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1. Introduction  

Group II elements constitute an environmentally important group of metals. Calcium ranks 
5th in relative abundance in nature. It occurs in limestone, dolomite, gypsum and 
gypsiferous shale, from which it can leach into underground and surface waters. Calcium 
content of natural waters can range from zero to several hundred milligrams per liter, 
depending on the source and treatment of the water. Magnesium occurs in nature in close 
association with calcium. It ranks 8th in abundance among the elements, and is a common 
constituent of natural waters. As with calcium, concentrations of magnesium in natural 
water may vary from zero to several hundred milligrams per litre, depending on source and 
treatment of the water. Calcium and magnesium salts contribute to water hardness. 
Concentrations of Mg above 125 mg/L can have cathartic and diuretic effects on the water 
(APHA, 1992). Barium ranks 16th in relative abundance in nature, and occurs in trace 
amounts in natural waters. Strontium resembles calcium, and interferes in the determination 
of calcium by gravimetric and titrimetric methods. Although most portable water supplies 
contain little strontium, levels as high as 39 mg/L have been detected in well water (APHA, 
1992). 
FAAS and ICP-AES are the preferred methods for determining Gp II elements including 

Mg. Signal enhancement and/or depression were reported previous when Gp II elements 

were determined by atomic absorption spectrometry in the presence of other Gp II elements 

as interferents by several authors (Zadgorska and Krasnobaeva, 1977; Czobik and Matousek, 

1978; Kos’cielniak and Parczewski, 1982; Smith and Browner, 1984; Zaranyika and Chirenje, 

1999). Our approach to the study of interelement effects in atomic spectrometry involves a 

technique of probing changes in the number densities of the excited and ground states. 

Experimental analyte line emission intensity (I) and line absorbance (A) signal ratios, I’/I 

and A’/A, respectively, where the prime denotes readings taken in the presence of the 

interferent, are determined and compared to theoretical values derived assuming steady 

state kinetics. The method was used to follow collisional processes on the excitation and 
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ionization of K resulting from the presence excess Na as interferent (Zaranyika et al., 1991). 

The approach assumes no change in the rate of introduction of analyte atoms into the 

excitation source, and no change in the temperature of the torch or flame, upon the 

simultaneous introduction of an easily ionized interferent element.  

Our argument is that according to the local thermodynamic equilibrium (LTE) approach, 

atomic line absorption and atomic line emission intensities are directly proportional to the 

population of the ground and excited states, respectively, i.e., AN0 and INj  whereas Nj 

and N0 are related by the Boltzmann equation (Boumans, 1966): 

  . exp /
j

j o
o

g
N N E kT

g

 
   

 
 (1) 

where gj and g0 are the statistical weights of the excited and ground states, respectively, k is 

the Boltzmann constant, T is the absolute temperature and E is the difference in the 

energies of the two electronic states involved in the transition. If the rate of introduction of 

the analyte atoms into the plasma is kept constant, and we assume no change in the plasma 

temperature on simultaneous introduction of interfering metal atoms with the analyte, we 

may write: 

  ' ' exp /
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where the primes denote the actual populations of analyte ground state and excited atoms 

in the presence of the interferent. Combining equations 1 and 2, we have 
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Hence, 
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where   nu   is number density of the excited state. 
Equation 4 suggests that the effects of collisional processes on the excitation, and line 

emission of the analyte atoms resulting from the presence of interferent atoms may be 

followed by measuring the absorption or emission intensities of a given concentration of 

analyte atoms in the absence and presence of the interferent, and comparing the I’/I and 

A’/A ratios plotted versus analyte concentration. Applying the approach to absorption 

spectrometry, the following situations may be identified: 

i. No collisional effects, and therefore no change in the populations of the ground and 
excited states of analyte atoms: A’/A=1 

ii. Increase of ground state, e.g. suppression of ionization: A’/A>1 
iii. Depopulation of ground state, e.g. charge transfer reactions: A’/A<1 
iv. Increase in excited state population: A’/A>1 
v. Depopulation of excited state: A’/A<1 
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The aims of the present work were to investigate and characterize, in terms of a simplified 
collisional rate model, the interference effects observed when Mg is determined by air-
acetylene FAAS in the presence of excess Ca and Sr as interferents.  

