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1. Introduction 

The average global temperature has been slightly increasing by 0.76 °C over last 150 years. If 
the current state will continue, average Earth temperature will increase at the end of this 
century for about 1.1 – 6.3 °C according to applied emission scenario. Main reason of the 
observed global warming is the increasing contents of greenhouse gases (GHG), such as 
carbon dioxide (CO2), methane (CH4) a nitrous oxide (NO2), in the Earth atmosphere. The 
most important greenhouse gas is CO2. Carbon dioxide is considering as responsible for 
about two-third of the enhanced “greenhouse effect”. Its atmospheric concentration has 
risen from the pre-industrial levels of 280 ppm to 380 ppm in 2005. Human emissions of 
greenhouse gases are very likely responsible for global warming of the planet surface (IPCC, 
2007). The increasing carbon dioxide content in the atmosphere and its long-term effect on 
the climate has led to increasing interest and research of the possibilities of capture, 
utilization and long-term storage of carbon dioxide (Yang at al., 2008; Jiang, 2011) 
Fossil fuels have been used as the world’s primary source of energy upon over the 20th 
century and this trend is expected to continue throughout the 21st century (Yang at al., 2008; 
Maroto-Valer at al., 2005). There is a direct link between emissions of carbon dioxide (Ce), 
human population (P), economic development that is indicated by gross domestic product 
(GPD), production of energy (E), amount of carbon-based fuels used for production of 
energy (C) and CO2 sinks (SCO2): 

 
2COe S

E

C

GDP

E

P

GDP
PC   (1.1) 

The emissions of anthropogenic carbon dioxide are increasing with population (P), standard 
of living (GPD/P); the energy intensity of economy (E/GPD) and the carbon intensity of the 
energy system (C/E). On the contrary Ce is decreasing with SCO2. Examination of the Eq.1.1, 
in principle, proposes that there are five ways to reduce atmospheric emissions of 
anthropogenic CO2, of which the first two, i.e. reduction in population and/or decline in 
economic output are naturally unacceptable. Reducing the carbon intensity of the energy 
system can be achieved by using hydrogen-rich fuels and renewable energy sources. The 
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last term indicates that emissions of carbon dioxide can be partially or totally covered by the 
artificial increase in the capacity and uptake rate of CO2 sinks (SCO2). Carbon sequestration 
includes terrestrial or marine photosynthetic fixation of CO2 by plants and soils, and 
subsequent long-term storage of CO2 as carbon-rich biomass or capture and long-term 
storage of CO2 emissions at source prior to potential release. These techniques are 
collectively known as carbon capture and storage (CCS) (Bachu, 2008; Zhang at al., 2007; 
Piromon at al., 2007; Huesemann, 2006; Hoffert at al., 1998; Kaya, 1995). 
The Carbon Capture and Storage technologies have been considered as suitable method for 
reduction of CO2 emission, they are relatively abundant, cheap, available and globally 
distributed, thus enhancing the security and stability of energy systems (Bachu, 2008). CCS 
can be effectively integrated into various energy systems (Jiang, 2011).  The CO2 capture can 
be performed following three different technological concepts: post-combustion capture 
systems, pre-combustion capture systems and oxy-fuel capture systems (Damen at al., 2006; 
Pires at al., 2011).  
The main options for CO2 storage are:  
1. Geological storage – CCGS (Carbon Capture and Geological Storage); 
2. Ocean storage – CCOS (Carbon Capture and Ocean Storage); 
3. Mineral storage – CCMS (Carbon Capture and Mineral Storage). 
On the other hand there are fears that CCS technologies that offer the extension of the fossil-
fuel era by perhaps a few 100 years are a double-edged sword. CCS technology is designed 
to limit emissions of CO2 to the atmosphere, but it extends the period during which CO2 is 
emitted (Spreng at al., 2007). 
Carbon Capture and Geological Storage methods are using the geological media for storage of 
carbon dioxide at depths of more than one kilometer. Geological media suitable for CO2 
storage requires sufficient capacity, possibilities for CO2 transport and preventing the CO2 
migration or escaping. Sedimentary basins may possess these requirements, because generally 
only sandstone and carbonate rock have needed to provide the porosity and then storage 
capacity and permeability. Confining low-permeability shales and evaporites such as salt beds 
and anhydrites provide primary physical barrier for CO2 leakage (Gibbins & Chalmers, 2008; 
Bachu, 2008; Zhang at al., 2007; Pauwels at al., 2007; Friedmann at al., 2006; Gale, 2004; Soong 
at al., 2004; Bouchard & Delaytermoz, 2004;  Torp & Gale, 2004; Xu at al., 2004).  
Carbon dioxide may be stored in geological media by various means with various physical 
(Physical trapping) and chemical mechanisms (Chemical trapping) as a result of its 
properties at the pressure and temperature conditions found in Earth’s subsurface. Physical 
trapping of CO2 occurs when CO2 is immobilized as a free gas or supercritical fluid. There 
are two types of physical trapping.  Static trapping of mobile CO2 in stratigraphic and 
structural traps or in man-made caverns is applied. The second possibility is represented by 
residual-gas trapping in the pore space at irreducible gas saturation. Chemical trapping 
occurs when CO2 is absorbed into organic materials contained in coals and shales 
(adsorption trapping). Carbon dioxide may react directly or indirectly with mineral 
resulting to the geologic formation characterized by the precipitation of secondary carbonate 
minerals - mineral trapping. In direct carbonation process, gaseous CO2 is in first stage 
dissolved during indirect (aqueous) process and reacts with solid mineral in following 
operation (Bachu, 2008; Alexander at al., 2007; Xu at al., 2004). 
The dissolution of alkaline aluminosilicate minerals by CO2 contributes to increasing of 
concentration of soluble carbonates and bicarbonates in solution, thereby enhancing 
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“solubility trapping”. The chemical reactions inducted by CO2 injection are described by 
Eq.1.1 and 1.2 (Xu at al., 2004). The weathering of alkaline rocks, such as alkaline or alkaline 
earth silicates is thought to have played a great role in the historical reduction of the 
atmospheric CO2 content in atmosphere of Earth (Kojima at al., 1997).  

   33222 HCOHCOHOH)g(CO  (1.2) 

 ...),,()(
2222

3
2

3
  FeMgCaMHMCOMHCO  (1.3) 

Total estimated storage capacity of geological reservoirs is about 920 Gt CO2 in depleted oil 
and gas fields, 400 – 10 000 Gt in deep saline reservoirs and 20 Gt in coal mine coal deposits. 
The cost for carbon dioxide capture and following storage in geologic formations is 
estimated about 4 – 48 EUR/t CO2 (Friedmann at al., 2006; Gale, 2004). The research works 
concerning in risk assessment of CO2 geological storage is mentioned in work (Gale, 2004). 
Deep-sea storage of anthropogenic CO2 is an attractive concept that offers large storage 
capacity comparing to other options. However, storing CO2 in oceans is limited by its high 
cost, technology development, potentially high environmental impact, because the storage 
capacity of the ocean has not been defined. The oceanic processes are controlled long-term 
processes and large scale storage has been discussed only in general terms. Addition of 
anthropogenic CO2 would change the CO2 chemistry in the ocean by reducing pH at the site. 
The effects of long-term influence of low pH on planktonic ecosystem and oceanic biological 
processes are virtually unknown. Addition and CO2 storage would probably dissolve 
carbonate deposits on the seafloor and suppress oxidation of organic matter (Wong & 
Matear, 1998; Bachu & Adams, 2003). 
Mineral storage based on carbonation is a promising CCS method for long-term storage of 
CO2 in continental inland utilization. The carbon dioxide is stored through mineral trapping 
mechanism that requires the participation of cations, including Ca2+, Fe2+, and Mg2+, that can 
form stable solid carbonate phases (Giammar at al., 2005). This processing accelerates the 
natural weathering of silicate minerals, where these minerals react with CO2 and form 
carbonate minerals and silica. Although the calcium silicate has been successfully 
carbonated at temperatures and pressures relevant for industrial processes, its natural 
resources are too small and expensive to be of practical interest. Therefore, current research 
activities focus mostly on carbonation of magnesium silicates (Teir at al., 2007). Overall 
course of carbonation process of wollastonite (CaSiO3), olivine (Mg2SiO4) and serpentine 
(Mg3Si2O5(OH)4) may be described by Eq.1.4 – 1.6, respectively (Alexander, 2007; Wouter at 
al., 2007).   

 2323 SiO)(CaCO)g(CO)s(CaSiO   (1.4) 

 23242 22 SiO)(MgCOCOSiOMg   (1.5) 

 OHSiO)(MgCOCO)OH(OSiMg 22324523 2233   (1.6) 

The magnesium bearing minerals typically contain about 40 % of magnesium, whereas the 
content of calcium is approximately 10 – 15 %. Reactivity of olivine is higher than 
serpentine, but serpentine reactivity is strongly increasing by physical and chemical 
activation. Physical activation such as heat pre-treatment (calcination) at approximately 
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630 °C may remove water (dehydroxylation) from serpentine structure. The conversion to 
magnesite (MgCO3) is higher (59.4 %) than the value (7.2 %) found for untreated samples 
(Alexander at al., 2007). Carbon dioxide sequestration capacity some of major rock forming 
minerals is listed in Table.1.1. 
 

Mineral Composition Storage capacity 
[kgCO2· m-3] 

Plagioclase (anorthite) CaAl2Si2O8 436,4 
Olivine (forsterite-
fayalite) 

Mg2SiO4 – Fe2SiO4 2014,7 – 1896,3 

Pyroxene group - 
enstatite 

(Mg,Fe2+)Si2O6 1404,2 

Augite (Ca,Na)(Mg,Fe2+,Fe3+,Al,Ti)(Si,Al)2O6 1306,3 
Amphibole group – 
anthophy-llite - 
cummingtonite 

(Mg,Fe2+)7Si8O22(OH)2 1169,5 – 1041,8 

Common hornblende Ca2(Mg,Fe2+,Al)5(Si,Al)8O22(OH)2 1000,4 
Calcinum amphiboles - 
tremolite 

Ca2Mg5Si8O22(OH)2 1119,3 

Mica group - 
galuconite 

Kx(Fe3+,Al,Mg,Fe2+)2(Si,Al)4O10(OH)2; x < 1 61,97 

Mica group-phlogopite KMg2+3(Si3Al)O10(OH,F)2 881,8 
Mica group-biotite K(Mg,Fe2+)3(Si3Al)O10(OH,F)2 671,0 
Serpentine Mg3Si2O5(OH)4 1232,7 
Chlorite group (Mg,Al,Fe2+)12(Si,Al)8O20(OH)16 923,4 
Clay minerals - illite (K,H3O+)Al2(Si,Al)4O10(OH)2 78,42 
Clay minerals - 
smectite 

(Ca0,5,Na)0,7(Al,Mg,Fe)4(Si,Al)8O20(OH)4 · 
nH2O 

161,2 

Table 1.1. Carbon dioxide sequestration potential of some major rock according to work (Xu 
at al., 2004). 

