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1. Introduction

In this chapter, we describe recent developments of forward-modeling techniques for accurate
and efficient computation of the realistic seismic wavefield. Our knowledge on the Earth’s
interior has been enhanced by mutual progress in observation and numerical methods. Since
the first time-recording seismograph was built in Italy in 1875 (Shearer, 1999), the recorded
seismic dataset has been growing at an almost exponential rate. Such a massive amount
of seismic waveform data should be interpreted with consideration of the seismic source
mechanism and Earth’s inner structure, which explain each crest or trough in observed
waveform traces. This interpretation can be achieved by forward modeling of seismic
waveforms. In addition, recent progress in computation capacity has enabled investigation
of the Earth’s inner structure via waveform inversion, an inverse problem minimizing the
difference between observed and synthetic seismograms. This method requires iterative
computations of synthetic seismograms for each structural model renewal in the minimization
process, so we need a forward modeling technique that produces accurate waveforms with
small computation time and memory.

Writing mathematically, forward modeling (forward problem, modelization problem, or
simulation problem) predicts error-free values of observable parameters d corresponding to a
given model m, i.e., this theoretical prediction can be denoted

m �→ d = g(m), (1)

where d = g(m) is a short notation for a set of equations di = gi(m1, m2, · · · ) (i = 1, 2, · · · )
using the model parameters m = {m1, m2, · · · }. The operator g(·) is called the forward
operator, which expresses our mathematical model of the physical system under study
(Tarantola, 2005). The forward modeling of seismic waveforms is therefore a theoretical
method that applies a set of theoretical equations to determine what given seismographs
would measure with respect to a preset combination of source and structure. Basically, the
forward modeling of seismic waves solves the elastodynamic equation for a given source
mechanism and structural model, including a set of density and elastic parameters.
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2. Various numerical methods

The Earth’s interior is strongly laterally heterogeneous. Since purely analytical methods do
not provide solutions to the governing equations of seismic wavefields for such complex
media, we are forced to use numerical modeling methods to predict realistic wavefields.
Numerical methods transform an original differential problem into a system of algebraic
equations, so that a continuous function in a differential equation must be represented by a
finite system of numbers that must be stored in computer memory. Each numerical method is
specific in how it represents a solution using a finite set of numbers, and how it approximates
derivatives.

In recent years, there have been remarkable developments in numerical simulation
techniques, associated with progress in computer architecture. Simulation of elastic wave
propagation requires solution of the elastodynamic equation, consisting of the equations of
motion and the constitutive laws under prescribed boundary and radiation conditions. If
there is a need to satisfy these three strictly, we are obliged to solve them by analytical
means, although it is nearly impossible except in special cases. In most cases, we have
to rely on numerical modeling methods that approximate these three relations numerically.
From a practical viewpoint, the numerical simulation methods for seismic wave motion
can be classified into three groups: (1) Domain methods; (2) Boundary methods; and
(3) Hybrid methods (Takenaka et al., 1998). Domain methods numerically approximate
the elastodynamic equation, as well as boundary and radiation conditions. Solutions are
reached by solving linear equations resulting from complete discretization of a medium,
solution, and differential operators in time (or in frequency), throughout the spatial domain.
Therefore, domain methods are applicable to modeling wavefields in arbitrary heterogeneous
structures, since the medium parameters are distributed on numerical grid points. On
the other hand, boundary methods can satisfy the elastodynamic equation and radiation
conditions analytically, and they only discretize the boundary conditions. In these methods,
the differential equations and boundary conditions are transformed into boundary integral
equations involving unknown functions, which are then discretized and solved by various
numerical techniques. Hybrid methods are combinations of several different methods among
domain or boundary methods. This chapter treats computation by domain methods.

The domain methods contain various numerical methods, such as finite-difference method
(FDM), pseudospectral method (PSM), finite-element method (FEM), and spectral-element
method (SEM). These methods can be classified based on the kind of formulation they solve,
e.g., strong formulation, weak formulation, etc. It is impossible to choose the best method
among them, since a single method can hardly satisfy all demands. Therefore, the choice
of suitable numerical method should be problem-dependent. Here, we explain numerical
schemes based on the FDM, the most orthodox and user-friendly method of seismic wave
computation. The FDM solves the elastodynamic equation in strong form, by replacing partial
derivatives in space and time with finite-difference approximations, only at grid points in the
computational domain.

The FDM grid distribution can be classified based on whether all wavefield variables
are approximated at the same grid position. On a conventional grid, all variables are
approximated at the same grid position. On an alternative staggered grid, each displacement
and/or particle-velocity component, as well as stress component, has its own grid position
with several exceptions, such as overlapping of three normal-stress components. The
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Quasi-Axisymmetric Finite-Difference Method for Realistic Modeling of Regional and Global Seismic Wavefield — Review and Application — 3

advantage of the staggered grid is its robustness for structures with high contrast of Poisson’s
ratio.

The elastodynamic equation (equations of motion and constitutive laws), together with the
initial and boundary conditions, completely describe a problem of seismic wave propagation.
If we keep the equations of motion separate from the constitutive laws, we can speak
of the displacement-stress formulation. If we use particle velocity in the equations of
motion, keep the constitutive laws, and add the definition of particle velocity, we obtain the
displacement-velocity-stress formulation. If we apply a time derivative to the constitutive
laws instead of adding the definition of particle velocity, then we have the velocity-stress
formulation. If we eliminate the stress-tensor components by substituting the constitutive
laws into the equations of motion, we get the displacement formulation (e.g., Moczo et al.,
2007). In this chapter, we mainly deal with the velocity-stress formulation. The formulation
for 3-D computations for general elastic media are described with mathematical expressions
in Cartesian coordinates (x1, x2, x3) as follows (i, j, k, l ∈ {1, 2, 3}):

ρ
∂vi

∂t
=

∂σij

∂xj
+ fi, (2)

∂σij

∂t
= cijkl

∂ǫkl

∂t
− Ṁij, (3)

where t is time, ρ(x); x = (x1, x2, x3) is the density; cijkl(x) is the component of the elastic

tensor. In addition, vi(x, t), fi(x, t), σij(x, t), ǫij(x, t), and Ṁij(x, t) are components of the
particle velocity vector, body force vector, stress tensor, strain tensor, and first-order time
derivative of the moment tensor, respectively. We have used the summation convention over
repeated suffixes.

In general orthogonal curvilinear coordinates (c1, c2, c3), the elastodynamic equation
corresponds to Eqs. (2), and (3) can be given as follows, together with the strain-velocity
relation without using the summation convention (Aki & Richards, 2002):

ρ
∂vi

∂t
=

1

h1h2h3
∑
j,k

[

(

σjkh1h2h3

hk

)

(

δik

hj

∂hk

∂cj
− δjk ∑

p

δip

hp

∂hj

∂cp

)

+ δij
∂

∂ck

(

σjkh1h2h3

hk

)

]

+ fi,

(4)

∂σij

∂t
= λδij ∑

p

∂ǫpp

∂t
+ 2μ

∂ǫij

∂t
− Ṁij, (5)

∂ǫij

∂t
=

1

2

[

hi

hj

∂

∂cj

(

vi

hi

)

+
hj

hi

∂

∂ci

(

vj

hj

)]

+
δij

hj
∑
s

vs

hs

∂hi

∂cs
, (6)

where hi; i ∈ {1, 2, 3} are scaling functions peculiar to the coordinate system, and all variables
related to the medium and wavefields are the same as in the Cartesian case, except that the x

dependence should be replaced with c = (c1, c2, c3) dependence. We consider special cases of
these equations in cylindrical and spherical coordinates in the following sections.