2. Experimental 

2.1 Equipment 
An AA-6401 Shimadzu Spectrophotometer with an aberration-corrected Czerney-Turner 
mounted monochromator, automatic two step gain adjustment beam balance, automatic 
baseline drift correction using electrical double beam signal processing in peak height and 
area modes, was used in conjunction with an air-cooled 100-mm slot burner with a stainless 
steel head with a Pt-Ir capillary nebulizer with a Teflon orifice, glass impact bead and 
polypropylene chamber, and an air-acetylene flame. The air was supplied by a Toshiba 
Toscon compressor at 0.35 MPa input pressure, while the fuel gas was supplied from a 
pressuresed tank (BOC Zimbabwe (Pvt) Ltd, Harare), at 2.0 mL/min. Under these 
conditions the temperature of the flame was approximately 2573K [3-5], confirmed by a 
personal communication obtained from Shimadzu Inc., Japan. The spectrophotometer is 
equipped with automatic fuel gas flow rate optimization for each element. 
Experiments were carried out using Hamamatsu Photonics hollow cathode lamps 
(Hamamatsu, Japan) as source. The lamps was operated at the recommended minimum 
current of 8 mA for Mg respectively. Measurements were made using the 285.2 nm Mg line. 
The spectrophotometer employs a high speed 2-wavelength simultaneous measurement 
Deuterium lamp to correct for background signal. 
The nebulization chamber of the spectrophotometer was cleaned with triply distilled water 
to remove any deposited solids after each set of runs. The instrument was optimized for 
absorbance measurements, and care was taken not to change the instrumental 
settings/conditions until all measurements involving a particular interferent were 
completed. The average absorbance reading was recorded on the instrument computer 
monitor 5 seconds after aspiration. 
Instrumental parameters employed were as follows:  Spectral band pass, 0.5 nm; Burner 
height, 7 mm; Burner angle, 0o; Acetylene fuel flow rate, 2.0 L/min.; Air input pressure, 0.35 
MPa. Minimum Hollow cathode lamp current  8 mA. A mean aspiration rate of  3.000.06 
mL/min. (n = 8), and mean nebulization efficiency  of 6.31.7%  
(n = 8) were obtained. 

2.2 Materials 
The following were used: Calcium chloride AR grade (impurities present: sulphate 0.005%, 
total nitrogen 0.005%, phosphorous 0.001%, lead 0.001%, iron 0.0005%, magnesium 0.01%, 
sodium 0.01% and potassium 0.01%); magnesium chloride AR grade (impurities: free acid 
0.001%, magnesium oxide 0.0005%, nitrogen compounds 0.0002%, arsenic 0.0001%, barium 
0.0002%, calcium 0.00055%, potassium 0.005%, sodium 0.0055%, and zinc 0.0025%); 
Strontium chloride AR grade (impurities: water insoluble matter 0.005%, sulphate 0.001%, 
lead 0.0002%, iron 0.0001%, zinc 0.0001%, barium 0.02%, and substances not precipitated by 
sulphuric acid 0.0002%); Deionized water of conductivity 0.001Sm-1.  