If the rate-limiting step in the aqueous carbonation scheme is leaching of calcium or 
magnesium, then the production of carbonates may by accelerate via acceleration of 
dissolution stage. Inorganic (HCl, H2SO4, H3PO4) as well as organic acids (CH3COOH), 
complexing agents and hydroxides (NaOH) were used for chemical activation of minerals. 
Hydrochloric acid enhances the magnesium ions liberation, however energy intensity 
production of Mg(OH)2 has been increasing. Complexing agents were used to polarize and 
weaken the magnesium bonds within the serpentine structure. The most effective is 
treatment by H2SO4 which increases the surface area from 8 to 330 m2·g-1. Sulphuric acid 
pre-treatment enables aqueous carbonation of Mg(OH)2 under milder condition. 
Temperature and pressure were reduced from 185 on 20 °C and 12.7 to 4.6 MPa. Process 
may by write as follows (Alexander at al., 2007; M.-Valer at al., 2005):  

 OHSiOSOMgSOH)OH(OSiMg 22
2
4

2
424523 52333    (1.7) 

 422
2
4

2
2 SONa)OH(MgNaOHSOMg    (1.8) 
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 OH)(MgCOCO)OH(Mg 2322 2  (1.9) 

Industrial by-products, such as iron and steel slags and cement based material, may contain 
very height percentage of calcium and magnesium oxides and therefore they may be 
carbonated and exploited for CO2 mineral storage. Calcium and magnesium can be leached 
out by acetic acid. Such a process consists of two main steps. The first one, where calcium 
ions are extracted from natural calcium silicate mineral: 

 OHSiOCOOCHCaCOOHCHCaSiO 223
2

33 22    (1.10) 

 COOHCH)(CaCOOHCOCOOCHCa 33223
2 22    (1.11) 

And the second one, where carbon dioxide was introduced into the solution after removing 
of SiO2 and calcite has been precipitated from the solution according to Eq.1.11. Acetic acid 
is recovered in this step and recycled for using of extraction in the first step (Eq.1.10). 
Similar reaction proceeds with magnesium silicates: 

 OHSiOCOOCHMgCOOHCHMgSiO 223
2

33 22    (1.12) 

 COOHCH)(MgCOOHCOCOOCHMg 33223
2 22    (1.13) 

However, there are also small contents of many other compounds from iron and steel slags 
(such as heavy metals) which would be released by acetic acid (Teir at al., 2007). 

1.1 Kinetics of silicate minerals, rocks, glass and raw materials dissolution 
The main reasons for investigation of dissolution and precipitation reactions of silicate 
minerals and raw materials is in importance to understand the extent and environmental 
significance of the chemical weathering in nature (Cama at al., 1999; ), study of its potential 
to utilization as the source of the divalent cations that is necessary for the sequestering of 
carbon dioxide into carbonates (Saldi at al., 2007), in order to improve their catalytic activity 
(Komadel & Madejová, 2006; Pushpaletha at al., 2005), study the puzzolanic activity in 
mortars and cements (Massazza, 1993) drug delivery (Viseras at al., 2010), synthesis of 
geopolymers (Buchwald at al., 2009), zeolites (Baccouche at al., 1998) and organic-clay 
composites (Yehia at al., 2012). 
The kinetics of mineral dissolution is an area in geochemistry that has received considerable 
attention over the past several years (Knauss at al., 2003). Hence, numerous works dedicated 
to investigation of clay mineral dissolution kinetics can be found in the current literature 
(Table 1.2).  
A basic concept in chemical kinetics is that reactions consist of a series of different physical 
and chemical processes that can be broken down into different ‘‘steps’’. For dissolution, 
these steps generally include at a minimum (Morse & Arvidson, 2002; Dorozhkin, 2002): 
1. Diffusion of reactants through solution to the solid surface; 
2. Adsorption of the reactants on the solid surface; 
3. Migration of the reactants on the surface to an ‘‘active’’ site (e.g., a dislocation); 
4. The chemical reaction between the adsorbed reactant and solid which may involve 

several intermediate steps where bonds are broken and formed, and hydration of ions 
occurs; 
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5. Migration of products away from the reaction site; 
6. Desorption of the products to the solution; 
7. Diffusion of products away from the surface to the ‘‘bulk’’ solution. 

 
Mineral Solution properties EA  

[kJ·mol-1] 
Rate limiting 
step of process 

Reference 

Wollastonite pH 3 – 8  79.2 Diffusion (a) Rimstidt & Dove, 
1986 

Diluted acetic acid, 
pH 2 – 3.5 

47.1 Two-dimension 
diffusion 

Ptáček at al., 2011 

Enstatite pH 1 – 11; 28 – 168 °C 48.5 Reaction (b) Oelkers & Schott, 
2001 

Forsterite  pH 2; 25 – 65 °C 63.8 Reaction (b) Oelkers, 2001 

Olivine pH 2 – 5; 65 °C 125.6 Reaction Chen & Brantley, 
2000 

3 M H2SO4; 60 – 90 °C 66.5 Reaction Jonckbloedt, 1998 

Serpentine 2 M H2SO4; 30 – 70 °C 68 Diffusion Teir at al., 2007 

2 M HCl; 30 – 70 °C 70 

2 M HNO3; 30 – 70 °C 74 

Talc pH 1 – 10.6; 25 – 150 °C 45.0  Saldi at al., 1995 

Anorthite pH 2.4 – 3.2; 45 – 95  °C 18.4 (c)  Oelkers & Schott, 
1995 

Diopside pH 2 – 12; 25 – 70 °C 40.6 Surface reaction Knauss at al., 1993 

Basaltic glass pH 7.8 – 8.3; 90 °C 9.8 Diffusion Daux at al., 1997  

(a) Under low pH values. (b) Forming of rate-controlling precursor complex. (c) Under pH = 2.6. 

Table 1.2. Dissolution kinetics of silicates. Table is extracted from the work (Ptáček at al., 
2011). 

A central concept in dissolution kinetics supposes that one of these steps is the slowest than 
other. The reaction cannot proceed faster than the rate limiting step. Above mentioned steps 
1 and 7 involve the diffusive transport of reactants and products through the solution to and 
from the surface. When this process is rate-limiting, the reaction is said to be diffusion 
controlled. Steps 2– 6 occur on the surface of the solid and when one of them is rate 
controlling the reaction is said to be surface controlled (Morse & Arvidson, 2002; Dorozhkin, 
2002). 
The dissolution of solids in liquids (or melts) consists of a surface chemical reaction and 
transport of the reaction components to the reaction boundary (Šesták, 1984). Many 
multicomponent silicate minerals under acidic condition are dissolved incongruently. The 
Ca2+ ions were replaced by H3O+ ions and leached layer of silica was formed. This layer 
wasn't homogeneous and its structure was changing with time as a consequence of 
polymerization of silanol groups (Weissbart & Rimstidt, 2000): 
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 OHSiOSiOHSi 22   (1.14) 

Monosilic acid may be liberated from silicates which contain SiO44- ions separated by metal 
cations – nesosilicates. Besides the temperature the solubility of an amorphous silica layer 
depends on pH and shows the minimum at pH 7. The accurate data are still missing because 
there is an extreme variation in the forms in which the amorphous silica can occur. The rate 
of dissolution is proportional to the concentration of H3O+ and OH− ions in the range from 0 
to 2 and from 3 to 6, respectively. The rate of diffusion or desorption of the silicic acid from 
the surface limits the rate of dissolution if pH is higher than 6 (Iler, 1979).  
The dissolution mechanism of each multioxide silicate can be deduced from its structure. 
Note that in some cases, not all metal–oxygen bonds present in the structure need to be 
broken to completely destroy a mineral. Dissolution proceeds via the sequential 
equilibration of metal–proton exchange reactions until no further viable structure remains. 
The last of these sequential exchange reactions destroys the structure and it is irreversible in 
most cases. Assuming that at acidic conditions, the sequence of metal–proton exchange 
reactions during the dissolution of a multioxide silicate follow the order prescribed by the 
relative reactions rates of the single oxide dissolution as illustrated in Fig.1.1 (Oelkers, 2001). 
 

 
Fig. 1.1. Mechanism of dissolution of some minerals and basaltic glass at acidic condition 
according to Oelkers, 2001. 

The dissolution rate of the clay minerals seems to be continuously decreasing with elapsed 
time due to the preferred dissolution of reactive edge surfaces. As edge surfaces are 
selectively dissolved, the percentage of these reactivity reactive sites decrease with time 
leading to a decrease in the average reactivity of the overall clay surface (Köhler at al., 2005).  
The derivation of rate law for congruent dissolution of silicate multioxides at close to 
equilibrium conditions will be derived using a general formula M(1)z1n1 M(2)z2n2 M(3)z3n3 

OΣ(n(i)z(i))/2, which is representative for oxide composition of nesosilicates related to 
phenakite (M(1)M(3)O4, where M(1) = Li, Be, Zn... and M(3)  = Si), olivine (M(1)M(3)O4, where 
M(1) = Ca, Mg, Fe2+, Mn... and T = Si) and garnet (M(1)2+3 M(2)3+(2)(M(3)O4)3, where M(1) = Ca, 
Mg, Fe, Mn..., M(2) = Al, Fe3+, Cr3+, V3+, Ti4+ ..., M(3) = Si, Fe3+, Al...) structural groups:  
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For example, the members of olivine subgroup such as calcio-olivine, forsterite, fayalite, 
tephroite... for that M(1) = Ca, Mg, Fe2+, Mn..., trivalent cations does not present and M(3) = Si, 
are then dissolved according to following reaction scheme: 

 OHSiMHSiOM 2
42

4
2
2 428    (1.16) 

The kinetics of this reversible chemical reaction involving competition between two 
elementary – forward (+) and reverse (–) reactions, can be easily expressed by applying the 
Van't Hoff law such that: 
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The equilibrium constant K of forward and reverse Q reaction 1.15 can be then expressed as 
follows: 
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 (1.18) 

 
K

Q 1  (1.19) 

The saturation state of a fluid is often expressed in terms of the ratio (Q/K); if by common 
convention the dissolving mineral appears on the left side of the reaction, values of (Q/K) < 
1 indicate undersaturation of the fluid with respect to the mineral, and conversely, (Q/K) > 
1 is representative of supersaturation (Hellmann at al., 2009).  
The dissolution rate can be described via combination of Eq.1.17 with law 1.18 and 1.19 by 
following kinetic equation: 
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where the k represents the reaction rate constant. The chemical affinity of described reaction 
is defined as follow (Hellmann at al., 2009; Gérard at al., 1998): 
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so that can be derived that: 
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The R is the universal gas constant (J·mol-1·K-1) and rG = –Ar denotes Gibbs energy (J·mol-1) 
and chemical affinity (J·mol-1) of reaction. The dissolution rate at near to equilibrium 
conditions when r+ + r– ≈ 0 requires that Q ≈ K and the ratio k+/k- ≈ K:  
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  (1.23) 

The overall dissolution rate should through combination of Eq.1.22 with Eq. 1.23 expressed as: 
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The temperature dependence of dissolution rate constant is given by Arrhenius law 
(Oelkers, 2001): 
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The combination of Eq.1.24 and Eq.1.25 leads to equation: 
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where A is pre-exponential (frequency) factor and Ea is apparent activation energy. Under 
conditions that are not far from equilibrium conditions (please refer to Eq.1.23) where exp 
(rG/RT) ≈ 1 can be dissolution rate expressed as: 

 












RT

E
expAar a

m

i

n

M

i

i
z

i1

 (1.27) 
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The kinetic parameter of dissolution process can be then estimated from Arrhenius plot as 
the slope (-Ea/R) of the dependence of ln r on reciprocal temperature. Assuming 
information about ionic product of released cations (∏aM(i)n(i)), the value of A can be 
calculated from the intercept with y-axis.  
A general scheme for the dissolution of a mineral or glass can be written as follow (Wieland 
et al.,1988): 

 ProductscomplexActivatedComplexPrecursorSpeciesAqueousReactants   (1.29) 

The precursor complex has the same chemical formula as the activated complex, but the 
activated complex has more energy. Within the context of transition-state theory (TST), the 
activated complex is in equilibrium with other species that precede it in the reaction 
sequence. It follows that a mineral dissolution rate can be considered to be proportional to 
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the concentration of this “rate-controlling” precursor complex at the surface in accord with 
(Oelkers, 2001): 

 pXkr    (1.30) 

where k+ refers to a rate constant consistent with the P precursor complex and XP stands for 
the mole fraction of the precursor complex at the surface.  
The dissolution mechanism of this mineral or glass is often initiated by the formation of the 
precursor complex through one or more exchange reactions. The process leads to formation 
of the leached surface through the metal-proton exchange. The next part of the dissolution 
reaction is destruction of the leached surface (Oelkers, 2001), i.e. incongruent dissolution 
takes place. The overall mechanism then may consist of a series of “i” elementary steps: 

 rrrr i
ii    (1.31) 

The exponent  is generally known as Temkin's average stoichiometric number, which is 
equal to the ratio of the rate of destruction of the activated or precursor complex relative to 
the overall dissolution rate. The  value is related to the stoichiometric number of precursor 
complexes that can be formed from one mole of the commonly adopted chemical formula of 
a mineral or glass and it can have a value other than one (Aagaard & Hegelson, 1982). The 
average stoichiometric coefficient for the overall dissolution process that consists from i-
steps can be defined as follows (Gin at al., 2008): 

 
 







 






11

1

i
ir

r

i
ir

i
iri

G

G

G

G

 (1.32) 

For reaction near to equilibrium we obtain: 
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and 
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From the general law of mineral dissolution proposed by Aagaard and Helgeson, 1982 it can 
be derived by the same way as before: 
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As it was pointed by Gin at al., 2008, the Eq.1.24 is often presented as direct application of 
transition state theory. In fact, this law may be derived using simple kinetic concepts 
(notably the Van’t Hoff law) irrespective of any hypotheses concerning the reaction 
mechanisms. The notion of an activated complex associated with an elementary step is 
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theoretically compatible with the kinetic law 1.24, assuming an equilibrium existing 
between the activated complex and reactants in the forward and reverse directions. 
However, this notion is not required to obtain Eq.1.24 and indeed leads to a paradox that 
lies in the fact that equilibrium was assumed between the activated complex and reactants 
in the forward direction, but that a second equilibrium was also assumed between the 
activated complex and the product in the reverse direction. This implies equilibrium 
between the products and the reactants, so the net rate should be zero. This paradox, of 
course, does not call into question the expression of the kinetic constants: the forward rate 
simply offsets the reverse rate. Postulating equilibrium between the reactants forming the 
activated complex in both directions and the activated complex therefore implies that 
Eq.1.24 is valid only at equilibrium. 