With simulation of seismic wave motion by the domain methods, two “dimensions”, i.e.,
the spatial dimension (heterogeneity) of a medium and the dimensionality of wavefields,
become important. The heterogeneity of a medium is defined as the number of independent
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variables considering material parameters as spatial functions, whereas the dimensionality
of wavefields is defined as the number of spatial variables in all independent variables of
wavefields. We should choose these two dimensions for a compromise between accuracy and
efficiency of waveform computation. Takenaka (1993; 1995) developed a notation describing
the combination as (m, n) dimension, where m is the dimensionality of wavefields and n is the
dimension of a medium. The (3, 3) dimensional modeling, called 3-D modeling, calculates 3-D
seismic wavefields in a 3-D structural model. The 3-D modeling provides accurate results,
since it can treat the most realistic situation. However, full 3-D modeling up to a realistic
high frequency is still computationally intensive and costly, even on parallel hardware. On
the other hand, (2, 2) dimensional modeling (2-D modeling) calculates 2-D wavefields in a
2-D structural model, which requires relatively small computational resources compared to
3-D modeling. Because of the severe computational requirement, waveform computation
by domain methods had long been restricted to 2-D modeling, although the wave behavior
of out-of-plane motion is underestimated. Moreover, 2-D modeling cannot correctly model
geometrical spreading effects and the pulse shape in 3-D.

In the 1990s, an alternative (3, 2) dimensional modeling called 2.5-D modeling, which
calculates 3-D wavefields in a medium varying only in two dimensions, was introduced in
seismology. It first assumes the structure to be invariant in one direction, and then applies a
spatial Fourier transform to the 3-D wave equation in this direction. The resulting equations
in a mixed coordinate-wavenumber domain consist of independent sets of 2-D equations
for each wavenumber, such that numerical computations of these equations followed by
an inverse Fourier transform over wavenumber generate 3-D synthetic seismograms. One
can thus correctly model the 3-D geometrical spreading effects and pulse shape for all
phases, and it makes possible a direct comparison between real and synthetic waveform data.
Nevertheless, associated with computations for all discrete wavenumbers, 2.5-D modeling
requires a long computation time, comparable to 3-D modeling, although it has a memory
requirement only slightly greater than 2-D modeling.

3. Axisymmetric modeling

Fig. 1. Configuration of the coordinate systems. (a) Cylindrical coordinates (r, φ, z), and (b)
spherical coordinates (r, θ, φ).

A more economical technique for modeling 3-D seismic wavefields is to approximate the
structural model as rotationally symmetric along the vertical axis, include a seismic source,
and then solve the wave equation in cylindrical or spherical coordinates. This method,
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called axisymmetric modeling, can correctly model 3-D geometrical spreading effects and
pulse shape, with computation time and memory comparable to 2-D modeling. In the
following subsections, we write the elastodynamic equations for axisymmetric modeling in
both cylindrical coordinates (r, φ, z) and spherical coordinates (r, θ, φ), as shown in Figure 1,
comparing them with the 3-D equations.

3.1 Cylindrical coordinates

Cylindrical coordinates (r, φ, z) are defined as 0 ≤ r < ∞, 0 ≤ φ ≤ 2π, −∞ < z < ∞, which
replace notations in Eqs. (4)–(6) as follows.

c1 = r, c2 = φ, c3 = z, h1 = 1, h2 = r, h3 = 1. (7)

3.1.1 For 3-D modeling

Substituting Eq. (7) into Eqs. (4)–(6), we can get the 3-D elastodynamic equation in cylindrical

coordinates:

ρ
∂vr

∂t
= fr +

1

r

∂

∂r
(rσrr) +

1

r

∂σrφ

∂φ
+

∂σrz

∂z
−

σφφ

r
, (8)

ρ
∂vφ

∂t
= fφ +

1

r

∂

∂r

(

rσrφ
)

+
1

r

∂σφφ

∂φ
+

∂σφz

∂z
+

σrφ

r
, (9)

ρ
∂vz

∂t
= fz +

1

r

∂

∂r
(rσrz) +

1

r

∂σφz

∂φ
+

∂σzz

∂z
, (10)

∂σrr

∂t
= (λ + 2μ)

∂vr

∂r
+

λ

r

∂vφ

∂φ
+ λ

∂vz

∂z
+

λ

r
vr − Ṁrr, (11)

∂σφφ

∂t
= λ

∂vr

∂r
+

λ + 2μ

r

∂vφ

∂φ
+ λ

∂vz

∂z
+

λ + 2μ

r
vr − Ṁφφ, (12)

∂σzz

∂t
= λ

∂vr

∂r
+

λ

r

∂vφ

∂φ
+ (λ + 2μ)

∂vz

∂z
+

λ

r
vr − Ṁzz, (13)

∂σrφ

∂t
= μ

{

r
∂

∂r

( vφ

r

)

+
1

r

∂vr

∂φ

}

− Ṁrφ, (14)

∂σφz

∂t
= μ

(

1

r

∂vz

∂φ
+

∂vφ

∂z

)

− Ṁφz, (15)

∂σrz

∂t
= μ

(

∂vz

∂r
+

∂vr

∂z

)

− Ṁrz. (16)

3.1.2 For axisymmetric modeling

Axisymmetric modeling in cylindrical coordinates assumes the structure to be axisymmetric

with respect to the axis r = 0. For cases with axisymmetric seismic sources, such as explosive

and torque sources (SH-wave source), the 3-D seismic wavefield is completely separated

into in-plane motion in the r-z plane (P-SV waves) and anti-plane motion (SH waves). In

this situation, terms including φ derivatives can be neglected in Eqs. (8)–(16), which gives,

for example, the P-SV elastodynamic equation for axisymmetric modeling in cylindrical
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coordinates from axisymmetric sources as

ρ
∂vr

∂t
= fr +

1

r

∂

∂r
(rσrr) +

∂σrz

∂z
−

σφφ

r
, (17)

ρ
∂vz

∂t
= fz +

1

r

∂

∂r
(rσrz) +

∂σzz

∂z
, (18)

∂σrr

∂t
= (λ + 2μ)

∂vr

∂r
+ λ

∂vz

∂z
+

λ

r
vr − Ṁrr, (19)

∂σφφ

∂t
= λ

∂vr

∂r
+ λ

∂vz

∂z
+

λ + 2μ

r
vr − Ṁφφ, (20)

∂σzz

∂t
= λ

∂vr

∂r
+ (λ + 2μ)

∂vz

∂z
+

λ

r
vr − Ṁzz, (21)

∂σrz

∂t
= μ

(

∂vz

∂r
+

∂vr

∂z

)

− Ṁrz. (22)