2.3 Procedure 

Four sets of standard solutions each containing 1 – 30 mg/L Mg were prepared from a 
freshly prepared stock solution. Three sets were spiked with 1000 mg/L Ca or Sr each 
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respectively; while one set each was left unspiked. The concentration of the interferent was 
kept in excess at 1000 mg/L while that of the analyte was kept at 0 -30 mg/L to minimize 
changes in the physical properties of the test solution. Any such changes in physical 
properties would affect the set of solutions to be analyzed to the same extent, and this was 
compensated for by taking blank readings of the solution containing the interferent only.  
Absorbance (A) readings were made for the spiked sets of solutions, as well as the unspiked 
set using distilled water as blank. The readings for the spiked sets of Mg solutions were then 
adjusted for blank readings of the solution containing the interferent only. A’/A ratios were 
calculated and plotted against Mg concentration in the test solution in Figure 1. Preliminary 
experiments were run to determine the aspiration rate and nebulization efficiency for the 

type of solutions under analysis. A mean aspiration rate (n = 8) of 3.000.06 mL/min and a 

mean nebulization efficiency (n = 8) of 6.31.7% were obtained. 
 

 

Fig. 1. Interference effects of excess Ca and Sr on Mg absorbance during air-acetylene FAAS. 

2.4 Theoretical calculations 

Ground state number densities were calculated assuming an aspiration rate of 3 mL/min. 
and 6 % nebulization efficiency as measured above, and a temperature of 2573 K for the air-
acetylene flame as noted above. Ionic number densities were calculated on the basis of the 
Saha relationship (Allen, 1955). Data obtained are shown in Table 1, in column headed ‘no 
(cm-3s-1)’. 
 

 
aBased on Saha relationship. M = element;   = degree of ionization assuming 2573 K flame temperature. 
c = analyte concentration in the test solution. 

Table 1. Ground state atom, ion and pre-thermal equilibration “hot” electron number 
densities, ne*. 
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3. Results and discussion 

The experimental A’/A curves in Fig. 1 show a sharp increase in line absorbance signal 
enhancement with decrease in the concentration of the analyte in the test solution below 
about 10 mg/L. Similar results were reported previously in a study of mutual atomization 
interference effects between Group I elements (Zaranyika and Makuhunga, 1997). 
Absorbance signal enhancement is attributed to suppression of ionization, which is 
equivalent to collisional ion-electron radiative recombination. The major processes affecting 
analyte ground state population in the flame are represented schematically in Fig. 2.  
 

 

Fig. 2. Proposed kinetic scheme: The subscripts AX2, o, u, and + denote analyte salt, ground 

state, excited state and ion respectively; M denotes interferent; kD, k, k’ denote rate 
constants for thermal dissociation, excitation from the ground state and excitation the 
excited state respectively; kCT and kCT’ denote rate constants for collisional charge transfer 
involving interferent atoms and ions respectively; kc(o) and kc(1) denote rate constants for 
collisional radiative recombination to the ground state and excited state respectively; khv 
and kR denote rate constants for radiative relaxation and analyte atom and counter- atom 
recombination respectively. 

Assuming a steady state with respect to the analyte ground state and the excited state: 

 
2 ( ) 0A

D AX c o u e CT Mo h u o CT o M R o X

dn
k n k n n k n n k n k n k n n k n n

dt
               (5) 
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k n k n k n
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          (6) 

Rearranging Eq. 6, we have 
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Substituting into Eq. 5 and rearranging: 
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Where  
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Therefore 

 2

2

( )

( )

D AX CR o e CT mo R Xo

o D AX CR o e CT m R X

k n k n n k n n k k nn

n k n k n n k k n k n





 

 

     
           

 (11) 

Two major limiting cases can be defined for Eq. 11, thus: 

Limiting Case I (LC I):  

( )2D CR o e CT moAX
k n k n n k n n 

   

 R Xo

o CT m R X

k k nn

n k k n k n



 

 


   
 (12) 

Since kRnX’>>kRnX, no’/no will be less than unity,  i. e.,  a depression of absorbency signal is 
expected in this case, contrary to the experimental results in Fig. 1. Although the present 
work reports analyte line absorption signal enhancement, analyte line absorption signal 
depression has been reported by several workers (Herrmann  and Alkemade, 1963; Brown et 
al., 1987). Analyte line absorption signal depression conforming to Eq. 12 was also reported 
previously at low flame temperature when 0.2 – 1.0 mg/L K solutions were determined in 
the presence of 1000 mg/L Na in the secondary reaction zones of the air-acetylene flame 
(Zaranyika et al., 1991).  