1.2 Clay minerals 
Human life and the existence of many organisms on this planet are connected with clays. 
Clay minerals are the basic constituents of clay raw materials and clay raw material has 
always played the substantial role in human life (Table 1.3) due to their wide-ranging 
properties, high resistance to atmospheric conditions, geochemical purity, easy access to 
their deposits near the earth’s surface and low price. A majority of clays is known for its 
plasticity. However, many clay raw materials are not plastic, or they are semi-plastic such as 
clay stones, clay shales, talc, pyrophyllite, vermiculite and coarser mica. The properties of 
clay minerals also reflect the state and distribution of the electrostatic charge of the 
structural layers. The negative charge is a result of the ionic substitutions in the octahedral 
and tetrahedral sheets of clay minerals (Konta 1995; Murray; 2000).  

 
Paper 
industry 

Kaolinite, Adsorbents Bentonite, 
chlorites, 
palygorskite... 

Bonding 
material 

Kaolin, 
bentonite, 
bentonite... 

Ceramics Kaolinite, illite, 
talc, 
vermikulite... 

Adhesives Kaolinite, Water 
purificati
on 

Vermiculite 

Plastics 
and 
rubber 

Kaolinite, 
pyrophyllite.... 

Pharmaceut
ic and 
cosmetics  

Kaolinite, 
bentonite, 
pyrophyllite.... 

Waste 
treatment 

Micas, 
bentonite... 

Catalysts Bentonite, 
palygorskyte... 

Insulating 
material 

Vermiculite, 
micas... 

Agricultur
al and 
forestry 

Palygorskyte,  
vermi-kulite, 
bentonite... 

Dyes and 
paints 

Kaolinite, 
micas, 
pyrophyllite.... 

Molecular 
sieves 

Palygorskite, 
sepiolite... 

Polishing 
materials 

Bentonite 

Table 1.3. Traditional application area of clay minerals (Konta 1995; Murray; 2000). 

A significant role for clay minerals in the origin of life was postulated by Bernal, 1967. Clay 
surface could adsorb and concentrate organic substances and some hypothesis supposed 
that clay crystals could function as the earliest genetic information storing material (C.-
Smith, 1966 and 1982) and iron-rich clay have significant importance in the origin of the 
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photosynthetic organisms (Hartman, 1975). Clay minerals, the essential constituents of 
argillaceous rocks, can be classified in seven groups according to their crystal structure and 
crystal chemistry. These groups are listed together with their properties and the most 
important members in the Table 1.4. 

 
Group Layer 

type 
Length 
d001 [Å]

Interlaye
r charge 

Interlayer 
contains (1) 

Octahedral 
layer type: 

Example 

Kaolinite 
and 
serpentine 

1 : 1 
t-o  zero --- 

Dioctahedral Kaolinite, 
dickite, nacrite... 

Trioctahedal Serpetine 

Talc and 
pyrophyllite 

2 : 1 
t-o-t 

 zero --- 
Dioctahedral Talc 

Trioctahedal Pyrophyllite 

Smectites 2 : 1 
t-o-t 

9.6 – 
21.0 (2) 0.2 – 0.6

Na+, Ca2+, K+, 
Li+, H3O+ and 

H2O 

Dioctahedral Montmorillonite 

Trioctahedal Saponite 

Vermiculites 
2 : 1 
t-o-t ~14.3 0.6 – 0.9 Mg2+ 

Dioctahedral Dioctahedral 
vermikulite 

Trioctahedal Trioctahedal 
vermikulite 

Micas 
2 : 1 
t-o-t 

~10.0 0.9 – 1.0
K+, Na+, H3O+, 

Ca2+, □ (3)... 

Dioctahedral Muscovite, 
illite... 

Trioctahe-dal Biotite, 
flogopite... 

Chlorites 
2 : 1 + 1
t-o-t + o

~14.3 different
Di- or tri-
octahedral 

layer 

Dioctahedral Donbassite 

Trioctahedal Klinochlore 

Palygorskite 
and sepiolite 

other (4) --- different other (4) 
other (4) Sepiolite, 

palygorskite 
(1) Interlayer ions that are present 
predominantly are marked by bold. 
(2) For untreated smectites is typical d001 ≈ 
15 Å.  
(3) Vacation. 

(4) Chanel containing water and 
exchangeable hydrated cations. Water 
can be withdrawn without structural 
lattice changes similar to zeolites.  

Table 1.4. Classification of phyllosilicates (Martin et al., 1991; Konta, 1995). 

Clay minerals represent a large family of alumino-silicate structures with a range of 
chemical composition, structure and surface properties. Their crystal structure with a few 
exceptions consists of sheets firmly arranged in structural layers. Hence are these minerals 
termed as sheet silicates or phyllosilicates. The individual layers consist of two, three or 
four sheets. The sheets are formed either by tetrahedrons [SiO4]4- which are abbreviated as 
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“T” or by [AlO(OH)]6- octahedrons which are signed as “O”. The interior of tetrahedrons 
and octahedrons contains smaller metal cations, their apices are occupied by oxygen’s 
from which some are connected to protons (as OH). All these fundamental structural 
elements are arranged to form a hexagonal network in each sheet (Caglar at al., 2008; 
Konta 1995).  
Numerous rock-forming silicates (feldspars, granites, syenites, gneisses, arkoses, phonolites, 
rhyolites...) alter into clay minerals such as kaolinite (Eq.1.36), illite (Eq.1.37) and montmorillonite 
(Eq.1.38) through an intense hydrolysis, supported by natural acids (Konta, 1995): 

 44342222283 421122 SiOHKHCO)OH(OSiAlOHCOOKAlSi   (1.36) 

 443420742283 842045 SiOHKHCO)OH(O)AlSi(KAlOHCOOKAlSi   (1.37) 

 4442083283
2 243 SiOHNa)OH(OMgSiNaAlOHONaAlSiMg   (1.38) 

Dissolution and precipitation of any feldspar can be described by the general formula 
(Hellmann at al., 2009): 

 1 3 8 2

2
4 4 4

8

(1 ) [ ( ) ] (3 )

x y z z zNa K Ca Al Si O H O x Na y K

z Ca z Al OH z H SiO

 
 

 

  

     
  (1.39)  

where x + y + z = 1. The main factors affecting the rates and mechanisms of dissolution 
include the pH, temperature, composition of the liquid phase and feldspar, feldspar 
granulometry, the influence of atmospheric condition and  vegetation (Chardon at al., 2006; 
Augusto at al., 2000). 

1.3 Properties and mineralogy raw materials main minerals – montmorillonite and talc 
Bentonite occurs in the form of lenses in other sediments mostly as a weathering product 
after igneous material settled in water. It also commonly occurs as a product of supergene or 
hydrothermal alteration of some volcanic rocks, e.g. rhyolites, porphyres, phonolites, 
dacites, andesites and basalts. Smectites are especially formed through the decomposition of 
volcanic glass. The chemical composition of smectite, the dominant mineral of bentonites, is 
variable. It varies between montmorillonite (Al1.67(Mg,Fe2+)0.33Si4O10(OH)20.5Ca0.33 · nH2O) 
and beidellite (Na0.5Al2(Si3.5Al0.5)O10(OH)2 · nH2O). In the interlayer space of both smectites 
different cations are adsorbed, especially alkalis and alkaline earths (Konta 1995).  
Smectites are an important class of clay minerals; they are utilized in many industrial 
processes due to their high CEC, swelling ability, and high surface area (Madejová at al., 
2006). Montmorillonite was the name given to a clay mineral found near Montmorillon in 
France as long ago as 1874 (Grimshaw, 1971). Montmorillonite is classified as a dioctahedral 
clay mineral with the 2:1 type of layer linkage that is related to the group of smectites 
(Caglar at al., 2008).   
Dioctahedral layered structure of 2:1 type represents T-O-T sheet layered mineral with two 
tetrahedral and one octahedral layer where the centre of octahedron are predominantly 
occupied by trivalent cations such as Al3+, Fe3+, Cr3+, V3+, etc.  The structure of 
montmorillonite is shown in Fig.1.2. 
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Fig. 1.2. The structure of montmorillonite (M) and talc (T). 

Talc (Mg6Si8O20(OH)4) is a common 2:1 layer lattice silicate, the structure of which consists of 
two tetrahedral silicate sheets separated by an octahedral Mg-O(OH) sheet, i.e. it is the 
trioctahedral magnesian analogue of pyrophyllite (Al2Si4O10(OH)2). Among its many uses, 
talc is an important raw material for magnesium ceramics (steatites, cordierite, enstatite and 
forsterite products). As the ceramic raw material, its thermal decomposition behaviour is of 
considerable interest (MacKenzie & Meinhold, 1994). Talc and pyrophyllite crystallize 
during metamorphic or hydrothermal processes (Konta, 1995). The structure of talc is shown 
in Fig.1.2. 

2. Leaching experiment 

All experiments reported in this work were performed on bentonite from locality Obrnice 
(Czech Republic) produced by the company Keramost a.s., that was used as the source of 
Na, Ca - montmorillonite, and talc produced by Združena v.d. Spišká nová Ves, plant 
Gelnica from locality Gemerská poloma (Slovak Republic). The composition of 
montmorillonite and talc can be expressed by the empiric formula 
Na0,2Ca0,1Al2Si4O10(OH)2(H2O)10 and Mg3Si4O10(OH)2, respectively.  
 