3.2 Spherical coordinates

Spherical coordinates (r, θ, φ) are defined as 0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, which replace

notations in Eqs. (4)–(6) as follows.

c1 = r, c2 = θ, c3 = φ, h1 = 1, h2 = r, h3 = r sin θ. (23)

3.2.1 For 3-D modeling

Substituting Eq. (23) into Eqs. (4)–(6), we can get the 3-D elastodynamic equation in spherical

coordinates:

ρ
∂vr

∂t
= fr +

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

1

r sin θ

∂σrφ

∂φ
+

1

r

(

2σrr − σθθ − σφφ + σrθ cot θ
)

, (24)

ρ
∂vθ

∂t
= fθ +

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

1

r sin θ

∂σθφ

∂φ
+

1

r

{

3σrθ +
(

σθθ − σφφ
)

cot θ
}

, (25)

ρ
∂vφ

∂t
= fφ +

∂σrφ

∂r
+

1

r

∂σθφ

∂θ
+

1

r sin θ

∂σφφ

∂φ
+

1

r

(

3σrφ + 2σθφ cot θ
)

, (26)

∂σrr

∂t
= (λ + 2μ)

∂vr

∂r
+

λ

r

∂vθ

∂θ
+

λ

r sin θ

∂vφ

∂φ
+

λ

r
(2vr + vθ cot θ)− Ṁrr, (27)

∂σθθ

∂t
= λ

∂vr

∂r
+

λ + 2μ

r

∂vθ

∂θ
+

λ

r sin θ

∂vφ

∂φ
+

2 (λ + μ)

r
vr +

λ

r
vθ cot θ − Ṁθθ , (28)

∂σφφ

∂t
= λ

∂vr

∂r
+

λ

r

∂vθ

∂θ
+

λ + 2μ

r sin θ

∂vφ

∂φ
+

2 (λ + μ)

r
vr +

λ + 2μ

r
vθ cot θ − Ṁφφ, (29)

∂σrθ

∂t
= μ

(

∂vθ

∂r
+

1

r

∂vr

∂θ
−

1

r
vθ

)

− Ṁrθ , (30)

∂σθφ

∂t
=

μ

r

(

∂vφ

∂θ
+

1

sin θ

∂vθ

∂φ
− vφ cot θ

)

− Ṁθφ, (31)

∂σrφ

∂t
= μ

(

∂vφ

∂r
+

1

r sin θ

∂vr

∂φ
−

1

r
vφ

)

− Ṁrφ. (32)
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3.2.2 For axisymmetric modeling

Axisymmetric modeling in spherical coordinates assumes the structure to be axisymmetric

about the axis θ = 0. As we have already seen in Section 3.1.2, the in-plane P-SV motion in

the r-θ plane and the anti-plane SH motion can completely been separated for axisymmetric

sources. Consequently, the P-SV elastodynamic equation for axisymmetric modeling in

spherical coordinates from axisymmetric sources becomes

ρ
∂vr

∂t
= fr +

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

1

r

(

2σrr − σθθ − σφφ + σrθ cot θ
)

, (33)

ρ
∂vθ

∂t
= fθ +

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

1

r

{

3σrθ +
(

σθθ − σφφ
)

cot θ
}

, (34)

∂σrr

∂t
= (λ + 2μ)

∂vr

∂r
+

λ

r

∂vθ

∂θ
+

λ

r
(2vr + vθ cot θ)− Ṁrr, (35)

∂σθθ

∂t
= λ

∂vr

∂r
+

λ + 2μ

r

∂vθ

∂θ
+

2 (λ + μ)

r
vr +

λ

r
vθ cot θ − Ṁθθ , (36)

∂σφφ

∂t
= λ

∂vr

∂r
+

λ

r

∂vθ

∂θ
+

2 (λ + μ)

r
vr +

λ + 2μ

r
vθ cot θ − Ṁφφ, (37)

∂σrθ

∂t
= μ

(

∂vθ

∂r
+

1

r

∂vr

∂θ
−

1

r
vθ

)

− Ṁrθ . (38)

Similarly, the SH elastodynamic equation in spherical coordinates for axisymmetric sources

becomes the following.

ρ
∂vφ

∂t
= fφ +

∂σrφ

∂r
+

1

r

∂σθφ

∂θ
+

1

r

(

3σrφ + 2σθφ cot θ
)

, (39)

∂σθφ

∂t
=

μ

r

(

∂vφ

∂θ
− vφ cot θ

)

− Ṁθφ, (40)

∂σrφ

∂t
= μ

(

∂vφ

∂r
−

1

r
vφ

)

− Ṁrφ. (41)

This decoupling between P-SV and SH waves only holds for axisymmetric sources. Toyokuni

& Takenaka (2006a) implemented arbitrary moment-tensor point sources, including shear

dislocation sources, into the axisymmetric computation in spherical coordinates, using the

Fourier transform of all field variables in the φ direction, which can be written as

a(t, r, θ, φ) = â0(t, r, θ) +
2

∑
m=1

{âm
C (t, r, θ) cos mφ + âm

S (t, r, θ) sin mφ} , (42)

where a is a variable that can be replaced by any component of the particle velocity vector,

body force vector, stress tensor, and moment tensor; m is the expansion order and
{

â0, âm
C , âm

S

}

are expansion coefficients. Subscripts C and S have been added to indicate coefficients for

cosine and sine terms, respectively. It is sufficient to take the expansion order up to m = 2

with consideration of radiation patterns of moment tensor sources. Substitution of Eq. (42)

into the 3-D elastodynamic equation in spherical coordinates Eqs. (24)–(32), followed by

rearrangement, gives five closed systems of the partial differential equations of the expansion

coefficients. The equations for m = 0 have the same form as Eqs. (33)–(41), whereas those for
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m = 1, 2 become the following:

ρ
∂v̂m

rA

∂t
= f̂ m

rA +
∂σ̂m

rrA

∂r
+

1

r

∂σ̂m
rθA

∂θ
+

ζm

r sin θ
σ̂m

rφB +
1

r

(

2σ̂m
rrA − σ̂m

θθA − σ̂m
φφA + σ̂m

rθA cot θ
)

, (43)

ρ
∂v̂m

θA

∂t
= f̂ m

θA +
∂σ̂m

rθA

∂r
+

1

r

∂σ̂m
θθA

∂θ
+

ζm

r sin θ
σ̂m

θφB +
1

r

{

3σ̂m
rθA +

(

σ̂m
θθA − σ̂m

φφA

)

cot θ
}

, (44)

ρ
∂v̂m

φB

∂t
= f̂ m

φB +
∂σ̂m

rφB

∂r
+

1

r

∂σ̂m
θφB

∂θ
−

ζm

r sin θ
σ̂m

φφA +
1

r

(

3σ̂m
rφB + 2σ̂m

θφB cot θ
)

, (45)

∂σ̂m
rrA

∂t
=(λ + 2μ)

∂v̂m
rA

∂r
+

λ

r

∂v̂m
θA

∂θ
+

λζm

r sin θ
v̂m

φB +
λ

r
(2v̂m

rA + v̂m
θA cot θ)− ˆ̇Mm

rrA, (46)