Limiting Case II (LC II): 

( )2D CR o eAX
k n k n n  
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Two further limiting cases can be defined for Eq. 13, thus: 
Limiting Case IIA (LC IIA):  

CT m R X
k k n k n 
    
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CR o e CT moo
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

 
  (14) 

Since ne’ = n+ ne = n+ + nmo, where ne represents the change in the electron number 

density in the presence of the interferent, and  is the degree of ionization of the interferent, 
Eq. 14 becomes 

 
( )

( )

1
CR o CTo mo

o CR o
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n k n
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

 
    
 

 (15) 

Or 

 1o mo

o

n kn

n n


   (16) 

i.e., absorbance signal enhancement is directly proportional to interferent number density 

and inversely proportional to analyte number density. In addition, if we assume that A’/A 

= no’/no, a plot of A’/A versus nmo/n+, should be linear with an intercept of unity. At 

constant interferent concentration in the test solution, a plot of A’/A versus 1/n+, should 

also be linear with an intercept of unity. 

Limiting Case IIB (LC IIB):   

R X
k k n   

It can be shown that 

 
( )

( )

1
CR o CTo mo R X

o CR o CT mo R X

k kn n k n

n k n k n k n




                  
 (17) 

i.e., although the absorbance signal enhancement is still dependent on interferent number 

density and inversely proportional to analyte number density, the enhancement observed 

will be reduced by a factor of at least nX/nX’. In addition, if we assume the A’/A = no’/no, a 

plot of A’/A versus nmo/n+ should give a non-linear slope dependent on the concentration 

of interferent metal atom and counter atom, and with an intercept that is less than unity and 

equal to at least nX/nX’.  

Table 2 shows the slope, intercept and R2 values for the regression plots of A’/A versus 
nmo/n+ obtained when the enhancement factor A’/A for Mg is determined in the presence 
and absence of Ca and Sr as interferents. It is apparent from the data in Table 2 that the 
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intercept values of 1.09 and 1.22 obtained are close to unity, in close agreement with Eq. 11. 
These data suggest that the signal enhancement obtained when Mg is determined in the 
presence of excess of Ca and Sr as interferents conforms to LC IIA. 
 

 

Table 2. Regression data: A’/A vs nmo/n+ for Mg  

Signal enhancement in the presence of easily ionizable elements (EIEs) in atomic absorption 
spectrometry is commonly attributed to suppression of ionization (Foster Jr. and Hume, 
1959; Smit et al., 1951). Supression of ionization is in effect collisional radiative 

recombination, and assumes that in Eq. 14 ( )CR o e CT mok n n k n n    so that Eq. 14 reduces to 

 
( ) ( )

( ) ( )

1
CR o e CR o eo

o CR o e CR o e

k n n k n nn

n k n n k n n

 

 

 
    (18) 

Or 

 
exp( / ) exp( / )

1 1
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o c e a e a

o c e a e a

n k n n E kT n E kT

n k n n E kT n E kT




     
   

 
 (19) 

where ne is the change in electron number density upon the addition of the interferent, i.e., 

ne = nm+, Ea’ and Ea are the activation energies for the electrons from the ionization of the 
interferent and analyte respectively, and. kc is the collisional rate constant given by (Weston 
and Schwarz, 1972): 

 
1/2

12

8
c

kT
k Q


 

  
 

 (20) 

where Q12 is collision cross-section between particles 1 and 2, and  is their reduced mass. 
If we assume thermal equilibrium conditions, then all the electrons will require the same 
activation, i.e., Ea’ = Ea, and Eq. 19 reduces to  

