at that
the exceeding reaches into five orders of the magnitude (for scattering of an electron by an
electron (positron)), and two orders for scattering of an electron by a muon. Also there is a
suppression of the resonant cross section in the case of leptons high relative velocities within
the range of the initial polar angles θi ≈ 60◦.

5. Resonant scattering of a photon by an electron in the pulsed laser field

Oleinik (1967) specified resonances in the Compton effect in the field of a plane
monochromatic wave for the first time, but his studies had a rather fragmentary form (see also
Belousov (1977)). The resonance of direct and exchange diagrams in the general relativistic
case for the field of a weakly intensive plane monochromatic electromagnetic wave was
considered by Voroshilo & Roshchupkin (2005). Scattering of a photon by an electron in a
pulsed light field for the direct diagram resonance in the range of weak fields (5) was studied
in work Voroshilo et al. (2011).

5.1 Process amplitude

The amplitude of scattering of a photon with the four momentum ki = (ωi, ki) by an electron
with the four momentum pi = (Ei, pi) in an pulsed field (2) (Fig. 11) is given by the expression

S f i = S
(d)
f i + S

(e)
f i , (197)

S
(d)
f i =−ie2

∫

d4rd4r′Ψ̄p f
(r)γ̃µG(r, r′)γ̃νΨpi (r

′)A∗
µ(k f r)Aν(kir

′), S
(e)
f i = S

(d)
f i

(

k f ↔ −ki

)

,

(198)
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Fig. 11. The Feynman diagram of the Compton effect in the field of a pulsed light wave.

where p f = (E f , p f ) and k f = (ω f , k f ) are four momenta of an outgoing electron and a
photon; γ̃ν (ν = 0, 1, 2, 3) are the Dirac matrices; Aµ(kir

′) is the wave function of a photon (8);
eµ is the photon polarization four-vector; G(r, r′) is the Green function of an electron in the
field (2).

The case when a laser field intensity meets the following condition

η2
0 � ϕ−1

0 ≪ 1, ϕ0 = ωτ, (199)

is considered through this section. This condition allows both to carry out the decomposition
with respect to the small parameter and to neglect the interference of contributions of the
pulsed wave anterior and posticous parts.

The amplitude (197) accurate within terms ∼ η2
0 assumes the form

S f i ≈ Bδ(2)(pi,⊥ + ki,⊥ − p f ,⊥ − k f ,⊥)δ(pi,− + ki,− − p f ,− − k f ,−)e
′∗
νeµ · ūp f

T
νµ
f i upi , (200)

T
νµ
f i = ∑

j

⎛

⎝T
(j)νµ
0,0 + η0 ∑

l,l′∈(|l−l′ |+|l′ |=1)

T
(j)νµ
l−l′ ,l′ + η2

0

⎛

⎝T
(j)νµ
0,0 + ∑

l,l′∈(|l−l′ |+|l′ |=2)

T
(j)νµ
l−l′ ,l′

⎞

⎠

⎞

⎠, (201)

where j = e, d; indices d, e are concerned to direct and exchange diagrams; B is the
normalization factor; pi,⊥, ki,⊥, p f ,⊥, k f ,⊥ are the projections of corresponding vectors on the
wave polarization plane; pi,− = Ei − pi,z, ki,− = ωi − ki,z, p f ,− = E f − p f ,z, k f ,− = ω f − k f ,z
are differences between zeroth components of the corresponding four momentum and its
projection on direction of wave propagation; q, f are four momenta of an intermediate particle,
which conform to direct and exchange diagrams on Fig. 11, at that under the four momenta
conservation laws we have

q⊥ = pi,⊥ + ki,⊥, q− = pi,− + ki,−; f⊥ = pi,⊥ − k f ,⊥, f− = pi,− − k f ,−. (202)

The summands in Eq. (201), proportional to the zeroth degree of η0 determine the amplitude
of the Compton effect in external field absence (Klein & Nishina (1929)). The summands,
proportional to the first degree of the parameter η0, determine the corrections (for them
|l − l′|+ |l′| = 1 is valid) specified by participation of one wave photon in the process. The
summands, proportional to the second degree of the parameter η0, determine the corrections
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specified by participation of two wave photons in the process (for them |l − l′| + |l′| = 2 is
valid).