 
Fig. 2.1. Schematic illustration of the bentonite (B) and Talc (T) leaching experiment. 

www.intechopen.com



Activation of Bentonite and Talc by Acetic Acid  
as a Carbonation Feedstock for Mineral Storage of CO2 

 

235 

Leaching procedure was performed using the well stirred suspension of clay mineral in 
diluted solution of acetic acid (Lachema, p.a.) of concentration 3 dm3·mol-1. Temperature of 
leaching bath ranged from 22 to 50 ◦C. The temperature of double wall glass reactor was 
adjusted using external water flow of temperature controlled water bath (thermostat). 
Sample was poured on by solution of acetic acid that was preheated to the applied leaching 
temperature in water bath of thermostat. Hence, the stirring of system by magnetic stirrer 
was used. Suspension contained 12.5 g of wollastonite per dm3 of leaching solution. The pH 
value of dispersing medium for 24 h leaching experiment was continuously measured by 
pH meter connected to PC (Fig.2.1). 
Solid part of suspension was separated by filtration through dense filter paper (red strip) 
after leaching. Filter cake was washed three times by slightly acidified (acetic acid) distilled 
water. The quantities of ions in original sample and leachate were determined by the 
Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES; ICP IRIS Iterdip II 
XSP duo). Filter cake was dried at 110 ◦C; its properties and composition were subsequently 
investigated by simultaneous TG–DTA–EGA, FT-IR, BET and SEM. 
Thermal analysis – simultaneous termogravimetry, differential thermal analysis and effluent 
gas analysis (TG–DTA and EGA) were performed with TG–DTA analyzer (Q600, Thermal 
Instruments) connected with FT-IR spectrometer (iS10, Thermo Scientific) through TGA/FT-
IR interface (Thermo Scientific) heated to temperature 200 °C. That enables to study the 
composition of gas phase that was formed during processes which take place in heated 
sample. All experiments were performed with heating rate 20 ◦C·min−1 using argon with 
flowing rate 100 cm3·min−1 as the carrier gas, i.e. in the inert atmosphere.  
Infrared spectra were collected upon mid-IR region via KBr pellets technique using FT-IR 
spectrometer iS10. Specimens were ground with dry spectroscopic grade KBr powder using 
the sample to KBr mass ratio of 1 : 100. The spectrum was obtained from 128 scans collected 
with resolution of 8 cm-1. Scanning electron microscopy (SEM) was performed with a model 
BS 340 (Tesla). The X-ray diffractometer Siemens D500 with CuK radiation at 40 kV and 40 
mA was utilized for identification the phase composition of raw material and leached 
samples. Brunauer-Emmett-Teller (BET) analysis (Chembet 3000, Quantachrome 
Instruments) was used to determine of leached samples specific surface. 

2.1 Evaluation of leaching test 
The method applied for monitoring of the leaching process is the same as for study of 
leaching of calcium from wollastonite (Ptáček at al., 2010). The buffer system of weak acid 
(CH3CO2H) and its salt (Ca(CH3CO2)2 or Mg(CH3CO2)2) with a strong base, i.e. Ca(OH)2 or 
Mg(OH)2, was formed during dissolution of raw material. With respect to reaction 
stoichiometry, the amount of formed acetate ions was double to concentration of Ca2+ ions 
released from wollastonite. Hence following subform of well known Henderson buffer 
equation may be used for estimation of the course of leaching process: 

    
][

][2

23

2

HCOCH

Ca
logTpKTpH a



  (2.1) 

where pKa denotes dissociation constant of acetic acid at given temperature. All variables in 
Eq.2.1 depend on the temperature. 
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2.2 Evaluation of leaching process kinetics 
The monitoring of the progress of leaching experiment reflects the following facts and 
presumptions: 
1. The amount of calcium and magnesium released into the solution is much higher than 

other elements extracted from raw material during leaching experiments, i.e. the 
amount of other metals in the solution is negligible; 

2. Large excess of acetic acid in the system ensures its stable concentration level; 
3. Henderson–Hasselbach buffer equation (Eq.2.1) can be applied for the reaction mixture; 
4. Leached calcium was instantaneously transported out of surface by intensive stirring of 

the system. 
The steady-state dissolution rate for applied temperature r+(T) (mol·m-2·s-1) can be 
calculated using following equation (Oelkers, 2001): 
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where [M2+]i and [M2+]t are an initial ti and general time t concentrations of M2+ = Ca2+ and 
Mg2+ ions, respectively. The initial time of the process means the beginning of an induction 
period, so that the amount of Ca and Mg released during dissolution of calcite and dolomite 
can be excluded. The quantities V, νM(Ac)2 and S are a volume of the system, stoichiometric 
number of M(Ac)2 (νM(Ac) 2 ≈ 0,3 for the Ca-montmorillonite and νM(Ac) 2 ≈ 0,3 for talc) and 
total surface area of sample introduced into the reactor, respectively. The term Δ[M2+]/Δt of 
Eq.2.2 can be determined as the slope of the linear part of the plot of concentration vs. time 
(Cama, 1999). This method of r+(T) value estimation is in particular favourable for the 
systems with very complicated stoichiometry of ongoing reactions such as in studied 
montmorillonite clay.  
The reached stage of the system during the leaching process can be characterized by 
fractional conversion (degree of conversion) as follows: 
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where bottom index i, t and ∞ denotes the initial (beginning of the induction period), 
currently measured and final value of M2+ ions concentration. The degree of conversion can 
hold values from 0 to 1 and its time dependence enables to estimate mechanism and kinetics 
of leaching process by linearization procedure. The method is based on the formula:  

 .][)( konstTtkyg   (2.4) 

where k is the rate constant of the process. If the kinetic function g(y) corresponding to the 
proper mechanism was chose, the dependence of g(y) on t should be straight line with the 
slope k on wide interval of y. The mathematic expression of the kinetic function can be 
found in published literature (Vlaev at al., 2008; Duan at al., 2008; Saikia at al., 2002; Šesták, 
1984). The variation of mineral dissolution rates with temperature is commonly described 
using the empirical Arrhenius law - Eq.1.25 (Oelkers, 2001; Cama at al., 1999). The 
estimation of the apparent activation energy and the pre-exponential (frequency) factor (A) 
is based on the logarithmic form of the Arrhenius law: 
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TR

E
Aln)T(rln a 1
  (2.5) 

using values of r+ determined for several temperatures. The plot of ln k vs. T−1 (Arrhenius 
plot) should be straight line, where the slope (−Ea/R) yields to the apparent activation 
energy of the process and y-axis intercept is then equal to the ln A. For the early stage of 
dissolution process, the concentration of M2+ ions in leaching solution is increasing with 
time almost linearly. It stands to the reason that the initial part of dissolution process 
enables to estimate the dissolution rate constant as: 

 ][ 1 s
dt

dy
k  (2.6) 

3. Results and discussion 

There are many factors affecting the course of experiment such as pH of leaching solution, 
kind and solvent composition, temperature, pressure, particle size distribution and particle 
shape, concentration of solid in the suspension and stirring intensity. Hence, the initial state 
of raw material serving as the source of clay mineral should be characterized. The surrey of 
used raw materials composition and properties are listed in the Table 3.1. 

 
Mineral Montmorillonite Talc 
Empirical 
formula 

Na0,2Ca0,1Al2Si4O10(OH)2(H2O)10 Mg3Si4O10(OH)2 

Classification 
(Strunz) 

VIII/H.19-20 

 (14) 

VIII/H.09-40 
  

(14) Colour Light yellow Light grey 

C
om

p
os

it
io

n
 

Na2O 

[%] 

1.13 (1) 1.76 (2) 1.38 (3) --- (1) --- (2) 1.93 (3) 
K2O --- 0.84 1.23 --- --- 3.16 
CaO 1.02 0.45 11.88 --- --- 3.35 
MgO --- 2.74 3.75 31.88 35.12 16.94 
Al2O3 18.57 32.85 25.79 --- --- 21.64 
Fe2O3 --- 13.72 11.29 --- --- 1.68 
SiO2 43.77 41.50 36.63 63.37 58.43 51.29 
TiO2 --- --- 1.65 --- --- --- 
H2O 36.09 6.14 6.39 4.75 6.45 6.65 

X50 / X90 [m] (4) 9.12/ 
37.67 

29.33/ 
71.65 

 

SH (5) [g·cm-3] 0.76 0.71 
SHS (6) [g·cm-3] 0.81 0.73 
Moisture  (7) [%] 7.68 0.51 
ZŽ (8) [%] / Colour 19.54 / 

red 
12.71 / 
beige 

OH (9) [g·cm-3] 2.23 2.80 
SS (10) [m2·g-1] 95.55 2.10 
(11) [mV] -13.5 -13.9 
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Admixtures (12) Carbonates (13), illite (3), 
clinochlore (2), fluorapatite (6), 
barite (7) and rutile (5).  

Dolomite (1), calcite (2), albit (3), 
pyrite (4) and quartz (5) 

(1) Stoichiometric composition of mineral 
according to pertinent empirical formula. 
(2) Determined composition of clay mineral 
(dry state of sample). 
(3) Analyzed composition of raw material (dry 
state sample). 
(4) Particle size analysis (Helos, Sympatec). 
(5) Pour density (according to standard ČSN 
EN 725-8). 
(6) Bulk density in the shaken state (according 
to standard ČSN EN 725-8).  
(7) Determined by humidity analyzer Kern 
MLS 50-3 (sample was dried at 110 °C to 
constant weight. 

 (8) Loos on ignition (annealing at 1000°C to 
constant weight; according to standard ČSN 72 
0103). 
(9) Bulk density (according to standard ČSN EN 
993-17). 
(10) Specific surface (BET, Chembet 3000, 
Quantachrome Instruments). 

(11) Electrokinetic “zeta” potential (suspension of 
0.1 g·dm-3). 
(12) Main admixture mineral found by following 
method: XRD, FT-IR, SEM and TA. The content of 
crystalline phases was estimated by XRD in semi-
quantitative mode. 
(13) Siderite (1), Ankerite (4) and Dolomite (7). 
(14) Monoclinic - prismatic class symmetry. 

Table 3.1. The composition and properties of clay raw materials. 

3.1 Thermal analysis 
Results of thermal analysis allow identification of main mineral phases and estimate their 
content in the clay raw material. The typical TG-DTA and EGA patterns of clay raw 
materials that were used as the source of montmorillonite and talc are shown in Fig.3.1. The 
DTG curve is plotted in order to reach higher sensitivity to distinguish between individual 
steps of thermogravimetric analysis. 
 

 
Fig. 3.1. TG-DTA and EGA pattern of montmorillonite clay. 

TA of bentonite performed up to 1250 °C shows that mass of sample is decreasing for about 
15.42 % within to the series of six endothermic steps. Evaporation of adsorbed water leads to 
the first endothermic peak of the maximum at temperature about 99.4 °C. The mass of 
sample was up to 165.2 °C (ousted point of DTG peak) reduced at about 3.71 %.  The water 
vapour released from the sample is also well visible on EGA. The water can be also detected 
in the spectrum of gas phase upon the temperature interval ranged from 225 to 260 °C, 
where water molecules has been ousted from the interlayer space of montmorillonite and 
admixture of illite. The process shows maximum rate at temperature 245.0 °C.  
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The dehydroxylation of clay minerals, decomposition of carbonates and burning of organic 
admixtures are the main overlapping processes whose take place within temperature 
interval from 380 to 600 °C. The DTA shows broad endothermic peak having a composed 
structure at temperature 533.9 °C. The bands of carbon dioxide and water are well visible on 
EGA plot. These processes are affected together via partial pressure formed gas species. For 
example the water formed by dehydroxylation of montmorillonite slows down the diffusion 
of oxygen into burning organic material and shifts the organic matter process to the higher 
temperatures, while water vapour formed by combustion of organic admixtures leads to 
increasing of partial pressure of water vapours. That results into decreasing rate of 
dehydroxylation of clay minerals (Ptáček at al., 2010). Oxygen deficiency leading to 
reduction condition during TA is indicated by bands of carbon monoxide on the results of 
EGA.  
The effects of carbonates on the above mentioned processes should be explained using the 
Richardson’s diagrams (Richardson, 1974) as follows. The Bell-Boudoir’s reaction (Eq.3.1) 
shows thermodynamic equilibrium at temperature 720 °C, so that the carbon monoxide is 
the more stable at higher temperature than carbon dioxide. That means that CO2 formed by 
the thermal decomposition of carbonates at temperatures near to temperature of equilibrium 
or higher facilitates the residual carbon removing process. 

 )g(CO)s(C)g(CO
CT .eq 2

720

2     (3.1) 

The two carbonates are identified in the analysis sample – siderite (FeCO3) and dolomite 
(CaMg(CO3)2). Thermal decomposition of siderite that takes place at temperatures up to  
410 °C are participate on the broad DTA endothermic effect at 533.9 °C. Annealing dolomite 
is decomposed within two steps that are represented by reactions 3.2 and 3.3. The first step 
takes place at 602.7 °C and second at 718.3 °C. The both processes are well visible on EGA.  