∂σ̂m
θθA

∂t
=λ

∂v̂m
rA

∂r
+

λ + 2μ

r

∂v̂m
θA

∂θ
+

λζm

r sin θ
v̂m

φB +
2(λ + μ)

r
v̂m

rA +
λ

r
v̂m

θA cot θ − ˆ̇Mm
θθA, (47)

∂σ̂m
φφA

∂t
=λ

∂v̂m
rA

∂r
+

λ

r

∂v̂m
θA

∂θ
+
(λ + 2μ)ζm

r sin θ
v̂m

φB+
2(λ + μ)

r
v̂m

rA+
λ + 2μ

r
v̂m

θA cot θ− ˆ̇Mm
φφA, (48)

∂σ̂m
rθA

∂t
=μ

(

∂v̂m
θA

∂r
+

1

r

∂v̂m
rA

∂θ
−

1

r
v̂m

θA

)

− ˆ̇Mm
rθA, (49)

∂σ̂m
θφB

∂t
=

μ

r

(

∂v̂m
φB

∂θ
−

ζm

sin θ
v̂m

θA − v̂m
φB cot θ

)

− ˆ̇Mm
θφB, (50)

∂σ̂m
rφB

∂t
=μ

(

∂v̂m
φB

∂r
−

ζm

r sin θ
v̂m

rA −
1

r
v̂m

φB

)

− ˆ̇Mm
rφB, (51)

where A, B ∈ {C, S}. Note that P-SV and SH waves are coupled via coupling terms in

these equations, including m. Through the Fourier expansion in the φ direction, an arbitrary

moment tensor source is decomposed into five moment tensor elements: (1) Axisymmetric

excitation for m = 0, and four double couple excitations for m = 1, 2 that are classified

using the combinations of three parameters {m, A, B} as (2) {1, C, S}, (3) {1, S, C}, (4) {2, C, S},

and (5) {2, S, C}. The elements (2) and (3) correspond to purely vertical dip-slip excitations

shifted π/2 in the φ direction for each other, whereas (4) and (5) are purely strike-slip

excitations shifted π/4 in the φ direction for each other, as shown in Figure 2. Computations

of expansion coefficients using, for example, the FDM with respect to each moment tensor

element via Eqs. (33)–(41) or Eqs. (43)–(51), followed by substitution of the results into Eq.

(42), enables attainment of global elastic response by an arbitrary moment tensor source for

the axisymmetric structural model. This requires only five times the computational resources

of computations for purely axisymmetric sources.

3.3 Review of axisymmetric modeling

Because of the light computational requirement and correct treatment of 3-D seismic

wavefields, axisymmetric modeling has frequently been used by researchers. Here, we briefly

summarize their works.
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Fig. 2. Five moment tensor elements. An arbitrary moment tensor source consists of the
non-double-couple component (1) for m = 0, and the double couple components (2)–(5) for
m = 1, 2. We show an explosive source as representative of axisymmetric sources. The
elements (2)–(5) correspond to situations with combinations of three parameters {m, A, B} as
{1, C, S}, {1, S, C}, {2, C, S}, and {2, S, C}, respectively.

Axisymmetric modeling in cylindrical coordinates has often been used to efficiently calculate

realistic 3-D seismic wavefields, especially for target areas of seismic exploration. For

flat-lying media, the solution on a r-z cross section with a source and receivers will be

correct for full 3-D modeling for a point source. When using Cartesian 2-D modeling for

the same target, the seismic source becomes a line in 3-D (point in 2-D) along a direction

of structural invariance. This causes fatal errors on waveforms and makes it impossible for

direct comparison between real and synthetic data, even when the real data are converted to

2-D. However, in axisymmetric modeling in cylindrical coordinates, any lateral variations

on the r-z plane become physically unrealistic rings in 3-D, except in very special cases.

Alterman & Karal (1968) introduced the technique for FDM computation of seismic waves

in elastic layered half-space with a buried point compressional source. They applied the

scheme to various investigations, e.g., of the effect of different mesh sizes on synthetic

seismograms, development of Rayleigh waves on the surface, change of Rayleigh waves

with depth and pulse width, and so on. Details of their FDM scheme are also in Alterman

& Loewenthal (1972). Stephen (1983) adopted the cylindrical approach to compare the

FDM and reflectivity synthetic seismograms for a compressional point source, using laterally

homogeneous seafloor models with step and ramp discontinuities between liquid and solid,

showing the two methods to be in excellent agreement. Stephen (1988) expanded the work

of Stephen (1983), testing various FDM formulations to determine which ones produce

acceptable solutions for seafloor problems. They used models with horizontal liquid-solid

interfaces, and those with rough shape. Igel et al. (1996) performed waveform inversion of

marine reflection seismograms to determine P impedance and Poisson’s ratio structures in

the Gulf of Mexico, through iterative calculation of synthetic seismograms by axisymmetric

modeling in cylindrical coordinates.

Axisymmetric modeling in spherical coordinates is a powerful technique to obtain the

realistic 3-D global seismic wavefield. Therefore, it has long been used, in spite of the

restriction of structural models in rotational symmetry with respect to the axis through the

seismic source. Alterman et al. (1970) pioneered the application of this method to the FDM

computations of elastic wavefield radiated by an impulsive point source, for radially and

laterally heterogeneous, purely mathematical sphere models. The first application of this

approach to the Earth model was the work of Igel & Weber (1995). They simulated SH-wave

propagation in frequency bands up to 0.1 Hz in the whole mantle model from the PREM

(Dziewonski & Anderson, 1981), using displacement-stress FD schemes with an eight-point
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operator in space. Igel & Weber (1996) extended this high-order FDM scheme to P-SV waves.

They investigated the effects of heterogeneities in the D” layer on long-period P-waves, with

a dominant period of 15 s excited by an explosive source. Their computational domain was

restricted to a region with angular range of 105◦ and maximum depth 4600 km, because of

high computational requirements and perturbation of the FD stability criterion near the Earth

center. Nevertheless, they successfully examined three lower mantle models, in addition

to the isotropic PREM. Chaljub & Tarantola (1997) also used the displacement-stress FDM

scheme for SH waves, to test sensitivity of SS precursors to the presence of topography on the

660-km discontinuity. They adopted models with topography on the discontinuity, as well as

with a penetrating slab toward it at various scales, to examine its apparent depth deduced

by bottomside reflection S660S. Igel & Gudmundsson (1997) applied a multi-domain, i.e., the

FDM grid configuration with vertically-varying lateral grid spacing, to the SH algorithm. This

was done to investigate frequency-dependent effects on S and SS waveforms and travel times

through random upper-mantle models with pre-assumed spectral properties. Thomas et al.

(2000) solved the acoustic wave equation by axisymmetric modeling in spherical coordinates,

using the multi-domain including the Earth center. They used the scheme to study the

influence of velocity contrasts, location, and orientation of various scatterers imposed near the

CMB on precursors to PKPdf. Although axisymmetric modeling itself can treat an arbitrary

moment-tensor point source, all works listed above concentrated on using axisymmetric

sources, such as explosive and torque sources. Toyokuni & Takenaka (2006a) therefore

developed a scheme to implement a non-axisymmetric source in the FDM scheme based on

axisymmetric modeling in spherical coordinates, using the Fourier expansion of wavefield

variables in the φ direction, as in Section 3.2.2. As a numerical example, they simulated which

seismic phases can be related to a stagnant slab located far from a point source, with the

mechanism of the 1994 deep Bolivia earthquake. Jahnke et al. (2008) extended the SH scheme

of Igel & Weber (1995), for use on parallel computers with distributed memory architecture.