In the case of a plane monochromatic wave the resonance is associated with the fact that
an intermediate particle falls within the mass shell: q2 = m2, f 2 = m2. The corrections
to the Compton effect probability, which are specified by processes with one wave photon
participation, are the nonresonant. They are proportional to the second order of the parameter
η0 and, therefore, are small in comparison with the Compton effect probability. But among
processes with two wave photons participation there are such ones, which may have the
resonant behavior. The both resonance of direct diagram through an electron intermediate
state and resonance of exchange diagram through a positron intermediate state permit the
processes with l′ = −1, l = 0. The resonance of the exchange diagram through an electron
intermediate state permits the process with l′ = 1, l = 0. These processes may have resonant
character in the case of a pulsed field (2) (Voroshilo et al. (2011)).

The expressions for T
(d,e)νµ
l−l′ ,l′ in Eq. (201) for resonant processes have the form:

T
(d)νµ
1,−1 ≈ πω

8(kq−1)
· I(β−1(q−1), l∗)

[

Mν
1(p f , q−1) (q̂−1 + m) M

µ
−1(q−1, pi)

]

, (203)

T
(e)νµ
∓1,±1 ≈ πω

8(k f∓1)
· I(β∓1( f∓1), l∗)

[

Mν
±1(p f , f∓1)

(

f̂∓1 + m
)

M
µ
∓1( f∓1, pi)

]

. (204)

Here

I(βl′ , l∗)=
π

4(kql′ )

(

erfi

(√
2

2

(

βl′ −
l∗ϕ0

4

)

)

+ i

)

exp

{

− ϕ2
0l2
∗ + 8 (βl′ − l∗ϕ0/4)2

16

}

, (205)

where erfi(z) is the error function of imaginary argument; βl′ is the resonant parameter:

βl′ (ql′ ) =
q2

l′ − m2

4(kql′ )
ωτ. (206)

Exactly the parameter βl′ determines the process behavior character. Thus, the values
βl′ � 1 correspond to the resonant behavior. The opposite case βl′ ≫ 1 corresponds to the
nonresonant one. Under the values βl′ ≫ 1 the function I(βl′ , a) has the following asymptotic
form:

I(βl′ , l∗) ≈
√

π

2
1

βl′
exp

{

− 1
32

l2
∗ϕ2

0

}

. (207)

In Eqs. (203)-(206) the quantities q−1 = pi + ki − k, f∓1 = pi − k f ± k correspond to the “strict”

four momentum conservation law (like the monochromatic wave case, when summands ∼ η2
0

are neglected); the quantity l∗ are the invariant parameter which are determined from the
following equation:

pi + ki + l∗k = p f + k f . (208)

It follows from Eq. (205) that |l∗| ∼ ϕ−1
0 . Consequently, in the zero-order approximation with

respect to the parameter ϕ−1
0 the frequency of a scattered photon is amount:

ω f ≈ ω
(0)
f , ω

(0)
f =

(piki)

Ei + ωi −
(

[pi + ki]n f

) , (209)
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where n f is the directive unit vector for the final photon emission.

Bispinor matrices Mν
±1 in (203), (204) are determined by:

Mν
±1(p f , q−1) = ±

y0(p f , q−1)

2
e∓iχ · γν+

+
m

4

(

2
(kq−1)

[

ε̂(∓)kν − k̂ε(∓)ν
]

+

[

1
(kp f )

− 1
(kq−1)

]

ε̂(∓) k̂γν

)

.
(210)

Here, quantities ε(±) = ex ± iδey; y0(p f , q), χ ≡ χ(p f , q) are the kinematical parameters

y0(p f , q) = mη
√

−g2(p f , q), tan χ =
δ(gey)

(gex)
, g ≡ g(p f , q) =

p f

(kp f )
− q

(kq)
. (211)

5.2 Resonant kinematics

5.2.1 Resonance conditions for the direct diagram

The parameter β ≡ β (q−1) which corresponds to the resonant process with l′ = −1, l = 0
(one field photon emits in the beginning, and one photon absorbs at the end of the process)
may be written in the form:

β

ϕ0
=

1
2

1 − ũ
[

1 + ũ
(

ωi/ωi,res − 1
)]

(

ωi

ωi,res
− 1

)

. (212)

Here, the invariant parameter ũ and the frequency ωi,res, which corresponds to the resonant
maximum, are determined by:

ũ =
(kki)

(piki)
, 0 ≤ ũ ≤ u1, u1 =

2(kpi)

m2 , (213)

ωi,res =
(kpi)

Ei − ω − ([pi − k]ni)
, (214)

where ni is the unit vector along the propagation direction of incident photon. We rewrite this
expression as