 )g(CO)s(MgO)s(CaCO)s()CO(CaMg 2323   (3.2) 

 )g(CO)s(CaO)s(CaCO 23   (3.3) 

The formation of SO2 was detected on EGA upon temperature interval from 800 to 870 °C 
due to presence of  traces of pyrite. The endothermic peak at temperature 848.2 °C is related 
to the formation of cordierite that is connected with destruction of the phylosilicate structure 
of clay minerals. The eutectic melt was detected at temperature 1141.4 °C.   
During thermal analysis of talc raw material performed up to temperature 1250 °C (Fig.3.2) 
is mass of the sample decreasing for about 13.12 %. The adsorbed water is removed up to 
143 °C. The mass of sample was reduced for about 0.21 % during this process. The 
dehydroxylation of talc which takes place in temperature range from 720 to 970 °C and two 
steps of thermal decomposition of dolomite at 450 and 720 °C are the main occurring 
processes. The SO2 bands in EGA plot indicate the presence of small amount of pyrite.   

3.2 Infrared spectroscopy 
The infrared spectrum of montmorillonite and talc clay is shown on Fig.3.3. The data 
published in literature (Eren & Afsin, 2008; Molina-Montes at al., 2008; Madejová at al., 2006; 
Tyagi at al., 2006; Kloprogge at al., 2005) were used for interpretation of raw material 
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Fig. 3.2. TG-DTA plot and EGA pattern of talc raw material. 

 

 
Fig. 3.3. Infrared spectrum of bentonite and talc raw material. 

spectral features.  The OH stretching bands are located at 3695 and 3626 cm-1. The bending 
of AlAlO-H, AlFeO-H a AlMgO-H groups show bands at 916, 877 and 837 cm-1. The 
stretching and bending band of physical adsorbed water are located at 3427 and 1639 cm-1. 
The most intensive band at 1035 cm-1 is related to antisymmetric stretching of the ≡Si-O-Si≡ 
bridge. The deformation mode is placed at 524 cm-1. The dolomite and quartz are identified 
by infrared spectroscopy as the main admixtures of clay raw material that was used as the 
source of montmorillonite.  
The infrared spectrum of talc (Fig.3.3) shows stretching of MgO-H groups at wavenumber 
3626 cm-1. The deformation modes are located at 670 and 646 cm-1. The band of 
antisymmetric stretching and bending mode of ≡Si-O bond shows maximum absorption 
intensity at 1017 and 453 cm-1, respectively. The other bands belong to admixture minerals - 
clinochlore and dolomite. 

3.3 Clay material particle size distribution and morphology 
The SEM and particle size distribution analysis of clays is shown in Fig.3.4. Bentonite 
consists of massive aggregates. The most important admixture minerals of montmorillonite 
clay (Fig.3.5) are siderite (FeCO3) and carbonates from dolomite group such as dolomite 
(CaMg(CO3)2) and ankerite (CaFe(CO3)2), phylosilicates illite ((K,H3O+)Al2(Si,Al)4O10(OH)2) 
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and clinochlore ((Mg,Fe)5Al(Si,Al)4O10(OH)8). Further fluorapatite (Ca5(PO4)3F), barite 
(BaSO4) and rutile (TiO2) are indentified in the clay. It’s obvious that the carbonates serve as 
the source of Ca, Fe, Mg, Zn, Mn, etc. elements at the early stages of dissolution experiment. 
The particle size analysis of raw materials, i.e. bentonite clay and talc, used for leaching 
experiments are shown at Fig.3.4. The shape of particle size distribution curve of bentonite 
raw material reflects the complicate phase composition of sample that contains a significant 
amount of carbonates and other admixture minerals of different hardness compared to clay, 
i.e. minerals with different grindability. These admixtures are responsible for the right 
shoulders of the particle size distribution curve. The talc raw material with high content of 
clay phase shows almost ideal Gaussian profile of particle size distribution curve with 
median 29.33 m (Table 3.1). 
 
 
 
 
 

  
 

 
Fig. 3.4. SEM and particle size distribution analysis of clay raw material. 

The layered structure of talc aggregates is shown at Fig. 3.6. The average size of (001) planes 
was via several measurements estimated on 200 m. The calcite was identified as the main 
admixture mineral of talc raw material. 
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Fig. 3.5. The admixture mineral of montmorillonite clay (1): siderite (2), ankerite (3), illite (4), 
barite (5), clinochlore (6) and fluoroapatite (7).   

 
 

 
Fig. 3.6. Layered structure of talc (1) aggregate and grain of calcite (2). 
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3.4 Bentonite dissolution 
The dissolution of main bentonite mineral, i.e. montmorillonite, in diluted solution of acetic 
acid should be expressed as following: 

 

 

0.3 2 4 10 2 2

3 2 3 3 2 3 2 2
3

3 2 2 2 6 2 2

( , ) ( , ) ( )

0.3 ( )

( ) 2 ( ) 4

Na Ca Al Mg Si O OH nH O

y CH CO H p H O x CH CO Na x Ca CH CO

z Mg CH CO z Al H O SiO q H O





 

   

    

  (3.4) 

where y = 2z – x + 0,6, p = 5,4 – 2z + x and q = 6z + n – 6. On the other hand, with regard to 
the montmorillonite structure that is described in chapter 1.3, the release of cations from 
interlayer space is participating on the process. These ions are being exchanged by H3O+ 
according to Eq.3-2.  

 

0.3 2 4 10 2 2

3 2 3

3 0.6 2 4 10 2 2

3 2 3 2 2

( , ) ( , ) ( )

(0.6 ) (0.6 )

( ) ( , ) ( )
( ) (0.3 ) ( )

x

Na Ca Al Mg Si O OH nH O

x CH CO H x H O

H O Al Mg Si O OH nH O

x Na CH CO x Ca CH CO






 

   

 
 

 (3.5) 

It was found by (Adams, 1987; Jovanovič and Janačkovič, 1991) that acid-activated (HCl or 
H2SO4 of different molar concentrations) bentonite leads to a dissolution or removal of the 
octahedral sheets and interlayer cations. Its resulting in an increase of the pore volume and 
pore diameter, an enrichment of residual amorphous SiO2 and an increase of sorption 
properties. 
The pH change of solvent during leaching process performed upon temperatures within range 
from 22 to 50 °C is shown in the Fig.3.7. The dependence of fractional conversion on the time 
was calculated according to formula 2.1 and 2.3 from measured pH on time dependence. 
 

 
Fig. 3.7. The pH of leaching bath for experiment performed under different temperature and 
time dependence of fractional conversion. 

The results of leaching experiment on montmorillonite clay show that mechanism of process 
is significantly affected by temperature. Linearization procedure leads to conclusion that the 
leaching process is handled by the stationary three-dimensional diffusion (D4) at 
temperatures up to 25 °C, i.e. the course of leaching process can be characterized by Valensi-
Ginstling-Brounstein (VGB) equation (Valensi, 1936; Ginstling and Brounstein, 1950): 
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 321
3

2
1 /

)y(ytk)y(g   (3.6) 

 )y(lntk)y(g  1  (3.7) 

The Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation shows the best results for 
experiments performed upon temperature interval from 30 to 40 °C. The kinetic function 
corresponding to the mechanism of random nucleation and subsequent growth of nuclei (F1 
or A1) can be described by Eq.3.7. 
At temperatures higher than 40 °C the leaching process is forced by chemical reaction of ¾th 
order (F¾), i.e. by mechanism non-invoking equation: 

 4111 /
)y(tk)y(g   (3.8) 

The Arrhenius plot is shown on Fig.3.8. The value of apparent activation energy that was 
determined upon the above mentioned temperature interval is listed in the Table 3.2.  
 

 
Fig. 3.8. The Arrhenius plot for the montmorillonite dissolved in diluted acetic acid. 

 
T [°C] Mechanism k [s-1] D = R2 Ea [kJ·mol-1] 

22 
D4: 1 - 2y/3 - (1 - y)2/3 1.47 · 10-2 0.999 

388.9 25 1.02 · 10-1 0.999 
30 

F1: -ln (1-y) 
3.82 0.999 

21.4 35 4.41 0.998 
40 5.08 0.998 
45 

F¾: 1 – (1-y)1/4 4.10 · 10-1 0.997 
135.1 50 9.23 · 10-1 0.999 

Table 3.2. Ea of dissolution of montmorillonite clay. D=R2 is the correlation coefficient of 
linear fit. 
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The results of ICP-OES analysis (Fig.3.9) of solvent after the leaching experiment show that 
predominantly extracted elements are Ca, Mg, Mg, Fe and Al. The amount of elements 
extracted per gram of clay raw material is listed in the Table 3.3. 
 
 

 
Fig. 3.9. Analysis of leaching bath composition. 

With except of calcium where extracted amount is not correlated with temperature (Table 
3.3), the amount of extracted elements is generally increasing with temperature. The higher 
temperature then enables to reach better activation of bentonite by acetic acid using higher 
temperatures due to increasing content of leached Fe and Mg. That behaviour results from 
the structure of mineral of smectite groups (Fig.3.2). 
 

T 
[°C] 

Element leached from the montmorillonite clay [µg·g-1 of raw material] 
Al V Cr Co Ni Cu Zn Ba Pb Na Mg K Ca Fe 

20 751.84 20.112 10.758 7.558 10.19 24.33 21.082 57.054 0.778 4.838 8238 1320 25220 4410 
25 743.18 19.642 10.484 7.522 9.526 23.194 14.552 58.856 0.76 4.628 7850 1844 23780 4576 
30 722.36 20.326 11.992 8.546 11.608 25.148 18.97 65.142 0.778 4.496 7946 1892 23250 6560 
35 775.7 22.356 13.164 10.596 14.396 28.098 22.522 77.964 0.828 4.596 8820 2232 24160 10088 
40 807.03 23.064 13.37 11.738 16.662 30.824 31.928 88.106 1.042 4.624 9148 2786 24670 12260 
45 824.9 25.888 14.446 14.152 19.832 33.072 31.434 96.29 1.06 4.662 9932 2570 25560 16336 
50 845.88 28.826 15.622 15.776 22.384 33.866 37.566 109.69 1.588 4.542 10160 5550 25350 19284 

Table 3.3. Influence of temperature on the extraction process. 

While calcium is placed in place interlayer space and should be then easily replaced by 
sodium by cation exchange process, magnesium is bonded in brucite sheet of T-O-T 
complex and it can be released only after its dissolution. That is also the reason for observed 
correlation of Mg on the amount of extracted Al and other cation (Fe3+, Cr3+, V3+...) 
coordinated octahedrally in the “O” layer. 
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 T Al V Cr Co Ni Cu Zn Ba Pb Na Mg K Ca Fe 
T 1.00               
Al 0.89 1.00              
V 0.94 0.94 1.00             
Cr 0.98 0.89 0.96 1.00            
Co 0.98 0.95 0.99 0.98 1.00           
Ni 0.97 0.95 0.98 0.98 1.00 1.00          
Cu 0.97 0.95 0.95 0.97 0.98 0.99 1.00         
Zn 0.89 0.95 0.93 0.92 0.94 0.95 0.96 1.00        
Ba 0.99 0.95 0.97 0.98 0.99 1.00 0.98 0.95 1.00       
Pb 0.85 0.87 0.94 0.86 0.90 0.90 0.84 0.90 0.91 1.00      
Na -0.49 -0.08 -0.29 -0.42 -0.33 -0.32 -0.26 -0.15 -0.37 -0.31 1.00     
Mg 0.93 0.98 0.97 0.95 0.98 0.98 0.98 0.95 0.97 0.86 -0.14 1.00    
K 0.83 0.80 0.90 0.84 0.85 0.85 0.78 0.81 0.87 0.98 -0.46 0.79 1.00   
Ca 0.48 0.78 0.67 0.54 0.64 0.65 0.67 0.73 0.60 0.60 0.51 0.77 0.43 1.00  
Fe 0.98 0.95 0.98 0.98 1.00 1.00 0.98 0.94 1.00 0.90 -0.35 0.98 0.85 0.62 1.00 

Table 3.4. Correlation table showing mutual relationships between temperature and amount 
of leached elements. The significant correlation is marked by bold.  

The increasing efficiency of extraction process is shown in Table.3.5 as the calculated 
amount of carbon dioxide that may be captured by the extracted element in formed 
carbonate. The results indicate that extraction efficiency should be significantly improved by 
activation process performed at higher temperatures. 
 