They calculated synthetic seismograms at dominant periods down to 2.5 s for global mantle

models, using high performance computers and PC networks. This scheme was used by

Thorne et al. (2007) to model SH-wave propagation through cross sections of laterally varying,

lower mantle models under the Cocos Plate.

4. Quasi-axisymmetric modeling

As stated in the previous section, axisymmetric modeling remains a powerful tool to obtain

the 3-D seismic wavefield, because its economical calculation focuses only on a cross section,

including the source and receivers. Especially in global modeling, axisymmetric modeling

in spherical coordinates is the best way for iterative computation of synthetic seismograms

for inverting data to image the Earth’s inner structures by waveform inversion. Purely

axisymmetric approximation is difficult in practice, however, because the structure along the

measurement line of the seismic survey is rarely symmetric with respect to the source location.

In other words, the approach cannot model seismic wave propagation on both sides of the

symmetric axis through the seismic source on the measurement line. Furthermore, when one

assigns lateral heterogeneity on one side of the cross section, a structural ghost appears on the

opposite side because of axisymmetry, such that synthetic seismograms on the side defined

as a computation target are contaminated by artificial waves reflected from the ghost that
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travel through the symmetry axis. In recent years, several efforts have continued to bring the

synthetics of axisymmetric modeling closer to the real seismic wavefield.

4.1 Cylindrical coordinates

Fig. 3. Cross sections of structure models for both conventional axisymmetric modeling in
cylindrical coordinates, and quasi-cylindrical approach. (a) In a conventional cylindrical
domain (0 ≤ r < ∞, −π ≤ φ ≤ π, −∞ < z < ∞), the cross section is represented by two
planes located at φ = 0 and φ = π. (b) In the quasi-cylindrical domain (−∞ < r < ∞,
−π/2 ≤ φ ≤ π/2, −∞ < z < ∞), the section is represented by a single plane at φ = 0. Stars
indicate seismic sources (Modified from Takenaka et al., 2003c).

In seismic exploration, treatment of an arbitrary heterogeneous structure model about the

axis through a seismic source is crucial for precise comparison between synthetic and

observed seismograms, since lateral heterogeneities are close to the axis, and the waveforms

calculated by axisymmetric modeling are easily contaminated by artificial reflections from

the structural ghost in such a situation. To overcome this difficulty, Takenaka et al. (2003a)

proposed a “quasi-cylindrical approach” for seismic exploration, using a nearly linear survey

with measurement lines including the source and receiver. In contrast to the conventional

axisymmetric approach in cylindrical coordinates using the usual cylindrical domain (0 ≤
r < ∞, −π ≤ φ ≤ π, −∞ < z < ∞), the quasi-cylindrical approach uses a newly defined

“quasi-cylindrical domain” (−∞ < r < ∞, −π/2 ≤ φ ≤ π/2, −∞ < z < ∞). Although

both approaches calculate the 3-D seismic wavefield on a cross section with a source and

receivers, assuming a structure that is invariant in the transverse (φ) direction, the cross

section representations are different. In a conventional cylindrical domain, we first have a

rectangular half plane with infinite sides formed by movement inside an area specified by

ranges 0 ≤ r < ∞ and −∞ < z < ∞, then rotation of this plane in the φ direction through

2π for coverage of the entire spatial domain. Thus, a cross section along the linear survey

line of a 3-D target structure is described by two rectangular half planes located at φ = 0 and

φ = π. When we assign a 2-D structure model on the φ = 0 plane, the structure on the φ = π

plane becomes symmetric, because of the calculation based on axisymmetric modeling. In

this situation, the r direction becomes opposite when crossing over the symmetry axis, which

makes it impossible to calculate r derivatives in the elastodynamic equation, and therefore the

waves cannot travel through the symmetry axis. In fact, conventional axisymmetric modeling

produces artificial reflection at the axis, because the line acts rigidly. Nevertheless, such

reflection can be regarded as waves coming from the opposite side through the axis in so far as

we treat them as axisymmetric wavefields. This is the reason why conventional axisymmetric

modeling in cylindrical coordinates cannot treat asymmetric structures with respect to the

source axis. On the other hand, the quasi-cylindrical domain first has a rectangular plane with

infinite sides formed by −∞ < r < ∞ and −∞ < z < ∞, and then rotates this plane in the φ

direction through π to cover the whole domain. In this domain, a cross section of the structure
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model along the survey line is described by only one plane for φ = 0, and the direction of the

horizontal coordinate (r) is unchanged across the vertical axis r = 0 (Figure 3). Hence, we

can assign an arbitrary structural model on this plane, followed by reproduction of seismic

wavefields propagating through the axis, calculating the r derivatives. The quasi-cylindrical

approach, therefore, can calculate realistic 3-D seismic wavefields for an arbitrary cross section

of a 3-D structural model with lateral heterogeneity, maintaining the efficiency of conventional

axisymmetric modeling. If the structure is defined in a 2-D Cartesian domain (x, z) with

shot position x = x0, equations for cylindrical coordinates are solved by setting r = x − x0.

When we need synthetic seismograms for another shot position in the same structure, we

only shift the source grid position in the numerical code, without remaking the computational

structure model. Takenaka et al. (2003a) applied the method to a realistic structure model of

the Nankai trough off Japan, producing possible observed seismograms by onshore-offshore

seismic experimentation in the area.

4.2 Spherical coordinates

Fig. 4. Cross sections along a great circle of the Earth, for both conventional axisymmetric
modeling in spherical coordinates and quasi-spherical approach.(a) For a conventional
spherical domain (0 ≤ r < ∞, 0 ≤ θ ≤ π, −π ≤ φ ≤ π), cross section is represented by two
semi-circles located at φ = 0 and φ = π. (b) For the quasi-spherical domain (0 ≤ r < ∞,
−π ≤ θ ≤ π, −π/2 ≤ φ ≤ π/2), the section is represented by a single circle at φ = 0. Stars
indicate seismic sources.

Toyokuni et al. (2005) applied the quasi-cylindrical approach to spherical coordinates.

The elastodynamic equation in spherical coordinates is usually solved in the conventional

spherical domain (0 ≤ r < ∞, 0 ≤ θ ≤ π, −π ≤ φ ≤ π). However, they introduced a new

domain, designated a “quasi-spherical domain” (0 ≤ r < ∞, −π ≤ θ ≤ π, −π/2 ≤ φ ≤ π/2),

which maps the sphere in an alternate way. In a conventional spherical domain, we first have

a semi-circle with infinite radius formed by rotation from θ = 0 to θ = π, then rotation of

this semi-circle in the φ direction through 2π to cover the entire spatial domain. Thus, a cross

section along a great circle of the Earth is described by two semi-circles located at φ = 0 and

φ = π. When we assign a 2-D structure model on the φ = 0 plane, the structure on a φ = π

plane becomes symmetric because of axisymmetry. Similar to the cylindrical case, we cannot

take θ derivatives on the source axis, which makes it impossible to propagate waves across the

line. On the other hand, in the quasi-spherical domain, we first have a circle with an infinite

radius formed by rotation from θ = −π to θ = π, and then rotate this circle in the φ direction

through π to cover the entire domain. In this new domain, a cross section along a great circle of

the Earth is described by only one circle for φ = 0, and the θ direction is unchanged across the
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source axis θ = 0 (Figure 4). Hence, we can apply an arbitrary structure model on this plane.