ωi,res =
mu1

2

(Ei − ω)/m +
√

(Ei − ω)2 /m2 + u1 − 1 · cos θ̃S

1 − u1 +
(

(Ei − ω)2 /m2 + u1 − 1
)

sin2 θ̃S

, (215)

where
θ̃S = ∠(S, ni), S = pi − k. (216)

We consider that the correlation ω ≪ m is valid in the region υi = |pi|/Ei ≪ ω/m ≪ 1 (it
is the nonrelativistic case, which also corresponds to the rest frame of an final electron) and
obtain:

ωi,res =
ω

1 − ω/m
(

1 − cos θ̃
) ≈ ω

(

1 +
ω

m
(1 − cos θ̃)

)

, θ̃ = ∠(k, ni) ≈ π − θ̃S. (217)
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Therefore, in this case the resonant frequency is closely approximated to the laser field
frequency.

In range where the correlation ω/m ≪ υi < 1 is valid (it is the ultrarelativistic case) we derive:

ωi,res ≈ mu1

2

Ei/m +
√

E2
i /m2 − 1 cos θ̃S

1 − u1 +
(

E2
i /m2 − 1

)

sin2 θ̃S

.

In the ultrarelativistic case (u1 > 1, Ei/m > m/ω ≫ 1) under (m/ω)
√

u1 − 1 < θ̃S ≪ 1
(θ̃S ≈ θ̃pi = ∠(pi, ni)) we obtain:

ωi,res ≈ u1Ei

1 − u1 + (Ei/m)2 θ̃2
S

. (218)

Fig. 12 demonstrated dependence of the resonant frequency on the angle θ̃S for different
energies of an electron.
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Fig. 12. The dependence of ratio of the resonant frequency of an ingoing photon to the laser
field frequency ωi,res/ω (215) from the angle θ̃S (216) under ω/m = 10−5 for different
energies of an ingoing electron.

The resonance of the amplitude, which corresponds to the direct diagram, is feasible only
when the condition ũ < 1 is satisfied, so that for the values u1 > 1 the angle θ̃S is restricted by
the interval:

α0 < θ̃S < π, α0 = arccos
Ei − ω

|S| . (219)

148 Quantum Optics and Laser Experiments

www.intechopen.com



Resonant Effects of Quantum Electrodynamics in the Pulsed Light Field 43

The cases close to realization of the condition ũ = 1 (θ̃S = α0) also have to be excluded,
because the frequency of a resonant photon in these cases has to be infinite, but it is impossible
to put into practice. Therefore, the condition of the direct diagram resonance is determined
by:

∣

∣

∣

∣

1 − ωi

ωi,res

∣

∣

∣

∣

∼ 1
ϕ0

≪ 1. (220)

Under the condition (220) the resonant parameter assumes the form:

β

ϕ0
≈ 1

2
(1 − ũ)

(

ωi

ωi,res
− 1

)

, 0 < ũ <

{

u1, u1 < 1;
1, u1 > 1.

(221)

5.2.2 Resonance conditions for the exchange diagram

For the processes with l′ = ±1, l = 0 which permit the resonance of the exchange diagram
through an electron (l′ = 1) and a positron (l′ = −1) intermediate states the resonant
parameters β∓ ≡ β ( f±1) have the form:

β∓
ϕ0

=
1
2

υ′ ± 1
[

υ′
(

1 − ω f /ω
(∓)
f ,res

)

± 1
]

⎛

⎝1 −
ω f

ω
(∓)
f ,res

⎞

⎠ , (222)

where the upper sign is concerned to an electron intermediate state, the lower sign is

concerned to a positron one; the invariant parameter υ′ and the frequencies ω
(∓)
f ,res of a final

photon, which correspond to the resonant maximum, are defined by:

υ′ =

(

kk f

)

(

pik f

) , ω
(∓)
f ,res =

(kpi)

(Ei − pin f ) (υ′ ± 1)
. (223)

It follows from Eq. (223) that the resonance via positron intermediate state can be observed
under limitations on parameter υ′ and, hence, angle θ̃′S = ∠(S, n f ):

υ′ > 1(u1 > 1) 0 ≤ θ̃′S ≤ α0 and π − α0 ≤ θ̃′S ≤ π. (224)