 

T [°C] 22 25 30 35 40 45 50 
Ca kgCO2/ 

1000 kg 
raw 
clay 

27.7 26.1 25.5 26.5 27.1 28.1 27.9 
Mg 14.9 14.2 14.4 16.0 16.6 18.0 18.4 
Fe 3.5 3.6 5.2 8.0 9.7 12.9 15.2 
 46.1 43.9 45.9 50.5 53.3 58.9 61.4 
CaCO3 

kg 

63.6 60.0 58.6 60.9 62.2 64.5 63.9 
MgCO3 28.6 27.2 27.6 30.6 31.7 34.5 35.3 
FeCO3 9.1 9.5 13.6 20.9 25.4 33.9 40 

 101.3 96.7 99.8 112.5 119.4 132.8 139.2 

Table 3.5. Bentonite clay activation efficiency. 

The solid rest that is resulting from the leaching process was analysed by TA, IR and SEM to 
determine its properties for the usage in cements due to estimated puzzolanic activity or as 
absorption agents. Table 3.6 show that higher specific surface of leaching rest should be 
obtained for the sample prepared at temperature 35 °C.  

 
T [°C] 22 25 30 35 40 45 50 

SS 
[m2/g] 91.4 96.8 96.0 106.6 102.5 97.1 97.8 

Table 3.6. Influence the temperature of leaching bath on the specific surface of solid rest. 
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The results of infrared spectroscopy are shown in Fig.3.10. The results indicate that the raw 
material activation process is based mainly on the reaction 3.5. The increasing shift of the Si-
O-Si stretching mode with temperature of leaching process indicate that the minerals are 
affected only by the formation of thin leached silica layer on the surface of aggregate, i.e. 
only the first step of incongruent dissolution process takes place. 

 

 
Fig. 3.10. Infrared spectrum of bentonite leached by acetic acid. 

The results of thermal analysis (Fig.3.11) indicate introducing the salt of acetic acid into 
interlayer space of bentonite. The evaporation of acetic acid and burning of acetic salt are 
well visible on EGA. Thermal decomposition of acetates that is according to EGA connected 
with formation of acetone and carbon dioxide. Presence of carbon monoxide and dioxide 
bands upon the same temperature interval indicates the partially reduction condition of 
process that leads to formation of the calcium and magnesium carbonates:  

 and3 2 2 3 2( ) 5 2 3 3 ( )M CH COO O MCO H O CO M Ca Mg      (3.9) 

Thermal decomposition of formed carbonates that takes place upon temperature interval 
from 700 to 900 °C is well visible on DTA as well as EGA pattern.  

 

 
Fig. 3.11. Thermal analysis of solid rest after leaching process. 
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The SEM analysis of the clay after dissolution experiment is shown in Figure 3.12. The 
admixture of carbonate minerals (please see Fig.3.5) are dissolved at early stages of leaching 
process. The leached silica layer was formed on the surface of bentonite aggregates.  
 

   

Fig. 3.12. The SEM of leached bentonite clay. 

3.5 Dissolution of talc 
The process of the dissolution of Talc in diluted solution of acetic acid should be described 
by following equation:  

 3 4 10 2 3

3 2 2 2

( ) ( ) 6 ( )
3 ( ) ( ) 4 ( ) 4 ( )
Mg Si O OH s CH COOH aq

CH COOH Mg aq SiO s H O l

 
 

  (3.10) 

The measured dependence of pH on the time of dissolution and fractional conversion 
time dependence calculated according to Eq.2.1 and 2.3 is shown on Fig.3.13. To compare 
with bentonite clay, the course of talc activation process seems to be less affected by the 
temperature of leaching bath. Hence only the limit temperatures are plotted in the 
Fig.3.13. 
 

 
Fig. 3.13. The change of pH of leaching solution during activation of talc (a) and fractional 
conversion on time dependence (b). 

The kinetic of leaching process should be described by the kinetic law: 

www.intechopen.com



Activation of Bentonite and Talc by Acetic Acid  
as a Carbonation Feedstock for Mineral Storage of CO2 

 

249 

 













 6

7

exp1 tKy  (3.11) 

where kinetic exponent (Avrami’s factors) has value of 1.2. 
 

 
Fig. 3.14. The Arrhenius plot for the talc dissolved in diluted acetic acid.  

The Arrhenius plot that is shown in Fig.3.14 was used for determination the apparent 
activation energy of the leaching test from the dependence of 160 ± 3 J·mol-1. 
The results of ICP-OES analysis of solvent after leaching tests performed within the 
temperature interval from 22 to 50 °C are plotted in Fig.3.15.  
 

 
Fig. 3.15. The composition of leaching bath after leachig process. 
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There it is obvious that the amount of extracted magnesium and iron is strongly affected by 
the temperature while the calcium content is slightly decreasing with increasing 
temperature of solvent. It should be thus supposed that Ca come to solution in very short 
time after pouring the solvent during dissolution of the admixture of carbonates in the raw 
material. The negative temperature dependence is probably caused by absorption of calcium 
on leached layer that is formed on the surface of talc aggregates.  
 

T [°C] 
Element leached from the montmorillonite clay [µg·g-1 of raw material] 

Al V Cr Co Ni Cu Zn Ba Pb Na Mg K Ca Fe 

20 612.55 13.53 6.44 1.6 3.17 4.51 8.48 11.29 1.96 0.4 10790 170 12580 2950 

25 631.85 13.15 6.55 1.61 3.62 4.76 11.28 11.49 2.53 0.43 11330 620 12300 2970 

30 661.65 13.93 6.67 1.62 3.38 4.79 10.38 12.63 2.53 0.44 12340 1190 12400 3100 

35 696.86 14.39 7.16 1.71 3.4 4.94 9.6 12.21 2.49 0.44 14600 590 12450 3310 

40 775.73 13.72 6.57 1.74 4.76 5.44 10.39 15.86 2.62 0.44 16870 540 12150 3460 

45 804.73 14.82 7.28 1.85 3.75 5.63 10.79 12.2 2.48 0.46 20870 620 12100 3810 

50 868.34 13.43 6.54 1.86 3.77 6.24 18.92 12.51 2.66 0.42 24300 570 11920 4050 

Table. 3.7. Influence of temperature on the extraction process. 

The increasing content of calcium in the leaching bath (please refer to Table 3.7) as well as 
the correlation between extracted amount of Al (Table 3.8) should be explained analogically 
with leaching test of montmorillonite clay. 
 

 T Al V Cr Co Ni Cu Zn Ba Pb Na Mg K Ca Fe 
T 1,00               
Al 0,98 1,00              
V 0,37 0,27 1,00             
Cr 0,38 0,26 0,93 1,00            
Co 0,96 0,97 0,43 0,44 1,00           
Ni 0,51 0,54 -0,05 -0,10 0,41 1,00          
Cu 0,96 0,99 0,14 0,16 0,94 0,50 1,00         
Zn 0,68 0,72 -0,31 -0,21 0,63 0,17 0,82 1,00        
Ba 0,42 0,43 0,04 -0,10 0,28 0,91 0,36 0,03 1,00       
Pb 0,69 0,61 0,05 0,19 0,51 0,57 0,62 0,55 0,50 1,00      
Na 0,43 0,30 0,70 0,71 0,34 0,41 0,21 -0,20 0,43 0,59 1,00     
Mg 0,97 0,98 0,28 0,29 0,98 0,40 0,98 0,76 0,27 0,54 0,23 1,00    
K 0,14 0,02 0,19 0,17 -0,06 -0,03 0,01 0,08 0,13 0,57 0,57 -0,02 1,00   
Ca -0,89 -0,91 -0,01 -0,06 -0,85 -0,59 -0,95 -0,80 -0,38 -0,72 -0,27 -0,90 -0,11 1,00  
Fe 0,97 0,98 0,33 0,33 0,99 0,39 0,98 0,73 0,28 0,53 0,26 1,00 -0,01 -0,88 1,00 

Table 3.8 Correlation table showing mutual relationships between temperature and amount 
of leached elements. The significant correlation is marked by bold. 

The increasing efficiency of extraction process is shown in Table.3.9. The results indicate that 
extraction efficiency should be significantly improved by increasing of extracted Mg amount 
at higher temperatures. 
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T [°C] 22 25 30 35 40 45 50 
Ca kgCO2/ 

1000 kg 
raw 
clay 

13.8 13.5 13.6 13.7 13.4 13.3 13.1 
Mg 19.6 20.5 22.4 26.4 30.6 37.8 44.1 
Fe 2.3 2.3 2.4 2.6 2.7 3.0 3.19 
 35.7 36.4 38.4 42.7 46.6 54.1 60.3 
CaCO3 

kg 

31.7 31.0 31.3 31.4 30.7 30.5 30.1 
MgCO3 37.4 39.3 42.8 50.7 58.5 72.4 84.3 
FeCO3 6.1 6.2 6.4 6.9 7.2 7.9 8.4 

 75.3 76.5 80.5 88.9 96.4 110.8 122.8 

Table 3.9. Bentonite clay activation efficiency. 

Table 3.10 show that higher specific surface of leaching rest after dissolution experiment. 
 

T [°C] 22 25 30 35 40 45 50 
SS [m2/g] 3.2 3.3 2.9 3.1 3.1 3.1 3.6 

Table 3.10. Influence the temperature of leaching bath on the specific surface of solid rest. 

The infrared spectra of solid rest after leaching process are shown in Fig.3.16. The spectrum 
features indicate that the changes caused by leaching process are much lesser than in the 
case of bentonite.  
 

 
Fig. 3.16. Infrared spectroscopy of solid rest after activation of talc by acetic acid.  

 
Fig. 3.17. Thermal analysis of solid rest after leaching process. 
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The typical results of thermal analysis shown on Fig.3.14. lead to the same conclusion. 
Thermal decomposition of acetates that is according to EGA connected with formation of 
carbon dioxide and acetone and dehydroxylation of talc are the main observed processes. 
With except of carbonate admixtures that were naturally dissolved, the results of SEM 
(Fig.3.18) do not show any significant changes in the activated talc material.  
 

   
Fig. 3.18. Leached talc raw material. 

4. Conclusion 

The initial stage of bentonite leaching process is on exchange of Ca and K from the interlayer 
space of montmorillonite and illite. The dissolution of T-O-T complex that is promoted by 
higher temperature then leads to the release of Mg and other octahedrally coordinate ions. 
Storage capacity of bentonite clay for CCS should be then significantly improved by 
activation process performed at elevated temperature. Increasing temperature promotes the 
rate of incongruent leaching process. The process of activation of talc shows also significant 
influence of leaching bath on the process. While amount of extracted calcium remains 
constant or slightly decrease due to absorption phenomena, the amount of extracted calcium 
should be significantly improved with increasing temperature of leaching bath. The capacity 
for CO2 caption is at about 35 % higher for the clay of montmorillonite. This difference is 
decreasing with increasing temperature of leaching bath. 

5. Acknowledgment 

This paper is supported by the research project of ERDF no. CZ.1.05/2.1.00/01.0012‘‘ 
Centres for Materials Research at FCH BUT’’. 

6. References 

Aagaard, P., Helgeson, H.C. (1982). Thermodynamic and kinetic constraints on reaction 
rates among minerals and aqueous solutions: I. Theoretical considerations. 
American Journal of Science, Volume 282, Issue 3 (March 1982), Pages 237-285, ISSN 
0002-9599. 

Adams, J.M. (1987). Synthetic organic chemistry using pillared cation exchanged and acid-
treated montmorillonite catalysts - a review. Applied Clay Science, Volume 2, Issue 4 
(September 1987), Pages 309-342, ISSN 0169-1317. 

www.intechopen.com



Activation of Bentonite and Talc by Acetic Acid  
as a Carbonation Feedstock for Mineral Storage of CO2 

 

253 

Alexander, G., Maroto-Valer, M. M., Gafarova-Aksoy, P. (2007). Evaluation of reaction 
variables in the dissolution of serpentine for mineral carbonation. Fuel, Volume 86, 
Issues 1-2 (January 2007), Pages 273-281, ISSN 0016-2361. 

Augusto, L., Turpault, M.-P., Ranger, J. (2000). Impact of forest tree species on feldspar 
weathering rates. Geoderma, Volume 96, Issue 3 (June 2000), Pages 215-237, ISSN 
0016-7061. 