We further explain the concept of the quasi-spherical approach in an intuitive way. Figure 4

appears as though the quasi-spherical domain is made by gluing two hemispheres together,

although such a joint does not really exist. The reality of the quasi-spherical approach is

that it calculates seismic wavefields in two axisymmetric spherical structures, connecting the

wavefields only on the axes with θ = 0 and θ = π, which makes us approximately treat wave

propagation through an asymmetric structure. In Figure 5, we define a blue semi-circle as

structure A and a red semi-circle as structure B. Wavefields propagating in structures A and B

are solutions of the elastodynamic equation for axisymmetric structures A and B, respectively.

However, computation of θ derivatives at the source axis connects and exchanges wavefields

for both structures, which results in apparent treatment of realistic wavefields propagating in

an arbitrary asymmetric structure made by combining two semi-circles. This concept is easy

to understand with reference to the Riemann surface. When we consider a double-valued

function, a two-sheeted Riemann surface should be defined. This surface is made by joining

the two sheets crosswise along the “branch cuts”, so that values can move from the upper to

lower images. Although each sheet is continuous through the branch cuts and the function

could have values even on the lower sheet, from the top view of the surface it appears like

two sheets glued together.

We call the method of solving the elastodynamic equation in spherical coordinates in the

quasi-spherical domain the “quasi-spherical approach”. This approach enables modeling

of seismic wave propagation in a 2-D slice of a global Earth model of arbitrary lateral

heterogeneity, with similar computation time and storage as 2-D modeling, but with

full consideration of 3-D wave propagation. Using a method to implement arbitrary

moment tensor point sources for conventional axisymmetric modeling (Toyokuni & Takenaka,

Fig. 5. Schematic drawings of the concept of quasi-spherical approach. (Left) The
elastodynamic equation in spherical coordinates is solved separately for both blue and red
axisymmetric structures. However, when both wavefields are connected at the source axis,
the resulting wavefield appears to propagate through an asymmetric Earth model. (Right)
The concept is similar to the Riemann surface. Viewing from the top, the structure looks as if
it is made up by gluing two structures, although these structures are continuous across the
joint.
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2006a), Toyokuni & Takenaka (2006b) simulated the seismic wavefield from the 1994

deep Fiji earthquake. This was done to investigate waveform characteristics observed at

Antarctica, propagated through an asymmetric structure with anomalous density and seismic

wavespeeds below New Zealand. Toyokuni & Takenaka (2011) extended the quasi-spherical

FDM scheme to treat attenuative structures and the Earth’s center.

5. FDM implementation

Fig. 6. Staggered-grid distribution used in quasi-cylindrical FDM computations of Takenaka
et al. (2003a). The grids for the vertical component of particle velocity vz and the normal
stress components σrr, σφφ, σzz are located on the source axis r = 0. ∆r and ∆z are grid
spacings in the r and z directions, respectively.

Although quasi-axisymmetric modeling can be applied to variety of numerical methods,

all previous works developed numerical schemes based on the FDM with second-order

accuracy in time and fourth-order accuracy in space, with a staggered-grid formulation.

Takenaka et al. (2003a) constructed a staggered-grid scheme for rectangular grids of uniform

spacing, for quasi-cylindrical computations of P-SV waves from an explosive source. They

used a grid configuration with grid points for vz and normal stress components σrr, σφφ,

and σzz located on the axis r = 0, as shown in Figure 6. On the other hand, Toyokuni

et al. (2005) and Toyokuni & Takenaka (2006b) used a staggered-grid scheme in spherical

coordinates for quasi-spherical computations using nonuniform (Pitarka, 1999) and uniform

grid configurations for the vertical (r) and the angular (θ) directions, respectively. Such

grid configurations were chosen with smaller vertical grid spacings near interfaces with high

contrast of material parameters, e.g., the free surface and the CMB. However, the structural

models in these computations were defined over an area with maximum depth 5321 km, so the

computations did not treat waves propagating through the Earth center because of problems

in this region. The FDM computations of seismic wavefields in spherical coordinates with

uniform gridding in the θ direction fail near the Earth center, because of two reasons: (1)

The extremely small lateral grid spacings near the center perturb the FDM stability criterion,

and (2) the singularity of the elastodynamic equation at the center r = 0. To solve the first

problem, Toyokuni & Takenaka (2011) applied the so-called multi-domain technique (e.g.,

Aoi & Fujiwara, 1999; Thomas et al., 2000; Wang & Takenaka, 2001; 2010), in which several

domains consisting of FD grids with different lateral grid spacings are connected in the r
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direction, with coarser lateral grids around the center. The second problem was solved using

linear interpolation of wavefield variables in the r direction, giving values of particle velocity

and stress at the center. Further, Toyokuni & Takenaka (2011) introduced anelastic attenuation

into the quasi-spherical FDM. The anelastic behavior of Earth material can be approximated

by viscoelastic models, in which the stress-strain relations contain the convolution integral in

the time domain, so that time-domain computation such as the FDM had difficulty treating the

integral. However, a method using so-called memory variables, which replace the convolution

integral with ordinary differential equations for additional internal variables, was invented

in 1980s following improvements in Cartesian coordinates (e.g., Carcione et al., 1988a;b;

Emmerich & Korn, 1987; JafarGandomi & Takenaka, 2007). Toyokuni & Takenaka (2011)

applied the scheme for the first time to the FDM computations in spherical coordinates. The

studies with the quasi-spherical FDM used a grid configuration with grid points for vr, σrr,

σθθ , σφφ, and σθφ located on the axis θ = 0, as shown in Figure 7.

Fig. 7. Staggered-grid distribution used in quasi-spherical FDM computations of, for
example, Toyokuni et al. (2005). The grids for the vertical component of particle velocity vr,
the normal stress components σrr, σθθ , σφφ, and the {θφ}-component of the stress tensor σθφ

are located on the source axis θ = 0. ∆r and ∆θ are grid spacings in the r and θ directions,
respectively.