Equating the expressions (209), (223) we obtain that under the exchange diagram resonance
directions of a scattered photon correspond to the condition of the resonant maximum; these
directions lie on the surface of a cone (see Fig. 13); axis of the cone coincides with the vector
h∓ and the opening angle θ′h∓ = ∠(h∓, n f ):

cos θ′h∓ = h∓0
/∣

∣h∓∣
∣, h∓ = (h∓0 , h∓) = (kpi) [pi + ki]− (piki) [k ± pi] . (225)

Thus, the four vector has to be a spatially similar one (h∓)2 ≤ 0, i.e. the inequality

ũ2
1(1 − ũu1)∓ 2ũ1u1 + u2

1 ≤ 0, (226)

has to be met.
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The invariant parameter ũ1 is equal to:

ũ1 =
2(pki)

m2 . (227)

h
e

h

h

h

f
n

n

z

x

y

res

 

Fig. 13. Geometry of emission of an outgoing photon in the case of occurrence of the
exchange diagram resonance.

From the inequality (226) we derive the following condition on the initial photon frequency;
at this frequency the exchange diagram resonance through the electron intermediate state
occurs:

⎧

⎪

⎨

⎪

⎩

ω f

1 +
√

u1ũ
≤ ωi,res ≤

ω f

1 −√
u1ũ

, ũ < u−1
1 ;

ωi,res ≥
ω f

1 +
√

u1ũ
, u−1

1 < ũ < u1.
(228)

Here, the function f has the form

f =
1 − υi cos θ

1 − υi cos θ̃
, (229)

where θ = ∠(k, ki), θ̃ = ∠(k, pi).

For a positron intermediate state the resonance occur under the condition that the initial
photon frequency exceeds a certain threshold value:

ωi,res ≥
ω f√

u1ũ − 1
, u−1

1 < ũ < u1. (230)

Values of initial photon frequencies meet the condition of the direct diagram resonance
ωi = ωi,res (214). They are founded within the frequencies interval (228); the exchange
diagram resonance through an electron intermediate state occurs under these frequencies.
Consequently, the direct diagram resonance is always accompanied by the exchange diagram
resonance through an electron intermediate state, and within the region

u1 > 1, 1/u1 < ũ < 1 (231)

through a positron intermediate state also.
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Fig. 14 shows the resonant region of final photon frequency values ωi (in units of the initial
electron energy Ei), which is determined by the system of the equations and the inequalities
(215), (228), (230), as a function of the parameter α = (θ − θ̃) (m/E) when ω = 2.36 eV,
Ei = 48.0 GeV (since Ei ≫ ω, then θ̃S ≈ θ̃), θ = 163◦.

resonance of direct diagram (line thickness 1

0
); 

resonance of exchange diagram through electron state; 
resonance of exchange diagram through positron state. 

Fig. 14. Resonant region of frequencies ωi(α) of an ingoing photon (in units of the ingoing
electron energy Ei), which is determined by the system of equations and inequalities (215),
(228), (230).

5.3 Resonant probability for the direct diagram

We consider the case when the conditions of the direct diagram resonance (220) are realized.
Thought it is accompanied by the exchange diagram resonance, but its contribution may be
neglected in the following cases:

1. when an initial photon is emitted out of the strictly defined and narrow region of an initial
photon directions when the exchange diagram resonance occurs (see Fig. 14);

2. when the total probability is obtained, since the contribution to the total probability from
the exchange diagram is ∼ (ωτ)−1 ≪ 1 and, therefore, it may be neglected.

The differential probability is obtained by standard mode (Berestetskii et al. (1982)). After
averaging over initial particle polarizations and summation over final particle polarizations

and also the integration over frequencies ω f and the azimuthal angle ψ′ = ∠
(

ex, k f ,⊥
)

of a

final photon emission we obtain the differential probability:

dWres
f i ≈ 2e4η4

0m2

πωiEiVũ1
(ωτ)2 Pres (β)

[

f (u′, ũ1) f (u, ũ1)− g(u′, ũ1)g(u, ũ1)
] du′

(1 + u′)2 τ. (232)
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Here,

u =
(kki)

(qki)
,

u′ =
(kk f )

(qk f )
,

ũ1 =
u1

1 − ũ
,

ures =
ũ

1 − ũ
,

(233)

at that 0 ≤ u ≤ ũ1, 0 ≤ u′ ≤ ũ1, 0 ≤ ũ′ ≤ ũ1. In Eq. (232) Pres (β) is the function, which
determines the resonant profile (see Fig. 15). It is obtained by

Pres (β) =
1

2π

∞
∫

−∞

|I1(β, l∗)|2d (ϕ0l∗) . (234)