 1o e

o e

n n

n n

 
   (21) 

where ne = nm+  and ne = n+. It is apparent that substitution for ne and ne from Table 1 will 
yield values of no’/no up to three orders of magnitude greater than experimental A’/A 
values at low Mg concentrations. If however we assume pre-thermal equilibrium collisional 
radiative recombination, then the electrons from the ionization of the interferent would 
require further activation by an amount of energy equal to the difference between the 
ionization potentials of the analyte and that of the interferent, i.e., in eq. 19, 
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 a a mE IP IP    (22) 

And 

 0a a aE IP IP    (23) 

where the subscripts a and  m denote analyte and interferent respectively. If we make this 
assumption, then Eq. 15 becomes 

 1 exp( / )o e
a

o

n n
E kT

n n

      (24) 

Table 3 shows the fraction of such electrons having the appropriate energy, and Table 1 
shows the corresponding pre-thermal equilibration number density of “hot” electrons, ne*,  
arising from the analyte, Mg (ne* = n+), and the interferents Ca and Sr (ne* = n+exp(-Ea’/kT)).  
*Ea’ = IPa – IPm. 
 

 

Table 3. Pre-thermal equilibration fraction of electrons having the requisite activation 
energy. 

Substitution of the appropriate quantities from Table 1 and 4 into Eq. 24 yields Eqs. 25 and 

26 for the absorbance signal enhancement factor, no’/no, for the presence of 1000 g/ mL 
excess Ca and Sr as interferents: 

 
1

/

3.0604 10
1o

o Mg Ca

n x

n c

 
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 
 (25) 

 
1

/

2.1132 10
1o

o Mg Sr

n x

n c

 
  

 
 (26) 

A major objective for kinetic modeling of interference effects is to be able to predict the 
interference observed experimentally. If assume that  

 o

o

nA

A n


  (27) 

then the calibration curve obtained in the presence of the interferent can be predicted. 

Theoretical calibration curves predicted on the basis of Eqs 25 and 26 for the effects of 1000 

mg/L excess Ca, Br and Sr respectively on the absorbance signal of Mg in the air-acetylene 

flame are shown in Fig. 3, together with the experimental A’ calibration curves for 

comparison. 
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Fig. 3. Theoretical and experimental A’ calibration curves: Effect of excess Ca (A), Ba (B) and 
Sr (C) on Mg absorbance during air-acetylene FAAS. 

It is apparent from Fig. 3A that Eq. 24 leads to close agreement between theory and 

experiment at Mg concentrations below about 5 mg/L when Mg is determined in the 

presence of excess Ca, while the theoretical curve deviates slightly from the experimental 

curve above this concentration. In contrast to the case when Mg is determined in the 

presence of excess Ca, exact agreement between theory and experiment is obtained 

throughout the range of Mg concentrations studied when determined in the presence of 

excess Sr. Although the work presented in this paper is rather limited in scope, the 

remarkable success of the model in predicting the interference of excess Sr on the 

absorbance signal of Mg, confirms the potential of the model as represented by Eq. 24 in 

simulating the absorbance signal enhancement interference effects during flame atomic 

spectrometry. Further work is underway to test the model on other systems. 
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4. Conclusions 

From the foregoing discussion we conclude that the interference effects between Group II 
elements can be characterized using a simplified rate model that takes into account 
collisional radiative recombination, charge transfer between analyte and interferent species, 
and collisional recombination between analyte atom and counter atom. The model predicts 
that, depending on the specific experimental conditions employed, interference effects in 
flame atomic spectrometry can manifest themselves as enhancements (Eq. 15) or depressions 
(Eqs. 12 and 17) of the analyte line absorbance signal. Data relating to the signal 
enhancement interference effects of excess Ca and Sr on Mg absorbance signal during air-
acetylene flame absorption spectrometry suggest that the signal enhancement can be 
simulated on the basis of a simplified rate model that assumes pre-LTE ion-electron 
radiative recombination. 
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