As mentioned in the previous section, in the staggered-grid scheme, the derivatives of a field

quantity are naturally defined halfway between the grid points where the field quantity is

defined. Thus, terms on the right-hand side of the elastodynamic equation, including spatial

derivatives, are consistently evaluated at the same grid position where the field quantity on

the left-hand side is defined. However, this is not the case for terms that do not include spatial

derivatives, so these terms have sometimes been evaluated using linear interpolation, despite

a decline in accuracy of these terms to second order. To retain fourth-order computation in

space at nearly all grid points except along and near the source axis and several computational

boundaries, the quasi-axisymmetric schemes prepare the elastodynamic equation that has

been rewritten through identities, such as

σrr

r
=

1

r

∂

∂r
(rσrr)−

∂σrr

∂r
, (52)
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followed by discretization (e.g., Takenaka et al., 2003a; Toyokuni et al., 2005). Finally and

for example, equations for the P-SV waves corresponding to Eqs. (17)–(22) used by the

quasi-cylindrical computations become

ρ
∂vr

∂t
= fr +

1

r

∂

∂r

[

r(σrr − σφφ)
]

+
∂σφφ

∂r
+

∂σrz

∂z
, (53)

ρ
∂vz

∂t
= fz +

1

r

∂

∂r
(rσrz) +

∂σzz

∂z
, (54)

∂σrr

∂t
= λ

1

r

∂

∂r
(rvr) + 2μ

∂vr

∂r
+ λ

∂vz

∂z
− Ṁrr, (55)

∂σφφ

∂t
= (λ + 2μ)

1

r

∂

∂r
(rvr)− 2μ

∂vr

∂r
+ λ

∂vz

∂z
− Ṁφφ, (56)

∂σzz

∂t
= λ

1

r

∂

∂r
(rvr) + (λ + 2μ)

∂vz

∂z
− Ṁzz, (57)

∂σrz

∂t
= μ

(

∂vz

∂r
+

∂vr

∂z

)

− Ṁrz. (58)

Similarly, for the quasi-spherical approach, equations for P-SV waves corresponding to Eqs.

(33)–(38) can be rewritten as

ρ
∂vr

∂t
= fr +

1

r

∂

∂r

[

r(2σrr − σθθ − σφφ)
]

−
∂

∂r

(

σrr − σθθ − σφφ
)

+
1

r sin θ

∂

∂θ
(sin θσrθ), (59)

ρ
∂vθ

∂t
= fθ +

3

r

∂

∂r
(rσrθ)− 2

∂σrθ

∂r
+

1

r sin θ

∂

∂θ

[

sin θ(σθθ − σφφ)
]

+
1

r

∂σφφ

∂θ
, (60)

∂σrr

∂t
=

2λ

r

∂

∂r
(rvr) + (−λ + 2μ)

∂vr

∂r
+

λ

r sin θ

∂

∂θ
(sin θvθ)− Ṁrr, (61)

∂σθθ

∂t
=

2(λ + μ)

r

∂

∂r
(rvr)− (λ + 2μ)

∂vr

∂r
+

λ

r sin θ

∂

∂θ
(sin θvθ) +

2μ

r

∂vθ

∂θ
− Ṁθθ , (62)

∂σφφ

∂t
=

2(λ + μ)

r

∂

∂r
(rvr)− (λ + 2μ)

∂vr

∂r
+

λ + 2μ

r sin θ

∂

∂θ
(sin θvθ)−

2μ

r

∂vθ

∂θ
− Ṁφφ, (63)

∂σrθ

∂t
= 2μ

∂vθ

∂r
−

μ

r

∂

∂r
(rvθ) +

μ

r

∂vr

∂θ
− Ṁrθ , (64)

and for SH waves corresponding to Eqs. (39)–(41) become

ρ
∂vφ

∂t
= fφ +

3

r

∂

∂r
(rσrφ)− 2

∂σrφ

∂r
+

2

r sin θ

∂

∂θ

(

sin θσθφ

)

−
1

r

∂σθφ

∂θ
, (65)

∂σθφ

∂t
=

2μ

r

∂vφ

∂θ
−

μ

r sin θ

∂

∂θ
(sin θvφ)− Ṁθφ, (66)

∂σrφ

∂t
= 2μ

∂vφ

∂r
−

μ

r

∂

∂r
(rvφ)− Ṁrφ. (67)
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As mentioned above, a characteristic of quasi-axisymmetric modeling is the computation of

seismic wavefields even on the source axis. This permits waves to propagate across the axis,

from a structure assigned on the right half, to that on the left half of the cross section, and vice

versa. For direct computation of the elastodynamic equation on the source axis, we must also

solve singularity problems associated with the axis. The elastodynamic equation in cylindrical

coordinates has terms containing σθθ/r and vr/r, which cannot be directly calculated on the

axis r = 0. Takenaka et al. (2003a) exploited the formulae derived from limiting operations

using the l’Hospital rule, which is also used in Toyokuni et al. (2005) and associated works.

For example, formulae for evaluation of wavefield variables on the θ = 0 and θ = ±π axes in

quasi-spherical computations are

a cot θ →
∂a

∂θ
(θ → 0,±π), (68)

where the variable a can be replaced by σrθ , σθθ , σφφ, σθφ, vθ , or vφ.

Since the FDM calculates seismic wavefields only on grid points distributed across

computation space, accurate treatment of material discontinuities inside the grid cells has

been a serious problem. One possible solution to this problem is the introduction of so-called

effective parameters for the density and elastic moduli, calculated by volume arithmetic

averaging of densities and volume harmonic averaging of elastic moduli in the cells. The

effective parameters scheme enables us to place a material discontinuity at an arbitrary

position inside a grid cell (e.g, Boore, 1972; Moczo et al., 2002). Toyokuni & Takenaka (2009)

extended the scheme to spherical coordinates and developed a FORTRAN subroutine ACE

that calculates the effective parameters analytically for an arbitrary spatial grid distribution

within the four major, standard Earth models.

6. Applications

Fig. 8. P-wave velocity model used for simulation of onshore-offshore seismic experiment.
Stars indicate shot locations (after Takenaka et al., 2003b).

This section shows examples of wavefield computation using quasi-axisymmetric modeling.

First, we display an application of the quasi-cylindrical FDM to a realistic structure model
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Fig. 9. Synthetic velocity seismograms calculated for three shot positions (a) S1; (b) S2; and
(c) S3 in Figure 8, using Nankai trough model. Both vertical and horizontal components are
shown for all cases. Amplitudes of seismograms are scaled linearly with offset. A lowpass
filter (< 3 Hz) has been applied (after Takenaka et al., 2003b).
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Fig. 10. SH-wave snapshots up to a period of 4 s at six time steps, showing generation and
propagation of various seismic phases in the spherically symmetric Earth model PREM. Each
frame uses the same color scale: red and blue indicate plus and minus amplitudes,
respectively. Solid circles are the free surface, the 670-km discontinuity, and the CMB. Seismic
source is a 600-km deep shear point source, indicated by a star.
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with subducting slab (Takenaka et al., 2003b;c). Figure 8 indicates the P-wave velocity model

for the Nankai trough region, Japan, where the Philippine Sea Plate is subducting toward the

Eurasian Plate (Kodaira et al., 2002). Each layer in the model has a constant P-wave velocity,

corresponding to the color scale. The VP/VS was assumed to be 1.73, except sea water where

VP and VS were set to be 1.5 km/s and zero, respectively. Densities for the solid layers were

evaluated using the formula of Darbyshire at al. (2000). The model was defined on a 7100 ×
1000 grid of spacing 50 m in both horizontal and vertical directions. The time increment was

2.5 × 10−3 s. We calculated synthetic seismograms for three horizontal positions (S1, S2, and

S3) of 100 m deep seismic sources, as shown in Figure 8. Note that S1 and S3 are land and

sea shots, respectively, and S2 is located at the land-sea boundary. The source time function

was a phaseless, bell-shaped pulse of width 0.5 s. Figure 9 shows synthetic seismograms

for both vertical and horizontal components of particle velocity on the land surface and sea

bottom for the three shots. The FDM computations simulated all possible seismic phases in

the computation time window. Because of the completeness of the FDM seismograms, we can

perform a direct comparison with observed seismograms, which is very important for testing

and improving the structural models obtained by seismic surveys.