Baccouche, A., Srasra, E., Maaoui, M.E. (1998). Preparation of Na-P1 and sodalite 
octahydrate zeolites from interstratified illite–smectite. Applied Clay Science, Volume 
13, Issue 4 (October 1998), Pages 255-273, ISSN 0169-1317. 

Bachu, S. (2008). CO2 storage in geological media: Role, means, status and barriers to 
deployment. Progress in Energy and Combustion Science, Volume 34, Issue 2 (April 
2008) Pages 254-273, ISSN 0360-1285. 

Bachu, S., Adams, J.J. (2003).  Sequestration of CO2 in geological media in response to 
climate change: capacity of deep saline aquifers to sequester CO2 in solution. 
Energy Conversion and Management, Volume 44, Issue 20 (December 2003), Pages 
3151-3175, ISSN 0196-8904. 

Bemal, J.D. (1967). The Origin of Life, Universe Books, ISBN 0876631154, London. 
Bouchard, R., Delaytermoz, A. (2004). Integrated path towards geological storage. Energy, 

Volume 29, Issues 9-10 (July-August 2004), Pages 1339-1346, ISSN 0360-5442. 
Buchwald, A., Hohmann, M., Posern, K., Brendler, E. (2009). The suitability of thermally 

activated illite/smectite clay as raw material for geopolymer binders. Applied Clay 
Science, Volume 46, Issue 3 (November 2009), Pages 300-304, ISSN 0169-1317. 

Caglar, B., Afsin, B., Tabak, A., Eren, E. (2009). Characterization of the cation-exchanged 
bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical 
Engineering Journal, Volume 149, Issues 1-3 (July 2009), Pages 242-248, ISSN 1385-
8947. 

Cairns-Smith, A.G. (1982). Genetic Take-over and the Mineral Origins of Life, Cambridge 
University Press, ISBN 0-521-34682-7, New York. 

Cairns-Smith. A.G. (1966). The origin of life and the nature of the primitive gene. Journal of 
Theoretical Biology, Volume 10, Issue 1 (January 1966), Pages 53-88, ISSN 0022-5193. 

Cama. J., Ayora, C., Lasaga, A. (1999). The deviation-from-equilibrium effect on dissolution 
rate and on apparent variations in activation energy. Geochimica et Cosmochimica 
Acta, Volume 63, Issue 17 (October 1999), Pages 2481-2486, ISSN 0016-7037. 

Chardon, E.S., Livens, F.R., Vaughan, D.J. (2006). Reactions of feldspar surfaces with 
aqueous solutions. Earth-Science Reviews, Volume 78, Issues 1-2 (September 2006), 
Pages 1-26, ISSN 0012-8252. 

Chen, Y., Brantley, S.L. (2000). Dissolution of forsteritic olivine at 65 °C and 2 < pH < 5. 
Chemical Geology, Volume 165, Issues 3-4 (April 2000), Pages 267-281, ISSN 0009-
2541. 

Damen, K., Faaij, A., Turkenburg, W. (2006a). Health, safety and environmental risks of 
underground CO2 storage – overview of mechanisms and current knowledge. 
Climate Change, Volume 74, Issues 1-3 (2006), Pages 289–318, ISSN ISSN: 0165-0009. 

Daux, V., Guy, Ch., Advocat, T., Crovisier, J.-L., Stille, P. (1997). Kinetic aspects of basaltic 
glass dissolution at 90°C: role of aqueous silicon and aluminium. Chemical Geology, 
Volume 142, Issues 1-2 (October 1997), Pages 109-126, ISSN 0009-2541. 

www.intechopen.com



 
Atomic Absorption Spectroscopy 

 

254 

Dorozhkin S.V. (2002). A review on the dissolution models of calcium apatites, Progress in 
Crystal Growth and Characterization of Materials, Volume 44, Issue 1 (2002), Pages 45-
61, ISSN 0960-8974. 

Dove, P.M., Crerar, D.A. (1990). Kinetics of quartz dissolution in electrolyte solutions using 
a hydrothermal mixed flow reactor. Geochimica at Cosmochimica Acta, Volume 54, 
Issue 4 (April 1990), Pages 955-969, ISSN 0016-7037. 

Duan, Y., Li, J., Yang. X., Hu, L., Wang, Z., Liu, Y., Wang, C. (2008). Kinetic analysis on the 
non-isothermal dehydration by integral master-plots method and TG–FTIR study 
of zinc acetate dihydrate. Journal of Analytical and Applied Pyrolysis, Volume 83, 
Issue 1 (September 2008), Pages 1-6, ISSN 0165-2370. 

Eren, E., Afsin, B. (2008). An investigation of Cu(II) adsorption by raw and acid-activated 
bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. 
Journal of Hazardous Materials, Volume 151, Issues 2-3 (March 2008), Pages 682-691, 
ISSN 0304-3894. 

Friedmann, S.J., Dooley, J.J., Held, H., Edenhofer, O. (2006). The low cost of geological 
assessment for underground CO2 storage: Policy and economic implications. Energy 
Conversion and Management, Volume 47, Issues 13-14 (August 2006), Pages 1894-
1901, ISSN 0196-8904. 

Gale, J. (2004). Geological storage of CO2: What do we know, where are the gaps and what 
more needs to be done? Energy, Volume 29, Issues 9-10 (July-August 2004), Pages 
1329-1338, ISSN 0360-5442. 

Gérard, F., Fritz, B., Clément, A., Crovisier, J.-L. (1998). General implications of aluminium 
speciation-dependent kinetic dissolution rate law in water–rock modelling. 
Chemical Geology, Volume 151, Issues 1-4 (October 1998), Pages 247-258, ISSN 0009-
2541. 

Giammar, D.E., Bruant, R.G.Jr., Peters, C.A. (2005). Forsterite dissolution and magnesite 
precipitation at conditions relevant for deep saline aquifer storage and 
sequestration of carbon dioxide. Chemical Geology, Chemical Geology, Volume 217, 
Issues 3-4 (April 2005), Pages 257-276, ISSN 0009-2541. 

Gibbins, J., Chalmers. H. (2008). Carbon capture and storage. Energy Policy, Volume 36, Issue 
12 (December 2008), Pages 4317-4322, ISSN 0301-4215. 

Gin, S., Jégou, Ch., Frugier, P., Minet, Y., Theoretical consideration on the application of the 
Aagaard–Helgeson rate law to the dissolution of silicate minerals and glasses. 
Chemical Geology, Volume 255, Issues 1-2 (September 2008), Pages 14-24, ISSN 0009-
2541. 

Ginstling, A.M., Brounstein, B.I. (1950). Journal of Applied Chemistry of the USSR (English 
translation) 23 (1950) 1327–1338. 

Grimshaw, R.W. (1971). The Chemistry and Physics of Clays and Allied Ceramic Materials, 
Techbooks, ISBN 1878907441, London. 

Hartman, H. (1975). Journal of Molecular Evolution, Volume 4, Issue 4 (1975), Pages 359-370, 
ISSN 0022-2844. 

Haydn H.H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: 
a general overview. Applied Clay Science, Volume 17, Issues 5-6 (November 2000), 
Pages 207-221, ISSN 0169-1317. 

Hellmann, R., Daval, D., Tisserand, D. (2009). The dependence of albite feldspar dissolution 
kinetics on fluid saturation state at acid and basic pH: Progress towards a universal 

www.intechopen.com



Activation of Bentonite and Talc by Acetic Acid  
as a Carbonation Feedstock for Mineral Storage of CO2 

 

255 

relation. Comptes Rendus Geoscience, Volume 342, Issues 7-8 (July-August 2010), 
Pages 676-684, ISSN 1631-0713. 

Hoffert, M.I., Caldeira, K., Jain, A.K., Haites, E.F., Harvey, L.D.D., Potter, S.D., Schlesinger, 
M.E., Schneider, S.H.,  Watts, R.G.,  Wigley, T.M.L.,  Wuebbles, D. J. (1998). Energy 
implications of future stabilization of atmospheric CO2 content. Nature, Volume 395 
(October 1998), Pages 881-884, ISSN: 0028-0836. 

Huesemann, M.H. (2006). Can advances in science and technology prevent global warming?  
Mitigation and Adaptation Strategies for Global Change, Volume 3, Issue 11 (2006), 
Pages 539 – 577, ISSN 1381-2386. 

Huijgen, W.J. J. , Comans, R.N. J.,  Witkamp, G.-J. (2007). Cost evaluation of CO2 
sequestration by aqueous mineral carbonation. Energy Conversion and Management, 
Volume 48, Issue 7 (July 2007), Pages 1923-1935, ISSN 0196-8904. 

Iler, R.K. (1979). The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties 
and Biochemistry. A Wiley-Interscience Publication, ISBN 0-471-02404-X. 

IPCC (Intergovernmental panel on climate change). Climate change 2007: The physical 
science basis. Fourth assessment report, IPCC Secretariat, Geneva, Switzerland, 
2007. 

Jiang, X. (2011). A review of physical modelling and numerical simulation of long-term 
geological storage of CO2. Applied Energy, Volume 88, Issue 11 (November 2011), 
Pages 3557-3566, ISSN 0306-2619. 

Jonckbloedt, R.C.L. (1989).  Olivine dissolution in sulphuric acid at elevated temperatures—
implications for the olivine process, an alternative waste acid neutralizing process. 
Journal of Geochemical Exploration, Volume 62, Issues 1-3 (June 1998), Pages 337-346, 
ISSN 0375-6742. 

Jovanović, N., Janaćković, E.J. (1991).  Pore structure and adsorption properties of an acid-
activated bentonite. Applied Clay Science, Volume 6, Issue 1, (May 1991), Pages 59-
68, ISSN 0169-1317. 

Kaya, Y. (1995). The role of CO2 removal and disposal. Energy Conversion and Management, 
Volume 36, Issues 6-9 (June-September 1995), Pages 375-380, ISSN 0196-8904. 

Kloprogge, J.T., Mahmutagic, E., Frost, R.L., Mid-infrared and infrared emission 
spectroscopy of Cu-exchanged montmorillonite. Journal of Colloid and Interface 
Science, Volume 296, Issue 2 (April 2006) Pages 640-646, ISSN 0021-9797. 

Knauss, K.G., Nguyen, S.N., Weed, H.C. (1993). Diopside dissolution kinetics as a function 
of pH, CO2, temperature, and time. Geochimica et Cosmochimica Acta, Volume 57, 
Issue 2 (January 1993), Pages 285-294, ISSN 0016-7037. 

Köhler, S.J., Bosbach, D., Oelkers E.H. (2005). Do clay mineral dissolution rates reach steady 
state? Geochimica et Cosmochimica Acta, Volume 69, Issue 8 (April 2005), Pages 1997-
2006, ISSN 0016-7037. 

Komadel, P., Madejová, J. (2006). Chapter 7.1 Acid Activation of Clay Minerals. Developments 
in Clay Science, Volume 1 (2006), Pages 263-287. 

Konta, J. (1995). Clay and man: Clay raw materials in the service of man. Applied Clay 
Science, Volume 10, Issue 4 (November 1995), Pages 275-335, ISSN 0169-1317. 

MacKenzie, K.J.D., Meinhold, R.H. (1994). The thermal reactions of talc studied by 29Si and 
25Mg MAS NMR. Thermochimica Acta, Volume 244, Issue 3 (October 1994), Pages 
195-203, ISSN 0040-6031. 

www.intechopen.com



 
Atomic Absorption Spectroscopy 

 

256 

Madejová, J., Pálková, H., Komadel, P. (2006). Behaviour of Li+ and Cu2+ in heated 
montmorillonite: Evidence from far-, mid-, and near-IR regions. Vibrational 
Spectroscopy, Volume 40, Issue 1 (January 2006), Pages 80-88, ISSN 0924-2031. 

Maroto-Valer, M.M., Fauth, D.J., Kuchta, M.E., Zhang, Y., Andrésen, J.M. (2005). Activation 
of magnesium rich minerals as carbonation feedstock materials for CO2 
sequestration. Fuel Processing Technology, Volume 86, Issues 14-15 (October 2005), 
Pages 1627-1645, ISSN 0378-3820. 