We determine the resonance width at a half of the probability maximum (see Fig. 15). The

-4 0 4 8 -8 
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res
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res
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Fig. 15. Dependence of the function Pres (234), which determines the resonant profile, on the
resonant parameter β (221).

width which corresponds to the resonant parameter β is equal to ∆β ≈ 3.40. Therefore, the
width specified by the field pulsed character is obtained by

Γimp =
∆
(

q2 − m2)

4m
= ∆β

ũ1

2
m

ϕ0
≈ 1.70

mũ1

ϕ0
. (235)

We compare the resonance width specified by the field pulsed character (235) with the
radiation width:

ΓR =
q0

m
W1 =

e2m

4
√

π
η2

0 F (ũ1) , (236)
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where W1 is the total probability of the intermediate state decay in a weakly intensive field;
the function F (ũ1) is defined by

F(ũ1) =

(

1 − 4
ũ1

− 8

ũ2
1

)

ln (1 + ũ1) +
1
2
+

8
ũ1

− 1

2 (1 + ũ1)
2 . (237)

This ratio equals
Γimp

ΓR
≈ 8.51

e2η2
0(ωτ)

ũ1

F (ũ1)
. (238)

When the condition (199) is met the appraisal value of ratio is equal to Γimp/ΓR ≥ 103 ≫ 1.
Therefore, the width specified by the field pulsed character is the major one and the radiation
widening may be neglected.

After the integration over the invariant parameter u′ we derive the total probability of
photon-electron scattering under the direct diagram resonance

Wres
f i ≈ 2e4η4

0m2

πωiEiVũ1
(ωτ)2Pres (β) [F(ũ1) f (u, ũ1)− G(ũ1)g(u, ũ1)] τ, (239)

G(u′, ũ1) =

ũ1
∫

0

g(u′, ũ1)
du′

(1 + u′)2 =

=
1

4ũ1(1 + ũ1)2

(

−4ũ1 − 8ũ2
1 − 5ũ3

1 + (4 + 10ũ1 + 8ũ2
1 + 2ũ3

1) ln(1 + ũ1)
)

.

(240)

Ratio of the total probability (239) to the total probability of the Compton effect in external
field absence is expressed as

Wres
f i

wCompt
≈ τ

T
Pres (β) · R(u, ũ1), R(ũ, u1) =

2η4
0(ωτ)2

π2
[F(ũ1) f (u, ũ1)− G(ũ1)g(u, ũ1)]

ũ1F(ũ1)
,

(241)
where T is the observation time (T � τ), which is determined by conditions of the concrete
experiment.

When u1 ≪ 1 we derive

R(ũ, u1) ≈
4η4

0(ωτ)2

π2
(1 − ũ)

u1

(

1 − 2
ũ

u1

(

1 − ũ

u1

))

. (242)

Fig. 16 demonstrates the ratio of the resonant probability of scattering of a photon by an
electron in the field of a pulsed wave to probability of the Compton effect as a function of
parameters ũ, u1 within the resonant peak (β = 0) under τ/T = 1, η0 = 0.05. It can be
seen from Fig. 16 that the resonant probability may exceed considerably the probability of the
Compton effect in external field absence. This fact becomes apparent particularly in the case
u1 ≪ 1 (but it should be noticed here, that in view of infrared divergence the formulae (239),
(241) are correct within the region u1 � η2

0). Within the region u1 � 1 this effect disappears.
Under conditions η2

0 ∼ u1 ≪ 1 within the range of optical frequencies Ei/m ≪ m/ω ∼ 105

for the ratio of probabilities is correct R ∼ 103.
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Fig. 16. Ratio of the resonant probability of scattering of a photon by an electron in the field
of a pulsed wave to the probability of the Compton effect in external field absence (241) as a
function of the parameter u1 (213) in the resonance peak (β = 0) under τimp/T = 1, η = 0.05.

6. Conclusions

Performed studies of resonant QED processes in a pulsed light field result:

1. The QED processes of the second order in a pulsed light field may occur under resonant
conditions when the four-momentum of an intermediate particle lies near the mass surface.

2. The resonant behavior of the cross-section is specified by characteristics of the laser pulse.
The resonant infinity in the process amplitude is eliminated by accounting for the pulsed
character of an external field.

3. The differential cross section of the resonant process may be several orders of magnitude
higher than the corresponding cross section in external field absence.

The results can be tested in the experiments on verification of quantum electrodynamics in
presence of strong fields (SLAC and FAIR).
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