Fig. 11. Cross section of structural model for computation of synthetic seismograms. Circles
indicate the free surface, 400-km and 670-km discontinuities, the CMB and ICB. Seismic
source is located at depth 651 km, underneath northern Bolivia. Blue area is an anomaly of
seismic wave speed, placed just above the CMB within a range of 3480km ≤ r ≤ 4180km and
16.18◦ ≤ θ ≤ 46.18◦, having a +20% velocity increase of P- and S-wavespeeds from the
PREM basis. A red line indicates angular range of Antarctica (52.78◦ ≤ θ ≤ 99.58◦).

Next, we apply the quasi-spherical FDM for the spherically symmetric Earth model PREM

(Dziewonski & Anderson, 1981), to show SH wave propagation for a shear source. Simulation

of SH waves is useful for extracting effects related to S waves, since such sources do not

exist in nature. It also enables computations for higher frequencies, through a reduction of

computational requirements compared to P-SV or 3-D wave simulations. These attributes are

why many authors have been working with global SH-wave computations (e.g., Chaljub &
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Tarantola, 1997; Igel & Weber, 1995; Igel & Gudmundsson, 1997; Jahnke et al., 2008; Thorne

et al., 2007; Wang & Takenaka, 2011; Wysession & Shore, 1994). We use a shear point source

M21 = −M12 at depth 600 km, with source time function described as a phaseless, bell-shaped

pulse of width 4 s. The computational model is defined on a 2843(r) × 27000(θ) grid with

maximum depth 2891 km (CMB), since SH waves cannot propagate into the outer core. The

free surface condition has been applied to the top and bottom boundaries of the computational

domain. Uniform grid spacing is used in both vertical and angular directions. The time

increment is 7.0 × 10−3 s. Figure 10 shows sequential snapshots at six time steps, which

allows us to confirm fundamental properties of SH-waves reverberating inside the crust and

mantle.

Finally, to investigate characteristics of observable waveforms in the intra-Antarctic region,

we calculate global synthetic seismograms with the quasi-spherical FDM for an asymmetric

model with a simply-shaped, high seismic wavespeed anomaly superimposed on the

attenuative PREM. Numerous temporal broadband seismic stations have been recently

installed in this region, in association with the International Polar Year (IPY) 2007–2008 (Kanao

et al., 2009). The seismic source is located in northern Bolivia at depth 651 km, the same

location as the 1994 deep Bolivia earthquake. However, the mechanism is a simple dip-slip

source with nonzero moment-tensor components of M13 = M31. The source time function

is a phaseless, bell-shaped pulse with duration 60 s. The anomaly is expressed as a region

containing perturbations on P- and S-wavespeeds set at +20.0 % above the PREM basis,

within vertical and angular ranges of 3480km ≤ r ≤ 4180km and 16.18◦ ≤ θ ≤ 46.18◦.

This is representative of a high velocity anomaly beneath southern South America, deduced

by seismic tomography. We calculate wavefields on a longitudinal cross section, including

the source and the anomaly, to see how the observed seismograms in Antarctica are affected

by the anomaly. As shown in Figure 11, the angular range of Antarctica for this situation is

52.78◦ ≤ θ ≤ 99.58◦. We use the ACE subroutine (Toyokuni & Takenaka, 2009) to generate

the effective parameters for the PREM, with respect to the given grid distribution in the

radial direction. The results are presented by synthetic seismograms along the Earth surface,

and sequential snapshots of wave propagation. Figures 12 and 13 indicate respectively

the angular (θ) and transverse (φ) components of synthetics at various angular ranges in

Antarctica, calculated for (a) the PREM and (b) the model, with a high velocity anomaly.

Differential seismograms in panel (c) are obtained by subtracting the PREM results from those

of the asymmetric model, which clearly illustrate various phases affected by the anomaly

region. Since the anomaly is located just above the CMB, we see that the core reflection

such as ScS, sScS, and their multiple reflections, have been strongly affected by the region,

as expected. These results suggest probable characteristics of observed seismograms in the

intra-Antarctic region. Figure 14 shows sequential snapshots of the vertical (r) component

of the seismic wavefield propagating on a cross section at every 300 s, from 300 s to 3900 s

after excitation. We can see the asymmetric wavefield about the source axis, caused by the

anomaly. The computation required 2.4 Gbytes of memory in a single precision calculation,

with computation time of 27.3 hours on eight CPUs with IBM POWER6 architecture (4.7 GHz

clock speed), for a total duration of 5000 s after excitation.
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Fig. 12. Synthetic seismograms of vθ at the Earth surface within the angular range of
Antarctica, calculated for (a) the PREM, and (b) the model, including a high velocity
anomaly. Differential seismograms (c) are calculated by subtracting (a) from (b), which
indicate various phases affected by the anomaly. All traces were low-pass filtered with cutoff
period 60 s, and are shown at the same scale.

106 Seismic Waves, Research and Analysis

www.intechopen.com



Quasi-Axisymmetric Finite-Difference Method for Realistic Modeling of Regional and Global Seismic Wavefield — Review and Application — 23

Fig. 13. Synthetic seismograms of vφ at the Earth surface within the angular range of
Antarctica, calculated for (a) the PREM, and (b) the model, including a high velocity
anomaly. Differential seismograms (c) are calculated by subtracting (a) from (b), which
indicate various phases affected by the anomaly. All traces were low-pass filtered with cutoff
period 60 s, and are shown in the same scale.
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Fig. 14. Sequential vr snapshots at 12 time steps, calculated for the model with a high velocity
anomaly. Each frame uses the same color scale: red and blue indicate plus and minus
amplitudes, respectively. Solid circles are the free surface, 670-km discontinuity, the CMB
and ICB. Solid box represents location of the anomaly. Seismic source is a 651-km deep
vertical dip-slip source, indicated by a star.
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7. Conclusions

We have reviewed recent developments of numerical computation methods that have

accuracy and computational efficiency for realistic seismic wavefields, using the FDM.

Traditional axisymmetric modeling solves the 3-D seismic wave propagation only on a

2-D cross section of a structure model including a seismic source and receivers, under the

assumption that the structure is invariant in the transverse direction about the axis through

the source. However, realistic structures with asymmetry cannot be treated in principle.

Quasi-axisymmetric modeling represents methods solving the seismic wave equation in

newly defined quasi-cylindrical / spherical coordinates, rather than the usual cylindrical /

spherical coordinates. This type of modeling retains the efficiency of axisymmetric modeling

but can treat an arbitrary asymmetric structure, thereby providing a breakthrough for the

problem of traditional axisymmetric strategies.
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