Martin, R.T., Bailey, S.W., Eberl, D.D., Fanning, D.S., Guggenheim., S., Kodama, H., Pevear, 
D.R., Srodon, J.,  Wicks, F.J. (1991). Report of the clay minerals society 
nomenclature committee: revised classification of clay materials. Clays and Clay 
Minerals, Volume 39, Issue 3 (1991), Pages 333–335, ISSN 0009-8604. 

Massazza, F. (1993). Pozzolanic cements. Cement and Concrete Composites, Volume 15, Issue 4 
(1993), Pages 185-214, ISSN 0958-9465. 

Molina-Montes, E., Timón, V., Hernández-laguna, A., Sainz-díaz, C.I. (2008). 
Dehydroxylation mechanisms in Al3+/Fe3+ dioctahedral phyllosilicates by quantum 
mechanical methods with cluster models. Geochimica et Cosmochimica Acta, Volume 
72, Issue 16 (August 2008), Pages 3929-3938, ISSN 0016-7037. 

Morse J.W., Arvidson R.S. (2002). The dissolution kinetics of major sedimentary carbonate 
minerals. Earth-Science Reviews, Volume 58, Issues 1-2 (July 2002), Pages 51-84, ISSN 
0012-8252. 

Oelkers, E.H. (2001). General kinetic description of multioxide silicate mineral and glass 
dissolution. Geochimica et Cosmochimica Acta, Volume 65, Issues 21 (November 
2001), Pages 3703-3719, ISSN 0016-7037. 

Oelkers, E.H., Schott, J., An experimental study of enstatite dissolution rates as a function of 
pH, temperature, and aqueous Mg and Si concentration, and the mechanism of 
pyroxene/pyroxenoid dissolution, Geochimica et Cosmochimica Acta, Volume 65, 
Issue 8 (April 2001), Pages 1219-1231, ISSN 0016-7037. 

Oelkers, E.H., Schott. J., Experimental study of anorthite dissolution and the relative 
mechanism of feldspar hydrolysis. Geochimica et Cosmochimica Acta, Volume 59, 
Issue 24 (December 1995), Pages 5039-5053, ISSN 0016-7037. 

Pauwels, H., Gaus I., Michel le Nindre, Y., Pearce, J., Czernichowski-Lauriol, I. (2007). 
Chemistry of fluids from a natural analogue for a geological CO2 storage site 
(Montmiral, France): Lessons for CO2–water–rock interaction assessment and 
monitoring. Applied Geochemistry, Volume 22, Issue 12 (December 2007), Pages 2817-
2833, ISSN 0883-2927. 

Pires, J.C.M., Martins, F.G., Alvim-Ferraz, M.C.M., Simões, M. (2011). Recent developments 
on carbon capture and storage: An overview. Chemical Engineering Research and 
Design, Volume 89, Issue 9 (September 2011), Pages 1446-1460, ISSN 0263-8762. 

Pironon, J., Jacquemet, N., Lhomme T., Teinturier S. (2007). Fluid inclusions as micro-
samplers in bath experiments: A study of the system C-O-H-S-cement for the 
potential geological storage of industrial acid gas. Chemical Geology, Volume 237, 
Issues 3-4 (March 2007), Pages 264-273, ISSN 0009-2541. 

Ptáček, P., Nosková, M., Brandštetr, J., Šoukal, F., Opravil, T. (2010). Dissolving behaviour 
and calcium release from fibrous wollastonite in acetic acid solution. Thermochimica 
Acta, Volume 498, Issues 1-2 (January 2010), Pages 54-60, ISSN 0040-6031. 

www.intechopen.com



Activation of Bentonite and Talc by Acetic Acid  
as a Carbonation Feedstock for Mineral Storage of CO2 

 

257 

Ptáček, P., Nosková, M., Brandštetr, J., Šoukal, F., Opravil, T. (2011). Mechanism and kinetics 
of wollastonite fibre dissolution in the aqueous solution of acetic acid. Powder 
Technology, Volume 206, Issue 3 (January 2011), Pages 338-344, ISSN 0032-5910. 

Ptáček, P., Šoukal, F., Opravil, T., Havlica, J., Brandštetr, J. (2011). The kinetic analysis of the 
thermal decomposition of kaolinite by DTG technique. Powder Technology, Volume 
208, Issue 1 (March 2011), Pages 20-25, ISSN 0032-5910. 

Pushpaletha, P., Rugmini, S., Lalithambika, M. (2005). Correlation between surface 
properties and catalytic activity of clay catalysts. Applied Clay Science, Volume 30, 
Issues 3-4 (November 2005) Pages 141-153, ISSN 0169-1317. 

Richardson, F.D. (1974). Physical Chemistry of Melts in Metallurgy, Volume 2, Academic Press 
Inc, ISBN 0125879024, New York. 

Rimstidt, J.D., Dove, P.M. (1986). Mineral/solution reaction rates in a mixed flow reactor: 
wollastonite hydrolysis. Geochimica et Cosmochimica Acta, Volume 50, Issue 11 
(November 1986), Pages 2509-2516, ISSN 0016-7037. 

Saikia, N., Sengupta. P., Gogoi, P.K., Borthakur, P.Ch. (2002). Kinetics of dehydroxylation of 
kaolin in presence of oil field effluent treatment plant sludge. Applied Clay Science, 
Volume 22, Issue 3 (December 2002), Pages 93-102, ISSN 0169-1317. 

Saldi, D.G., Köhler, J.S., Marty, N., Oelkers, H.E. (2007). Dissolution rates of talc as a 
function of solution composition, pH and temperature. Geochimica et Cosmochimica 
Acta, Volume 71, Issue 14 (July 2007), Pages 3446-3457, ISSN 0016-7037. 

Šesták, J. (1984). Thermal analysis. Part D: Thermophysical properties of solids – Their 
measurements and theoretical thermal analysis, Elsevier, ISBN 0-444-99653-2, 
Amsterdam. 

Soong, Y., Goodman, A.L., McCarthy-Jones, J.R., Baltrus, J.P. (2004). Experimental and 
simulation studies on mineral trapping of CO2 with brine. Energy Conversion and 
Management, Volume 45, Issues 11-12 (July 2004), Pages 1845-1859, ISSN 0196-8904. 

Spreng, D., Marland, G., Weinberg, A. M. (2007). CO2 capture and storage: Another Faustian 
Bargain? Energy Policy, Volume 35, Issue 2 (February 2007), Pages 850-854, ISSN 
0301-4215. 

Stumm, W. (1997). Reactivity at the mineral-water interface: dissolution and inhibition. 
Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 120, Issues 
1-3 (February 1997), Pages 143-166, ISSN 0927-7757. 

Teir, S., Eloneva, S., Fogelholm, C.-J., Zevenhoven, R. (2007). Dissolution of steelmaking 
slags in acetic acid for precipitated calcium carbonate production. Energy, Volume 
32, Issue 4 (April 2007), Pages 528-539, ISSN 0360-5442. 

Torp, T.A., Gale, J. (2004). Demonstrating storage of CO2 in geological reservoirs: The 
Sleipner and SACS projects. Energy, Volume 29, Issues 9-10 (July-August 2004), 
Pages 1361-1369, ISSN 0360-5442. 

Tyagi, B., Chudasama, Ch.D., Jasra R.V. (2006). Determination of structural modification in 
acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochimica Acta Part 
A: Molecular and Biomolecular Spectroscopy, Volume 64, Issue 2 (May 2006), Pages 
273-278, ISSN 1386-1425. 

Ullman W.J., Kirchman D.L., Welch S.A., Vandevivere P. (1996). Laboratory evidence for 
microbially mediated silicate mineral dissolution in nature, Chemical Geology, 
Volume 132, Issues 1-4 (October 1996), Pages 11-17, ISSN 0009-2541. 

www.intechopen.com



 
Atomic Absorption Spectroscopy 

 

258 

Valensi, G. (1936). Kinetics of oxidation of metallic spherules and powders. Comptes Rendus, 
202 (1936) 309–312. 

Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., Aguzzi, C. (2010). Current challenges in clay 
minerals for drug delivery. Applied Clay Science, Volume 48, Issue 3 (April 2010), 
Pages 291-295, ISSN 0169-1317. 

Vlaev, L., Nedelchev, N., Gyurova, K., Zagorcheva, M. (2008). A comparative study of non-
isothermal kinetics of decomposition of calcium oxalate monohydrate. Journal of 
Analytical and Applied Pyrolysis, Volume 81, Issue 2 (March 2008), Pages 253-262, 
ISSN 0165-2370. 

Weissbart, E.J., Rimstidt, J.D. (2000). Wollastonite: incongruent dissolution and leached layer 
formation. Geochimica et Cosmochimica Acta, Volume 64, Issue 23 (December 2000), 
Pages 4007-4016, ISSN 0016-7037. 

Wong, C.S., Matear, R.J. (1989). Ocean disposal of CO2 in the North Pacific Ocean: 
Assessment of CO2 chemistry and circulation on storage and return to the 
atmosphere. Waste Management, Volume 17, Issues 5-6 (1998), Pages 329-335, ISSN 
0956-053X. 

Xu, T., Apps, J.A., Pruess, K. (2004). Numerical simulation of CO2 disposal by mineral 
trapping in deep aquifers. Applied Geochemistry, Volume 19, Issue 6 (June 2004), 
Pages 917-936, ISSN 0883-2927. 

Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland A.E., Wright, I. (2008).  Progress in 
carbon dioxide separation and capture: a review. Journal of Environmental Sciences, 
Volume 20, Issue 1 (2008), Pages 14-27, ISSN 1001-0742. 

Yehia, A.A., Akelah, A.M., Rehab, A., El-Sabbagh, S.H., Nashar D.E. El., Koriem, A.A. 
(2012). Evaluation of clay hybrid nanocomposites of different chain length as 
reinforcing agent for natural and synthetic rubbers. Materials & Design, Volume 33 
(January 2012), Pages 11-19, ISSN 0261-3069. 

Zhang, Y., Oldenburg, C.M., Finsterle S., Bodvarsson, G.S. (2007). System-level modelling 
for economic evaluation of geological CO2 storage in gas reservoirs. Energy 
Conversion and Management, Volume 48, Issue 6 (June 2007), Pages 1827-1833, ISSN 
0196-8904. 

www.intechopen.com



Atomic Absorption Spectroscopy

Edited by Dr. Muhammad Akhyar Farrukh

ISBN 978-953-307-817-5

Hard cover, 258 pages

Publisher InTech

Published online 20, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Atomic Absorption Spectroscopy is an analytical technique used for the qualitative and quantitative

determination of the elements present in different samples like food, nanomaterials, biomaterials, forensics,

and industrial wastes. The main aim of this book is to cover all major topics which are required to equip

scholars with the recent advancement in this field. The book is divided into 12 chapters with an emphasis on

specific topics. The first two chapters introduce the reader to the subject, it's history, basic principles,

instrumentation and sample preparation. Chapter 3 deals with the elemental profiling, functions, biochemistry

and potential toxicity of metals, along with comparative techniques. Chapter 4 discusses the importance of

sample preparation techniques with the focus on microextraction techniques. Keeping in view the importance

of nanomaterials and refractory materials, chapters 5 and 6 highlight the ways to characterize these materials

by using AAS. The interference effects between elements are explained in chapter 7. The characterizations of

metals in food and biological samples have been given in chapters 8-11. Chapter 12 examines carbon capture

and mineral storage with the analysis of metal contents.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Petr Ptáček, Magdaléna Nosková, František Šoukal, Tomáš Opravil, Jaromír Havlica and Jiří Brandštetr

(2012). Activation of Bentonite and Talc by Acetic Acid as a Carbonation Feedstock for Mineral Storage of

CO2, Atomic Absorption Spectroscopy, Dr. Muhammad Akhyar Farrukh (Ed.), ISBN: 978-953-307-817-5,

InTech, Available from: http://www.intechopen.com/books/atomic-absorption-spectroscopy/activation-of-

bentonite-and-talc-by-acetic-acid-as-a-carbonation-feedstock-for-mineral-storage-of-co



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


